Дисертації з теми "Multiscale flow"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Multiscale flow".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rycroft, Christopher Harley. "Multiscale modeling in granular flow." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41557.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 245-254).
Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing a considerable hurdle to industry, where grains and powders must frequently be manipulated. Much of the complexity of modeling granular materials stems from the discreteness of the constituent particles, and a key theme of this work has been the connection of the microscopic particle motion to a bulk continuum description. This led to development of the "spot model", which provides a microscopic mechanism for particle rearrangement in dense granular flow, by breaking down the motion into correlated group displacements on a mesoscopic length scale. The spot model can be used as the basis of a multiscale simulation technique which can accurately reproduce the flow in a large-scale discrete element simulation of granular drainage, at a fraction of the computational cost. In addition, the simulation can also successfully track microscopic packing signatures, making it one of the first models of a flowing random packing. To extend to situations other than drainage ultimately requires a treatment of material properties, such as stress and strain-rate, but these quantities are difficult to define in a granular packing, due to strong heterogeneities at the level of a single particle. However, they can be successfully interpreted at the mesoscopic spot scale, and this information can be used to directly test some commonly-used hypotheses in modeling granular materials, providing insight into formulating a general theory.
by Christopher Harley Rycroft.
Ph.D.
Kumar, Mayank Ph D. Massachusetts Institute of Technology. "Multiscale CFD simulations of entrained flow gasification." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69495.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
The design of entrained flow gasifiers and their operation has largely been an experience based enterprise. Most, if not all, industrial scale gasifiers were designed before it was practical to apply CFD models. Moreover, gasification CFD models developed over the years may have lacked accuracy or have not been tested over a wide range of operating conditions, gasifier geometries and feedstock compositions. One reason behind this shortcoming is the failure to incorporate detailed physics and chemistry of the coupled non-linear phenomena occurring during solid fuel gasification. In order to accurately predict some of the overall metrics of gasifier performance, like fuel conversion and syngas composition, we need to first gain confidence in the sub-models of the various physical and chemical processes in the gasifier. Moreover, in a multiphysics problem like gasification modeling, one needs to balance the effort expended in any one submodel with its effect on the accuracy of predicting some key output parameters. Focusing on these considerations, a multiscale CFD gasification model is constructed in this work with special emphasis on the development and validation of key submodels including turbulence, particle turbulent dispersion and char consumption models. The integrated model is validated with experimental data from various pilot-scale and laboratory-scale gasifier designs, further building confidence in the predictive capability of the model. Finally, the validated model is applied to ascertain the impact of changing the values of key operating parameters on the performance of the MHI and GE gasifiers. The model is demonstrated to provide useful quantitative estimates of the expected gain or loss in overall carbon conversion when critical operating parameters such as feedstock grinding size, gasifier mass throughput and pressure are varied.
by Mayank Kumar.
Ph.D.
Basu, Debashis. "Hybrid Methodologies for Multiscale Separated Turbulent Flow Simulations." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147362291.
Повний текст джерелаHauge, Vera Louise. "Multiscale Methods and Flow-based Gridding for Flow and Transport In Porous Media." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12132.
Повний текст джерелаLamponi, Daniele. "One dimensional and multiscale models for blood flow circulation /." [S.l.] : [s.n.], 2004. http://library.epfl.ch/theses/?nr=3006.
Повний текст джерелаMoragues, Ginard Margarida. "Variational multiscale stabilization and local preconditioning for compressible flow." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/384841.
Повний текст джерелаAquesta tesi tracta sobre l'estabilització de la solució numèrica de les equacions d'Euler i Navier-Stokes de flux compressible. Quan es simulen numèricament les equacions que governen els fluids, si no s'afegeix cap estabilització, la solució presenta oscil·lacions no físiques sinó numèriques. Per aquest motiu l'estabilització de les equacions en derivades parcials i de les equacions de la mecànica de fluids és de gran importància. Dins del marc de l'anomenada estabilització de multiescales variacionals, presentem aquí un mètode d'estabilització per flux compressible. L'evaluació del mètode es realitza primer en varis exemples acadèmics per diferents nombres de Mach, per flux viscós, inviscid, estacionari i transitori. Després el mètode s'aplica a simulacions de flux atmosfèric. Per això, resolem les equacions d'Euler per flux atmosfèric sec i humit. En presència d'humitat, també s'ha de resoldre un grup d'equacions de transport d'espècies d'aigua. Aquest domini d'aplicació representa un desafiament des del punt de vista de l'estabilització, donat que s'ha d'afegir la quantitat adequada d'estabilització per tal de preservar les propietats físiques del flux atmosfèric. Arribat aquest punt, per tal de millorar el nostre mètode, ens interessem pels precondicionadors locals. Els precondicionadors locals permeten reduir els problemes de rigidesa que presenten les equacions dels fluids i que són causa d'una pitjor i més lenta convergència cap a la solució. Amb aquest propòsit en ment, combinem el nostre mètode d'estabilització amb els precondicionadors locals i presentem un mètode d'estabilització per les equacions de Navier-Stokes de flux compressible, anomenem aquest màtode P-VMS. Aquest mètode es evaluat per mitjà de varis exemples per diferents nombres de Mach i demostra una millora sustancial no només pel que fa la convergència cap a la solució, sinó també en la precisió i robusteza del mètode. Finalment els beneficis del P-VMS es demostren teòricament a través de l'anàlisi d'estabilitat de Fourier. Com a resultat d'aquest anàlisi, sorgeix una modificació en el càlcul del pas de temps que millora un cop més la convergència del mètode
Hellman, Fredrik. "Multiscale and multilevel methods for porous media flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262276.
Повний текст джерелаDub, Francois-Xavier. "A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44874.
Повний текст джерелаIncludes bibliographical references (p. 75-78).
Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefore reflect the multiscale character of the solution. We concentrate on the development of simulation techniques that account for the heterogeneity present in realistic reservoirs, and have the ability to solve for coupled pressure-saturation problems (on coarse grids). We present a variational multiscale mixed finite element method for the solution of Darcy flow in porous media, in which both the permeability field and the source term display a multiscale character. The formulation is based on a multiscale split of the solution into coarse and subgrid scales. This decomposition is invoked in a variational setting that leads to a rigorous definition of a (global) coarse problem and a set of (local) subgrid problems. One of the key issues for the success of the method is the proper definition of the boundary conditions for the localization of the subgrid problems. We identify a weak compatibility condition that allows for subgrid communication across element interfaces, something that turns out to be essential for obtaining high-quality solutions. We also remove the singularities due to concentrated sources from the coarse-scale problem by introducing additional multiscale basis functions, based on a decomposition of fine-scale source terms into coarse and deviatoric components.
(cont.) The method is locally conservative and employs a low-order approximation of pressure and velocity at both scales. We illustrate the performance of the method on several synthetic cases, and conclude that the method is able to capture the global and local flow patterns accurately.
by Francois-Xavier Dub.
S.M.
Gravemeier, Volker. "The variational multiscale method for laminar and turbulent incompressible flow." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11051842.
Повний текст джерелаXu, Mingtian, and 許明田. "Multiscale transport of mass, momentum and energy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B3124497X.
Повний текст джерелаChernyavsky, Igor L. "A multiscale analysis of flow and transport in the human placenta." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13678/.
Повний текст джерелаSotelo, Sebastian. "Investigation of Multiscale Fluid Structure Interaction Modeling of Flow in Arterial Systems." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5704.
Повний текст джерелаM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermo-Fluids
Donato, Adam Armido. "Multiscale Modeling and Uncertainty Quantification of Multiphase Flow and Mass Transfer Processes." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51246.
Повний текст джерелаPh. D.
Dallas, Vassilios. "Multiscale structure of turbulent channel flow and polymer, dynamics in viscoelastic turbulence." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5855.
Повний текст джерелаWedding, William Chad. "MULTISCALE MODELING OF THE MINE VENTILATION SYSTEM AND FLOW THROUGH THE GOB." UKnowledge, 2014. https://uknowledge.uky.edu/mng_etds/11.
Повний текст джерелаSorrentino, Luigi. "Simulation and optimization of crowd dynamics using a multiscale model." Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/318.
Повний текст джерелаIn the last decades, the modeling of crowd motion and pedestrian .ow has attracted the attention of applied mathematicians, because of an increasing num- ber of applications, in engineering and social sciences, dealing with this or similar complex systems, for design and optimization purposes. The crowd has caused many disasters, in the stadiums during some major sporting events as the "Hillsborough disaster" occurred on 15 April 1989 at Hills- borough, a football stadium, in She¢ eld, England, resulting in the deaths of 96 people, and 766 being injured that remains the deadliest stadium-related disaster in British history and one of the worst ever international football accidents. Other example is the "Heysel Stadium disaster" occurred on 29 May 1985 when escaping, fans were pressed against a wall in the Heysel Stadium in Brussels, Belgium, as a result of rioting before the start of the 1985 European Cup Final between Liv- erpool of England and Juventus of Italy. Thirty-nine Juventus fans died and 600 were injured. It is well know the case of the London Millennium Footbridge, that was closed the very day of its opening due to macroscopic lateral oscillations of the structure developing while pedestrians crossed the bridge. This phenomenon renewed the interest toward the investigation of these issues by means of mathe- matical modeling techniques. Other examples are emergency situations in crowded areas as airports or railway stations. In some cases, as the pedestrian disaster in Jamarat Bridge located in South Arabia, mathematical modeling and numerical simulation have already been successfully employed to study the dynamics of the .ow of pilgrims, so as to highlight critical circumstances under which crowd ac- cidents tend to occur and suggest counter-measures to improve the safety of the event. In the existing literature on mathematical modeling of human crowds we can distinguish two approaches: microscopic and macroscopic models. In model at microscopic scale pedestrians are described individually in their motion by ordinary di¤erential equations and problems are usually set in two-dimensional domains delimiting the walking area under consideration, with the presence of obstacles within the domain and a target. The basic modeling framework relies on classical Newtonian laws of point. The model at the macroscopic scale consists in using partial di¤erential equations, that is in describing the evolution in time and space of pedestrians supplemented by either suitable closure relations linking the velocity of the latter to their density or analogous balance law for the momentum. Again, typical guidelines in devising this kind of models are the concepts of preferred direction of motion and discomfort at high densities. In the framework of scalar conservation laws, a macroscopic onedimensional model has been proposed by Colombo and Rosini, resorting to some common ideas to vehicular tra¢ c modeling, with the speci.c aim of describing the transition from normal to panic conditions. Piccoli and Tosin propose to adopt a di¤erent macroscopic point of view, based on a measure-theoretical framework which has recently been introduced by Canuto et al. for coordination problems (rendez-vous) of multiagent systems. This approach consists in a discrete-time Eulerian macroscopic representation of the system via a family of measures which, pushed forward by some motion mappings, provide an estimate of the space occupancy by pedestrians at successive time steps. From the modeling point of view, this setting is particularly suitable to treat nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. A microscopic approach is advantageous when one wants to model di¤erences among the individuals, random disturbances, or small environments. Moreover, it is the only reliable approach when one wants to track exactly the position of a few walkers. On the other hand, it may not be convenient to use a microscopic approach to model pedestrian .ow in large environments, due to the high com- putational e¤ort required. A macroscopic approach may be preferable to address optimization problems and analytical issues, as well as to handle experimental data. Nonetheless, despite the fact that self-organization phenomena are often visible only in large crowds, they are a consequence of strategical behaviors devel- oped by individual pedestrians. The two scales may reproduce the same features of the group behavior, thus providing a perfect matching between the results of the simulations for the micro- scopic and the macroscopic model in some test cases. This motivated the multiscale approach proposed by Cristiani, Piccoli and Tosin. Such an approach allows one to keep a macroscopic view without losing the right amount of .granularity,.which is crucial for the emergence of some self-organized patterns. Furthermore, the method allows one to introduce in a macroscopic (averaged) context some micro- scopic e¤ects, such as random disturbances or di¤erences among the individuals, in a fully justi.able manner from both the physical and the mathematical perspec- tive. In the model, microscopic and macroscopic scales coexist and continuously share information on the overall dynamics. More precisely, the microscopic part tracks the trajectories of single pedestrians and the macroscopic part the density of pedestrians using the same evolution equation duly interpreted in the sense of measures. In this respect, the two scales are indivisible. Starting from model of Cristiani, Piccoli and Tosin we have implemented algo- rithms to simulate the pedestrians motion toward a target to reach in a bounded area, with one or more obstacles inside. In this work di¤erent scenarios have been analyzed in order to .nd the obstacle con.guration which minimizes the pedes- trian average exit time. The optimization is achieved using to algorithms. The .rst one is based on the exhaustive exploration of all positions: the average exit time for all scenarios is computed and then the best one is chosen. The second algorithm is of steepest descent type according to which the obstacle con.guration corresponding to the minimum exit time is found using an iterative method. A variant has been introduced to the algorithm so to obtain a more e¢ cient proce- dure. The latter allows to .nd better solutions in few steps than other algorithms. Finally we performed other simulations with bounded domains like a classical .at with .ve rooms and two exits, comparing the results of three di¤erent scenario changing the positions of exit doors. [edited by author]
X n.s.
Mwasame, P. Masafu. "Multiscale Investigation of Fundamental Rheological Phenomena in Particulate Suspensions Based on Flow-Microstructure Interactions." Thesis, University of Delaware, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10680885.
Повний текст джерелаSuspensions and dispersions are an important class of complex fluids frequently encountered in a variety of industrial processes and are prominent in many consumer products such as beauty creams and food dressing. The extensive use of suspensions can be partly attributed to their unique rheological properties such as shear-induced normal stresses, yield stress, time-dependent viscosity and shear thinning. These rheological properties are a direct result of the interplay between the suspension microstructure and flow and have consequences for material processing. The quantitative understanding of suspension rheology so far has been dominated by empirical models. However, such models are either very specialized to particular flows, involve numerous/unphysical parameters, or are inadequate to describe rheological phenomena such as normal stresses. Alternatively, microscopic approaches have primarily been successful in addressing idealized cases and/or small length/time scales. Therefore, the goal of this thesis is to develop new and improved classes of continuum models that clearly connect the suspension microstructure under flow to the observed macroscopic rheology.
In this thesis, new, generally multiscale methods are applied towards developing robust constitutive models for suspension rheology. Two primary modeling approaches are employed to advance the modeling of suspension rheology in this thesis. First is a bottom-up approach that starts from a microscopic description of the suspension microstructure (e.g., the evolving aggregate size distribution) that is then coupled to an empirical/phenomenological equation to allow for the evaluation of the shear stress. The shortcoming of using a phenomenological stress expression is counterbalanced by the accurate microstructure picture provided by a microscopic framework. The second technique is a top-down approach that starts from a macroscopic description of the system through the use of state variables whose dynamic equations are developed within the Hamiltonian-enhanced Non-Equilibrium Thermodynamics framework. The key benefit of this latter approach is that the expressions for the stress tensor and microstructure, with the latter represented by a second rank tensor, emerge self-consistently from the framework. Moreover, the generated equations are applicable to general flows. The multiscale nature of suspension microstructure implies that depending on the phenomena of interest, one or the other or a combination of the two approaches may be favored. Regardless of the approach taken, a recurrent theme in this work is the clear association of the observed macroscopic rheological behavior with an underlying microscopic picture. Finally, for all the suspensions emphasized in this thesis i.e., thixotropic, polydisperse, noncolloidal and emulsions, the corresponding rheological models developed are validated against experimental/simulation data revealing their predictive capability.
A number of important specific accomplishments are achieved in this thesis. To begin with, a population balance-based constitutive model for thixotropic suspensions is developed. Unlike alternative phenomenological models currently in use, a population balance-based model incorporates parameters with clear physical meaning. As a result, the resultant model holds promise for inverse design of thixotropic materials such as pastes that are used in many industrial processes. Next, the use of a conformation tensor as an internal variable to represent changes in suspension microstructure during material deformation is also demonstrated. For the first time, a comprehensive conformation tensor-based framework for suspensions, with a rigor approaching that performed previously for polymeric system, is realized. When applied to dilute emulsions, the conformation tensor-based rheological model that results is in exact agreement with existing asymptotic microscopic theory. In the same emulsion system, effects of microinertia and Ostwald ripening have also been included within a conformation tensor-based model for the first time. In concentrated suspensions, the conformation based theory has been shown to be capable of describing emerging secondary structure in the particle configuration leading to first and second normal stress differences that are both negative. Additional advances have also been made to develop self-consistent approximations for polydisperse suspension viscosity and testing them against prototype experiments. On a broader level, this work provides a number of methodologies for systematic constitutive model development in complex fluids. From an engineering perspective, the results of this thesis can be used to improve upon existing numerical tools, e.g., computational fluid dynamics, to allow for accurate simulation of industrial processes such as extrusion and screen printing of thixotropic pastes, suspensions and emulsions.
Sonntag, Martin [Verfasser], and X. [Akademischer Betreuer] Cheng. "Subcooled Two-Phase Flow Heat Transfer in Multiscale Systems / Martin Sonntag ; Betreuer: X. Cheng." Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/1137264926/34.
Повний текст джерелаMoore, Jeffrey N. "Gene Flow and Dispersal of the Flatworm, Polycelis coronata: A Multiscale Analysis." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2869.
Повний текст джерелаSviercoski, Rosangela. "Multiscale Analytical Solutions and Homogenization of n-Dimensional Generalized Elliptic Equations." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/194912.
Повний текст джерелаXu, Ying. "TWO-DIMENSIONAL SIMULATION OF SOLIDIFICATION IN FLOW FIELD USING PHASE-FIELD MODEL|MULTISCALE METHOD IMPLEMENTATION." Lexington, Ky. : [University of Kentucky Libraries], 2006. http://lib.uky.edu/ETD/ukymeen2006d00524/YingXu_Dissertation_2006.pdf.
Повний текст джерелаTitle from document title page (viewed on January 25, 2007). Document formatted into pages; contains: xiii, 162 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 151-157).
Choi, Jiwoong. "Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2685.
Повний текст джерелаFranc, Jacques. "Two-phase flow properties upscaling in heterogeneous porous media." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/21684/1/FRANC_Jacques.pdf.
Повний текст джерелаGinting, Victor Eralingga. "Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2242.
Повний текст джерелаSu, Guanyu Ph D. Massachusetts Institute of Technology. "Thermohydraulics and suppression of nucleate boiling in upward two-phase annular flow : probing multiscale physics by innovative diagnostics." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119035.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 176-181).
In the fuel assemblies of a boiling water reactor (BWR) the steam quality increases along the assembly's length as heat is transferred from the fuel rods to the water coolant. Nucleate boiling is the dominant heat transfer mechanism at low and intermediate steam qualities (typical of the bubbly and slug/churn flow regimes), while forced convective evaporation dominates at higher steam quality in the annular flow regime. The transition of the heat transfer mechanism, also called suppression of nucleate boiling (SNB), affects the local heat transfer coefficient (HTC), the stability of the liquid film, and the entrainment dynamics. To support the efficient design and safe operation of future BWRs with higher power density, a thorough understanding of the thermohydraulic mechanisms and an accurate prediction of the transition conditions for SNB in annular flow is quite desirable. An innovative diagnostic technique combining synchronized infrared thermography and an electrical conductance-based liquid film thickness sensor was utilized here to investigate the details of the SNB phenomena with high spatial and temporal resolutions. The main control parameters of the tests included: the mass flux from 700 to 1400 kg-m⁻²-s⁻¹, steam quality from 0.01 to 0.08, and heat flux from 100 to 2000 kW-m⁻². The system pressure was held close to atmospheric pressure. At each set of conditions, the local distributions of the 2D surface temperature, 2D heat flux, and quasi-2D liquid film thickness were measured. From the measured data, the SNB heat flux, the SNB wall superheat, and the hydrodynamic properties of the disturbance waves were extracted. The experimental observations show for the first time the multiscale interaction of the extremely thin film and small nucleation cavities (on the scale of 10 micron), with the large disturbance waves and their associated temperature oscillations (with wavelengths of ~10 cm). A first of a kind 1D mechanistic model was developed to accurately capture this unique transient effect of the disturbance waves on the local heat transfer. The experimental results also suggest a strong dependency of the SNB heat flux and wall superheat on steam quality, with a second-order, weaker dependency on total mass flux. The same dependency is also found for the disturbance wave properties. A complete set semi-empirical correlations was proposed for predicting the time-averaged film thickness and SNB thermal conditions. Good agreement is found between the semi-empirical correlations and the experimental results. The database generated in this project can be further used for development and validation of CFD models of SNB and two-phase heat transfer in annular flow.
by Guanyu Su.
Ph. D.
Gravemeier, Volker [Verfasser]. "The variational multiscale method for laminar and turbulent incompressible flow / Institut für Baustatik der Universität Stuttgart. Von Volker Gravemeier." Stuttgart : Inst. für Baustatik, 2004. http://d-nb.info/970314418/34.
Повний текст джерелаPrigent, Simon. "Flow structure and coherence in the wake of a lifting wing with multiscale sinusoidal cut-in trailing edge serrations." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/50179.
Повний текст джерелаErson, E. Zeynep. "Development, Integration and Simulation of Multiscale Mathematical Models of Physiological Processes: A Software Engineering Perspective." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1289789036.
Повний текст джерелаAlvino, Christopher Vincent. "Multiscale Active Contour Methods in Computer Vision with Applications in Tomography." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6896.
Повний текст джерелаJoerger, Guillaume. "Multiscale modeling and event tracking wireless technologies to improve efficiency and safety of the surgical flow in an OR suite." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS009/document.
Повний текст джерелаImproving operating room management is a constant issue for modern large hospital systems who have to deal with the reality of day to day clinical activity. As opposed to other industrial sectors such as air civil aviation that have mastered the topic of industry organization and safety, progress in surgical flow management has been slower. The goal of the work presented here is to develop and implement technologies that leverage the principles of computational science to the application of OR suite problems. Most of the currently available models of surgical flow are used for planning purposes and are essentially stochastic processes due to uncertainties in the available data. We propose an agent-based model framework that can incorporate all the elements, from communication skills of the staff to the time it takes for the janitorial team to go clean an OR. We believe that human factor is at the center of the difficulty of OR suite management and should be incorporated in the model. In parallel, we use a numerical model of airflow at the OR suite level to monitor and simulate environment conditions inside the OR. We hypothesize that the following three key ingredients will provide the level of accuracy needed to improve OR management : 1) Real time updates of the model with ad hoc sensors of tasks/stages 2) Construction of a multi-scale model that links all key elements of the complex surgical infrastructure 3) Careful analysis of patient population factors, staff behavior, and environment conditions. We have developed a robust and non-obtrusive automatic event tracking system to make our model realistic to clinical conditions. Not only we track traffic through the door and the air quality inside the OR, we can also detect standard events in the surgical process. We propose a computational fluid dynamics model of a part of an OR suite to track dispersion of toxic surgical smoke and build in parallel a multidomain model of potential nosocomial contaminant particles flow in an OR suite. Combining the three models will raise the awareness of the OR suite by bringing to the surgical staff a cyber-physical system capable of prediction of rare events in the workflow and the safety conditions
Jiang, Xioben. "Gene Flow and Dispersal of the Caddisfly, Neothremma alicia, in the Rocky Mountains of Utah: A Multiscale Analysis." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2508.
Повний текст джерелаWang, Xiaojun. "Well-posedness results for a class of complex flow problems in the high Weissenberg number limit." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27669.
Повний текст джерелаPh. D.
Ryan, James L. "Multiscale landscape genetics analysis of feral pigs in the Herbert region of far-north Queensland." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227325/1/James_Ryan_Thesis.pdf.
Повний текст джерелаVidotto, Ettore [Verfasser], Barbara [Akademischer Betreuer] Wohlmuth, Paolo [Gutachter] Zunino, Barbara [Gutachter] Wohlmuth, and Kundan [Gutachter] Kumar. "Multiscale methods for flow and transport in porous media / Ettore Vidotto ; Gutachter: Paolo Zunino, Barbara Wohlmuth, Kundan Kumar ; Betreuer: Barbara Wohlmuth." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1193650410/34.
Повний текст джерелаHellman, Fredrik. "Numerical Methods for Darcy Flow Problems with Rough and Uncertain Data." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318589.
Повний текст джерелаPeña, Monferrer Carlos. "Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.
Повний текст джерелаEl estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
Mendez, Miguel Alfonso. "Dynamics of Gas Jet Impinging on Falling Liquid Films." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/281945/5/contratMM.pdf.
Повний текст джерелаDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Arcese, Emanuele. "Numerical modeling of microwave plasma actuators for aerodynamic flow control." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0020/document.
Повний текст джерелаIn recent decades, microwave discharge plasmas have attracted increasing attention of aerospace scientific community to the subject of aerodynamic flow control because of their capability of sub- stantially modifying the properties of the flow around bodies by effective energy deposition. The design and optimization of these plasma actuators as flow control technique require a compre- hensive understanding of the complex physics involved that the sole experiments are incapable to provide.In this context, we have interest in the numerical modeling of the mutual interaction of elec- tromagnetic waves with plasma and gas in order to better understand the nature of microwave discharges and their applicability. A challenging problem arises when modeling such phenomena because of the coupling of different physics and therefore the multiplicity of spatial and tempo- ral scales involved. A solution is provided by this thesis work which addresses both physics and applied mathematics questions related to microwave plasma modeling.The first part of this doctorate deals with validity matters of the physical model of microwave breakdown based on the local effective field concept. Because of large plasma density gradients, the local effective field approximation is questionable and thus a second-order plasma fluid model is developed, where the latter approximation is replaced by the local mean energy approximation. This modeling approach enables to take into account the non-locality in space of the electron energy balance that provides a more accurate description of the energy deposition by microwave plasma leading to the shock waves formation into the gas. A dimensionless analysis of the plasma fluid system is performed in order to theoretically characterize the non-locality of the introduced electron energy equation as function of the reduced electric field and wave frequency. It also discusses other approximations related to the choice and method of calculation of electron transport coefficients.Concerning the mathematical aspects, the thesis work focuses on the design and the analysis of a multiscale method for numerically solving the problem of electromagnetic wave propagation in microwave plasma. The system of interest consists of time-dependent Maxwell’s equations coupled with a momentum transfer equation for electrons. The developed approach consists of a Schwartz type domain decomposition method based on a variational formulation of the standard Yee’s scheme and using two levels of nested Cartesian grids. A local patch of finite elements is used to calculate in an iterative manner the solution in the plasma region where a better precision is required. The proposed technique enables a conservative local and dynamic refinement of the spatial mesh. The convergence behavior of the iterative resolution algorithm both in an explicit and implicit time-stepping formulation is then analyzed.In the last part of the doctorate, a series of numerical simulations of microwave breakdown and the filamentary plasma array formation in air are performed. They allow to study in detail the consequences of the different types of physical approximations adopted in the plasma fluid model. Then, these numerical experiments demonstrate the accuracy and the computational efficiency of the proposed patch correction method for the problem of interest. Lastly, a numerically investigation of the effects of gas heating on the formation and sustaining of the filamentary plasma array in atmospheric-pressure air is carried out. For doing this, the developed microwave-plasma model is coupled with unsteady Navier-Stokes equations for compressible flows. The simulations provide interesting features of the plasma array dynamics during the process of gas heating, in close agreement with experimental data
NAQVI, SAHRISH BATOOL. "Application of Homogenization Theory to the Flow Over and Through Micro-Structured, Porous and Elastic Surfaces." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1057992.
Повний текст джерелаYeshala, Nandita. "A coupled lattice Boltzmann-Navier-Stokes methodology for drag reduction." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37097.
Повний текст джерелаLi, Hao. "Approche multi-échelle pour les écoulements polyphasiques en présence de phénomènes interfaciaux." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0081.
Повний текст джерелаInterfacial phenomena as a research domain have attracted focus and resources from areas of industrial and fundamental interests: cosmetics, printing, food industries, and glass productions, etc. What charms the defender most is the phenomena with drops and bubbles - their processes of coalescing, spreading, draining, and bursting - involving non-Newtonian fluids. Multiple experimental methods such as ultra-high-speed DC electrical acquisition system, high-speed camera and high-speed micro-PIV were jointly adopted for the investigation. The first part focused on experimental research on initial contact and spreading (coalescing) of a non-Newtonian drop on a solid (liquid) planar surface. The evolution of the electrical conductance in close relation with the drop spreading (coalescing) width was detected at first microseconds. Spreading (coalescing) behaviors of an opaque dispersion of nanoparticles was examined. Regimes and mechanism behind were revealed via dimensionless scaling. The quantification of flow fields inside a spreading (coalescing) drop was performed. The second part comparatively investigated the lifetime and bursting behavior of a single bubble at different liquid surfaces and through particle-laden liquid surfaces. Bubble cap thickness was quantitatively compared based on the high-speed imaging results. Velocity fields and profiles around bubble cavity were drafted and analyzed. The role of particle layer, together with fluids’ viscoelasticity, was confirmed in the shift for a bubble from a quick rupture death to a slow shrinking disappearance. The last part studied the coalescence of a non-Newtonian drop with its bulk phase through particle-laden air-liquid surfaces. A characteristic evaluation of speed fields within the drop and the bulk was conducted. An electrical signal analysis was carried out to highlight the difference with the coalescence of a drop with particle-free surfaces. The complicate role of particle layer as a barrier and bridge at the same time was confirmed and its relationship with fluid’s viscoelasticity was demonstrated
Bouchnita, Anass. "Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1300/document.
Повний текст джерелаThis thesis is devoted to the mathematical modelling of blood coagulation and clot formation under flow in normal and pathological conditions. Blood coagulation is a defensive mechanism that prevents the loss of blood upon the rupture of endothelial tissues. It is a complex process that is regulated by different mechanical and biochemical mechanisms. The formation of the blood clot takes place in blood flow. In this context, low-shear flow stimulates clot growth while high-shear blood circulation limits it. The disorders that affect the blood clotting system can provoke different abnormalities such thrombosis (exaggerated clotting) or bleeding (insufficient clotting). In the first part of the thesis, we introduce a mathematical model of blood coagulation. The model captures the essential dynamics of clot growth in quiescent plasma and blood flow. The model can be reduced to a one equation model of thrombin generation that gives approximately the same results. We used both numerical simulations and mathematical investigation to show the existence of different regimes of blood coagulation. We specify the conditions of these regimes on various pathophysiological parameters of the model. Then, we quantify the effects of various mechanisms on clot growth such as blood flow and platelet aggregation. The next part of the thesis studies some of the abnormalities of the blood clotting system. We begin by investigating the development of thrombosis in patients with antihrombin deficiency and inflammatory diseases. We determine the thrombosis threshold on antithrombin and quantify the effect of inflammatory cytokines on the coagulation process. Next, we study the recovery from blood loss following bleeding using a multiscale model which focuses on erythropoiesis and hemoglobin production. Then, we evaluate the risk of thrombosis in patients with cancer (multiple myeloma in particular) and HIV by combining the blood coagulation model results with the output of hybrid multiscale models of the corresponding physiological system. Finally, possible clinical applications of the blood coagulation modelling are provided. By combining clot formation model with pharmacokinetics-pharmacodynamics (PK-PD) models of anticoagulant drugs, we quantify the action of these treatments and predict their effect on individual patients
Airowaijeh, Jamal S. "Multiscale modeling of flows containing particles." Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FAirowaijeh.pdf.
Повний текст джерелаThesis Advisor(s): Kwon, Young W. "December 2007." Description based on title screen as viewed on January 17, 2008. Includes bibliographical references (p. 77-78). Also available in print.
Alrowaijeh, Jamal S. "Multiscale modeling of flows containing particles." Thesis, Monterey California. Naval Postgraduate School, 2007. http://hdl.handle.net/10945/3082.
Повний текст джерелаPinto, Brijesh. "Wavelet-based multiscale simulation of incompressible flows." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2272/document.
Повний текст джерелаThis thesis focuses on the development of an accurate and efficient method for performing Large-Eddy Simulation (LES) of turbulent flows. An LES approach based upon the Variational Multiscale (VMS) method is considered. VMS produces an a priori scale-separation of the governing equations, in a manner which makes no assumptions on the boundary conditions and mesh uniformity. In order to ensure that scale-separation in wavenumber is achieved, we have chosen to make use of the Second Generation Wavelets (SGW), a polynomial basis which exhibits optimal space-frequency localisation properties. Once scale-separation has been achieved, the action of the subgrid model is restricted to the wavenumber band closest to the cutoff. We call this approach wavelet-based VMS-LES (WAV-VMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon pressure-stabilised discontinuous Galerkin FEM (DG-FEM). The method has been assessed by performing highly under-resolved LES upon the 3D Taylor-Green Vortex test case at two different Reynolds numbers
Sun, Jin. "Multiscale modeling of segregation in granular flows." [Ames, Iowa : Iowa State University], 2007.
Знайти повний текст джерелаPriego, Wood Martin. "Spatiotemporal properties of multiscale two-dimensional flows." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5761.
Повний текст джерелаPatronis, Alexander. "Efficient simulation of internal multiscale gas flows." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74185/.
Повний текст джерелаZHENG, WEIBO. "Pore-Scale Simulation of Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells (PEMFCs)." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555436163992345.
Повний текст джерелаAboulhasanzadeh, Bahman. "Multiscale computations of mass transfer in bubbly flows." Thesis, University of Notre Dame, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3583008.
Повний текст джерелаMass transfer and reaction in the liquid phase of gas-liquid multiphase flows usually takes place at a considerably slower rate than the transfer of momentum, so mass flux boundary layers are much thinner than momentum boundary layers. In Direct Numerical Simulations (DNS) the resolution requirement for flows with mass transfer are therefore significantly higher than for flow without mass transfer and reaction. In this work we develop a multi-scale approach and demonstrate its implementation in 2D to compute the mass transfer from buoyant bubbles, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. This approach greatly reduces the overall grid resolution required. Then we implement our method in 3D and perform validation of the approach by comparing to experimental data and semi-empirical correlations from the literature. We study the effect of void fraction and bubble interactions on the mass transfer from many bubbles using a 3D implementation of the code. Specifically, we do simulations of single bubbles in periodic boxes and we compare it to the simulation of several bubbles in a larger domain with the same void fraction. Comparisons shows that even though the average Reynolds number of freely moving bubbles drops after a while the mass transfer from the bubbles for most case studies increases slightly when bubbles start wobbling which increases bubble interactions. We also develop a film model to recover the under-resolved viscous forces between colliding non-coalescing droplet.