Добірка наукової літератури з теми "Multiphysical inversion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multiphysical inversion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multiphysical inversion"
Zheng, Yi-kang, Chong Wang, Hao-hong Liang, Yi-bo Wang, and Rong-shu Zeng. "3D seismic forward modeling from the multiphysical inversion at the Ketzin CO2 storage site." Applied Geophysics 21, no. 3 (September 2024): 593–605. http://dx.doi.org/10.1007/s11770-024-1132-5.
Повний текст джерелаAl-Yasiri, Zainab Riyadh Shaker, Hayder Majid Mutashar, Klaus Gürlebeck, and Tom Lahmer. "Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves." Infrastructures 7, no. 8 (August 12, 2022): 104. http://dx.doi.org/10.3390/infrastructures7080104.
Повний текст джерелаColombo, Daniele, Diego Rovetta, and Ersan Turkoglu. "CSEM-regularized seismic velocity inversion: A multiscale, hierarchical workflow for subsalt imaging." GEOPHYSICS 83, no. 5 (September 1, 2018): B241—B252. http://dx.doi.org/10.1190/geo2017-0454.1.
Повний текст джерелаSun, Jiajia, Daniele Colombo, Yaoguo Li, and Jeffrey Shragge. "Geophysics introduces new section on multiphysics and joint inversion." Leading Edge 39, no. 10 (October 2020): 753–54. http://dx.doi.org/10.1190/tle39100753.1.
Повний текст джерелаGao, Guozhong, Aria Abubakar, and Tarek M. Habashy. "Joint petrophysical inversion of electromagnetic and full-waveform seismic data." GEOPHYSICS 77, no. 3 (May 1, 2012): WA3—WA18. http://dx.doi.org/10.1190/geo2011-0157.1.
Повний текст джерелаLouboutin, Mathias, Ziyi Yin, Rafael Orozco, Thomas J. Grady, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman, and Felix J. Herrmann. "Learned multiphysics inversion with differentiable programming and machine learning." Leading Edge 42, no. 7 (July 2023): 474–86. http://dx.doi.org/10.1190/tle42070474.1.
Повний текст джерелаTu, Xiaolei, and Michael S. Zhdanov. "Joint Gramian inversion of geophysical data with different resolution capabilities: case study in Yellowstone." Geophysical Journal International 226, no. 2 (April 5, 2021): 1058–85. http://dx.doi.org/10.1093/gji/ggab131.
Повний текст джерелаColombo, Daniele, Diego Rovetta, Taqi Al-Yousuf, Ernesto Sandoval, Ersan Turkoglu, and Gary McNeice. "Multiple joint wavefield inversions: Theory and field data implementations." Leading Edge 39, no. 6 (June 2020): 411–21. http://dx.doi.org/10.1190/tle39060411.1.
Повний текст джерелаZhdanov, Michael S., Michael Jorgensen, and Leif Cox. "Advanced Methods of Joint Inversion of Multiphysics Data for Mineral Exploration." Geosciences 11, no. 6 (June 21, 2021): 262. http://dx.doi.org/10.3390/geosciences11060262.
Повний текст джерелаWu, Pingping, Handong Tan, Changhong Lin, Miao Peng, Huan Ma, and Zhengwen Yan. "Joint inversion of two-dimensional magnetotelluric and surface wave dispersion data with cross-gradient constraints." Geophysical Journal International 221, no. 2 (January 25, 2020): 938–50. http://dx.doi.org/10.1093/gji/ggaa045.
Повний текст джерелаДисертації з теми "Multiphysical inversion"
Varignier, Geoffrey. "Construction de fonctions de sensibilité spatiales et prédictions rapides de diagraphies nucléaires en environnement de puits tubés." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY026.
Повний текст джерелаIn petroleum wells, many tools operating on different physical principles are commonly used for data acquisition. This thesis focuses on actives nuclear logging probes involving a neutron or a gamma source. They are used in the oil industry to characterize the well geology and have been initially developed to realize quantitative measurements in open hole conditions where the probe is directly in contact with the rock formation. Once the petroleum well is drilled, a steel casing is installed and cemented, the probes are then no longer in contact with the rock formation and the measurements are considered qualitative due to the complexity of the geometry and the signal attenuation.With the hydrocarbon resources rarefaction, the number of explorations projects decease each year. Petroleum companies have more and more mature wells whose production capacities must be maintained and others at the end of their life which must be abandoned. Those phases require systematically logging measurements. The quantity of logs in cased-hole configuration tends to increase a lot and it becomes necessary to improve their interpretation.The industrial problematic is to characterize quantitatively, in a filed with strong radial heterogeneity, all the components the well (e.g. the fluids, the casing, the cement) and not just the rock reservoir parameters. The approach developed in the thesis is based on the concept of sensitivity function of nuclear logging probes, which represents the 3D dependency of the measurement to the model elements and are obtained by Monte-Carlo simulation. Due to the large number of unknowns, a multiphysical inversion considering the all the measurements of the different nuclear probes (porosity by neutron diffusion, density by gamma diffusion, lithology by neutron-gamma activation) is essential.The first part of the thesis allowed to compare the Monte-Carlo particles transport codes GEANT4 and MCNP for Geosciences applications. Results show a very good agreement for the gamma-gamma physics and a good agreement for the neutron-neutron physics but significant discrepancies for the neutron-gamma physics where MCNP seems to be more relevant.The second part of the thesis allowed to experimental validate Monte-Carlo simulations and to design a sensitivity function computation method specific for the cased-hole configuration. The validation is a comparison between the experimental sensitivity functions measured in calibration center and the numerical sensitivity functions computed using two different methods, the first one based on spatial importances estimated with MCNP and the second one based on interaction locations obtained with GEANT4. The results show good experimental agreement between the measured and calculated radial and axial sensitivity profiles, which validates the concept of sensitivity function with a preference for the interaction locations method which presents greater radial contrast between the different components of the well.The third part of the thesis consisted of making the geological interpretation of a reservoir zone of a cased hole well with sensitivity functions. The neutron-gamma and porosity logs predicted using the sensitivity functions are compared to the measured logs. An optimal earth model is obtained by iteration, showing a good capacity of the fast forward modeling algorithums to quantitatively reproduce the logs in cased-hole configuration providing that a relevant calibration is apply
Книги з теми "Multiphysical inversion"
Zhdanov, Michael S. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3.
Повний текст джерелаZhdanov, Michael. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Springer, 2023.
Знайти повний текст джерелаЧастини книг з теми "Multiphysical inversion"
Zhdanov, Michael S. "Joint Focusing Inversion of Multiphysics Data." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 193–213. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_10.
Повний текст джерелаZhdanov, Michael S. "Machine Learning Inversion of Multiphysics Data." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 305–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_16.
Повний текст джерелаZhdanov, Michael S. "Introduction to Inversion Theory." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 3–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_1.
Повний текст джерелаZhdanov, Michael S. "Joint Minimum Entropy Inversion." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 215–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_11.
Повний текст джерелаZhdanov, Michael S. "Probabilistic Approach to Gramian Inversion." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 245–58. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_13.
Повний текст джерелаZhdanov, Michael S. "Joint Inversion Based on Structural Similarities." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 177–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_9.
Повний текст джерелаZhdanov, Michael S. "Gradient-Type Methods of Nonlinear Inversion." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 129–59. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_7.
Повний текст джерелаZhdanov, Michael S. "Gramian Method of Generalized Joint Inversion." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 225–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_12.
Повний текст джерелаZhdanov, Michael S. "Simultaneous Processing and Fusion of Multiphysics Data and Images." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 259–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_14.
Повний текст джерелаZhdanov, Michael. "Modeling and Inversion of Potential Field Data." In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 319–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_17.
Повний текст джерелаТези доповідей конференцій з теми "Multiphysical inversion"
Feng, Shihang, Peng Jin, Xitong Zhang, Yinpeng Chen, David Alumbaugh, Michael Commer, and Youzuo Lin. "Extremely weak supervision inversion of multiphysical properties." In Second International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2022. http://dx.doi.org/10.1190/image2022-3746487.1.
Повний текст джерелаHallinan, Stephen, Wolfgang Soyer, Randall Mackie, Carsten Scholl, and Federico Miorelli. "Geologically Consistent Multiphysics Inversion." In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-21936-ea.
Повний текст джерелаHu, Yanyan, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Jiefu Chen, Jiuping Chen, and Yueqing Huang. "Deep learning-enhanced multiphysics joint inversion." In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583667.1.
Повний текст джерелаMolodtsov, Dmitry, and Vladimir Troyan. "Multiphysics joint inversion through joint sparsity regularization." In SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17792589.1.
Повний текст джерелаHu, Yanyan, Jiefu Chen, Xuqing Wu, and Yueqin Huang. "Multiphysics Joint Inversion Using Successive Deep Perceptual Constraints." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9887246.
Повний текст джерелаCeci, F., and A. Battaglini. "Reducing geothermal exploration uncertainty via multiphysics joint inversion." In 2nd Geoscience & Engineering in Energy Transition Conference. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202121025.
Повний текст джерелаShahin, A., M. Myers, and L. Hathon. "Deciphering Dual Porosity Carbonates Using Multiphysics Modeling and Inversion." In Third EAGE WIPIC Workshop: Reservoir Management in Carbonates. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903112.
Повний текст джерелаHu, Yanyan, Jiefu Chen, Xuqing Wu, and Yueqin Huang. "Deep Learning Enhanced Joint Inversion of Multiphysics Data with Nonconforming Discretization." In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9703802.
Повний текст джерелаChikhaoui, Zeineb, Julien Gomand, François Malburet, and Pierre-Jean Barre. "Complementary Use of BG and EMR Formalisms for Multiphysics Systems Analysis and Control." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82318.
Повний текст джерелаDomenzain, Diego, John Bradford, and Jodi Mead. "Multiphysics joint inversion of field FWI-GPR and ER surface acquired data." In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3576479.1.
Повний текст джерела