Дисертації з теми "Multiphase flow in porous media environment"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Multiphase flow in porous media environment.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Multiphase flow in porous media environment".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Jacobs, Bruce Lee. "Effective properties of multiphase flow in heterogeneous porous media." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 1999.
Includes bibliographical references (leaves 218-224).
The impact of heterogeneity on multiphase fl.ow is explored using a spectral perturbation technique employing a stationary, stochastic representation of the spatial variability of soil prop­erties. A derivation of the system's effective properties - nonwetting phase moisture content, capillary pressure, normalized saturation and permeability - was developed which is not specific as to the form of the permeability dependence on saturation or capillary pressure. This lack of specificity enables evaluation and comparison of effective properties with differing characterization forms. Conventional characterization techniques are employed to parameterize the saturation, capillary pressure, relative permeability relationships and applied to the Cape Cod and Borden aquifers. An approximate solution for the characteristic width of a dense nonaqueous phase liquid (DNAPL) plume or air sparging contributing area is derived to evaluate the sensitivity of system behavior to properties of input processes. Anisotropy is predicted for uniform, vertical flow in the Borden Aquifer consistent with both prior experimental observations and Monte Carlo simulations. Increases of the mean capillary pressure (increasing nonwetting phase saturation) is accompanied by reductions in nonwetting phase anisotropy. Similar levels of anisotropy are not found in the case of the Cape Cod aquifer; the difference is attributed largely to the mean value of the log of the characteristic pressure which is shown to control the rate of return to asymptotic permeability and hence system uniformity. A positive relation between anisotropy and interfacial tension was observed, consistent with prior numerical simulations. Positive dependence of lateral spreading on input fl.ow rate is predicted for Cape Cod Aquifer with reverse response at Borden Aquifer due to capillary pressure dependent anisotropy of Borden Aquifer. The effective permeability for horizontal fl.ow with core scale heterogeneity was found to be velocity dependent with features qualitatively similar to experimental observations and numerical experiments. Application of Leverett scaling as generally implemented in Monte Carlo simulations under represents aquifer hetero­ geneity and for the Borden Aquifer, van Genuchten characterization reduces system anisotropy by several orders of magnitude. Anisotropy of the effective properties proved to be less sensitive to Leverett scaling if the Brooks-Corey characterization was used due to insensitivity in this case to the variance of the slope parameter.
by Bruce L. Jacobs.
Ph.D.
2

Fu, Xiaojing Ph D. Massachusetts Institute of Technology. "Multiphase flow in porous media with phase transitions : from CO₂ sequestration to gas hydrate systems." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 159-175).
Ongoing efforts to mitigate climate change include the understanding of natural and engineered processes that can impact the global carbon budget and the fate of greenhouse gases (GHG). Among engineered systems, one promising tool to reduce atmospheric emissions of anthropogenic carbon dioxide (CO₂) is geologic sequestration of CO₂ , which entails the injection of CO₂ into deep geologic formations, like saline aquifers, for long-term storage. Among natural contributors, methane hydrates, an ice-like substance commonly found in seafloor sediments and permafrost, hold large amounts of the world's mobile carbon and are subject to an increased risk of dissociation due to rising temperatures. The dissociation of methane hydrates releases methane gas-a more potent GHG than CO₂-and potentially contributes to a positive feedback in terms of climatic change. In this Thesis, we explore fundamental mechanisms controlling the physics of geologic CO₂ sequestration and natural gas hydrate systems, with an emphasis on the interplay between multiphase flow-the simultaneous motion of several fluid phases and phase transitions-the creation or destruction of fluid or solid phases due to thermodynamically driven reactions. We first study the fate of CO₂ in saline aquifers in the presence of CO₂ -brine-carbonate geochemical reactions. We use high-resolution simulations to examine the interplay between the density-driven convective mixing and the rock dissolution reactions. We find that dissolution of carbonate rock initiates in regions of locally high mixing, but that the geochemical reaction shuts down significantly earlier than shutdown of convective mixing. This early shutdown reflects the important role that chemical speciation plays in this hydrodynamics-reaction coupled process. We then study hydrodynamic and thermodynamic processes pertaining to a gas hydrate system under changing temperature and pressure conditions. The framework for our analysis is that of phase-field modeling of binary mixtures far from equilibrium, and show that: (1) the interplay between phase separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing mixtures; (2) partial miscibility exerts a powerful control on the degree of viscous fingering in a gas-liquid system, whereby fluid dissolution hinders fingering while fluid exsolution enhances fingering. We employ this theoretical phase-field modeling approach to explain observations of bubble expansion coupled with gas dissolution and hydrate formation in controlled laboratory experiments. Unraveling this coupling informs our understanding of the fate of hydrate-crusted methane bubbles in the ocean water column and the migration of gas pockets in hydrate-bearing sediments.
by Xiaojing Fu.
Ph. D.
3

Zhao, Benzhong. "Multiphase flow in porous media: the impact of capillarity and wettability from field-scale to pore-scale." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 95-104).
Multiphase flow in the context of this Thesis refers to the simultaneous flow of immiscible fluids. It differs significantly from single-phase flow due to the existence of fluid-fluid interfaces, which are subject to capillary forces. Multiphase flow in porous media is important in many natural and industrial processes, including geologic carbon dioxide (CO₂) sequestration, enhanced oil recovery, and water infiltration into soil. Despite its importance, much of our current description of multiphase flow in porous media is based on semi-empirical extensions of single-phase flow theories, which miss key physical mechanisms that are unique to multiphase systems. One challenging aspect of solving this problem is visualization-flow typically occurs inside opaque media and hence eludes direct observation. Another challenging aspect of multiphase flow in porous media is that it encompasses a wide spectrum of length scales-while capillary force is active at the pore-scale (on the order of microns), it can have a significant impact at the field-scale (on the order of kilometers). In this Thesis, we employ novel laboratory experiments and mathematical modeling to study multiphase flow in porous media across scales. The field-scale portion of this Thesis focuses on gravity-driven flows in the subsurface, with an emphasis on application to geological CO₂ storage. We find that capillary forces can slow and stop the migration of a CO₂ plume. The meso-scale portion of this Thesis demonstrates the powerful control of wettability on multiphase flow in porous media, which is manifested in the markedly different invasion protocols that emerge when one fluid displaces another in a patterned microfluidic cell. The pore-scale portion of this Thesis focuses on the impact of wettability on fluid-fluid displacement inside a capillary tube. We show that the contact line movement is strongly affected by wettability, even in regimes where viscous forces dominate capillary forces.
by Benzhong Zhao.
Ph. D.
4

Little, Sylvia Bandy. "Multiphase flow through porous media." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ha, Quoc Dat. "Modélisation multiéchelle du couplage adsorption-transport-mécanique dans les réservoirs de gaz de charbon : récupération assistée par injection de CO₂." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le gaz de charbon est une ressource énergétique dont l'exploitation peut être accélérée par injection de gaz carbonique (CO₂) combinant ainsi production de méthane (CH₄) et stockage du gaz carbonique produit par sa combustion. La structure du réservoir est considérée comme un milieu à double porosité avec des fractures naturelles (cleats) et une matrice contenant une phase solide et des nanopores (de taille inférieure à 2 nm) où le gaz est stocké par adsorption sur la paroi solide. Le CO₂ est plus facilement adsorbé que le CH₄. Un modèle théorique multiéchelle combinant adsorption, transport et poromécanique du réservoir est développé. À la plus petite échelle, les molécules de gaz sont considérées comme des sphères dures interagissant par un potentiel de Lennard-Jones. Une nouvelle méthode numérique utilise la théorie de la fonctionnelle de densité (DFT) et la théorie fondamentale de la mesure (FMT) pour calculer la distribution des densités moléculaires d'un mélange de gaz pour une géométrie quelconque des nanopores. La paroi solide exerce un potentiel extérieur répulsif à très courte distance et attractif à plus grande distance sur les molécules de gaz. À partir des distributions moléculaires des gaz, la force de solvatation exercée par la phase fluide sur la surface des nanopores est calculée précisément. La méthode de l'homogénéisation asymptotique permet de passer de l'échelle du nanopore à l'échelle microscopique et d'obtenir la réponse de la matrice de charbon. Le modèle poroélastique de Biot est modifié par la force de solvatation qui agit comme le principal facteur gouvernant le gonflement ou la contraction de la matrice. Les équations moyennes de conservation de la masse des deux gaz (CH₄ et CO₂) dans la matrice prennent en compte les phénomènes d'adsorption caractérisés par des coefficients de partition et une diffusion effective de type Knudsen. Une seconde homogénéisation vise à obtenir la loi macroscopique à l'échelle du réservoir en combinant le réseau de cleats et la matrice solide. Le contact à l'interface matrice-cleats est caractérisé par la loi hyperbolique de Barton-Bandis qui modifie la rigidité effective ainsi que la perméabilité du réservoir. Après homogénéisation, le réservoir est un milieu hétérogène et anisotrope du fait de la structure des cleats et de la variation spatiale de la pression du fluide. Une équation moyenne macroscopique pour la diffusion des gaz dans la matrice et le transport gaz-eau dans les cleats est développée en considérant l'échange de masse entre la matrice et les cleats gouverné par l'approximation de Warren et Root. Des simulations numériques démontrent la corrélation cruciale entre les distributions de pression de gaz, l'ouverture des cleats et la rigidité du réservoir. L'injection de CO₂ améliore significativement la production de CH₄. Elle permet le stockage souterrain de CO₂ contribuant à réduire les émissions de gaz à effet de serre
Coal seam gas is an energy resource whose exploitation can be enhanced by injectingcarbon dioxide (CO₂), thus combining the production of methane (CH₄) and the storage of carbon dioxide produced by its combustion. The structure of the reservoir is considered to be a double-porosity medium with natural fractures (cleats) and a matrix containing a solid phase and nanopores (less than 2 nm in size) where the gas is stored by adsorption on the solid wall. CO₂ is more easily adsorbed than CH₄. A multiscale theoretical model combining adsorption, transport and reservoir poro-mechanics is developed. At the smallest scale, the gas molecules are considered as hard spheres interacting through a Lennard-Jones potential. A new numerical method uses Density Functional Theory (DFT) and Fundamental Measure Theory (FMT) to calculate the distribution of molecular densities of a mixture of gases for any nanopore geometry. The solid wall exerts an external potential that is repulsive at very short distances and attractive at longer distances on the gas molecules. From the molecular distributions of the gases, the solvation force exerted by the fluid phase on the surface of the nanopores is precisely calculated. The asymptotic homogenization method is performed to upscale the nanopore-scale model and to obtain the response of the coal matrix at the microscale. The Biot poroelastic model is modified by the solvation force, which acts as the main factor governing matrix swelling or contraction. The average mass conservation equations for the two gases (CH₄ and CO₂) in the matrix take into account adsorption phenomena characterized by partition coefficients and an effective Knudsen-type diffusion. A second homogenization aims at obtaining the macroscopic law at the reservoir scaleby combining the cleats network and the solid matrix. The joint stiffness at the matrix-cleats interface is characterized by the hyperbolic Barton-Bandis law, which modifies the effective stiffness and the permeability of the reservoir. After homogenization, the reservoir is a heterogeneous and anisotropic medium due to the structure of the cleats and the spatial variation of the fluid pressure. A macroscopic average equation for gas diffusion in the matrix and gas-water transport in the cleats is developed by considering the mass exchange between the matrix and the cleats governed by the Warren and Root approximation. Numerical simulations illustrate the crucial correlation between gas pressure distributions, cleat opening and reservoir stiffness. CO₂ injection significantly improves CH₄ production and enables a underground storage of CO₂, which contributes to reducing green-house gas emissions
6

Sheng, Jopan. "Multiphase immiscible flow through porous media." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/53630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A finite element model is developed for multiphase flow through soil involving three immiscible fluids: namely air, water, and an organic fluid. A variational method is employed for the finite element formulation corresponding to the coupled differential equations governing the flow of the three fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures which may be calibrated from two-phase laboratory measurements, are employed in the finite element program. The solution procedure uses iteration by a modified Picard method to handle the nonlinear properties and the backward method for a stable time integration. Laboratory experiments involving soil columns initially saturated with water and displaced by p-cymene (benzene-derivative hydrocarbon) under constant pressure were simulated by the finite element model to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured capillary head-saturation data agreed well with observed outflow data. Two-dimensional simulations are presented for eleven hypothetical field cases involving introduction of an organic fluid near the soil surface due to leakage from an underground storage tank. The subsequent transport of the organic fluid in the variably saturated vadose and ground water zones is analysed.
Ph. D.
7

Suo, Si. "Modelling Multiphase Flow in Heterogeneous Porous Media." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiphase flows in porous media, featured by distributed fluid-fluid interfaces, are commonly seen in nature and daily life. In this dissertation, we focus on effects of the heterogeneity in porous media on multiphase flow processes with the purpose of obtaining further knowledge regarding flow patterns to benefit a range of engineering applications, such as enhanced oil recovery, CO2 sequestration, and transfer printing. Followed by the background introduction and related literature review in Chapters 1 and 2, the main body of this dissertation is composed of three parallel parts investigating multiphase flow processes in porous media with different types of heterogenous structures. Chapter 3 focuses on continuum modelling of spontaneous imbibition in porous media containing heterogeneous features. We firstly develop a numerical framework aiming to handle porous material heterogeneity at continuum scale by combining a new interface integral method and the classical Richard’s equation. After validating against some experimental results, the spontaneous imbibition processes in various heterogeneous porous media, e.g., layered and mixed one, are investigated and we emphasise the movement of the liquid front when crossing the material interfaces. In Chapter 4, we study fluid displacement and fingering instability in hierarchical porous media. We provide a further understanding on how geometric heterogeneity influences the fluid-fluid displacement processes in porous media at pore scale, and moreover indicate a possible way to suppress the interfacial instability by adjusting the hierarchical geometry. Through numerical and theoretical analysis, we demonstrate and quantify the combined effects of wettability and hierarchical geometry highlighting the crossover of displacement patterns from fingering to compact mode. In Chapter 5, we focus on the spreading and imbibition of droplets adhered on porous surfaces, as a typical scenario coupling free surface flow and porous media flow. Both flows are dominated by capillary effects and thus strongly depend on the characteristic length of the respective domain. In this study, we characterise the droplet spreading on and imbibition into fixing or moving porous tips, with special focus on such interaction between two flows with distinct physical lengths. In summary, this dissertation provides a fundamental research on the multiphase flows in porous media highlighting the heterogeneity effects across various length scales. The acquired results can shed light on the design of microfluidic devices of high flow controllability and optimising configuration of geothermal energy systems.
8

Snyder, Kevin P. "Multiphase flow and mass transport through porous media." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amooie, Mohammad Amin. "Fluid Mixing in Multiphase and Hydrodynamically Unstable Porous-Media Flows." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532012791497784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Reichenberger, Volker. "Numerical simulation of multiphase flow in fractured porous media." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970266049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Kéchavarzi, Cédric. "Physical modelling of immiscible multiphase flow in porous media." Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Malcolm, Lorna Taryn. "Multiphase flow in porous media at low interfacial tension." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nitsche, Ludwig C. (Ludwig Carlos). "Multiphase flow through spatially periodic models of porous media." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/111043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gunstensen, Andrew K. (Andrew Knut). "Lattice-Boltzmann studies of multiphase flow through porous media." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1992.
Includes bibliographical references (p. 115-122).
by Andrew K. Gunstensen.
Ph.D.
15

Zhang, Jiazuo. "Self-potential during multiphase flow in complex porous media." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/48479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rock pore space in many subsurface settings is saturated with water and one or more immiscible fluid phases; examples include non-aqueous-phase liquids (NAPLs) in contaminated aquifers, supercritical CO2 during sequestration in deep saline aquifers, the vadose zone, and hydrocarbon reservoirs. Self-potential (SP) methods have been proposed to monitor multiphase flow in such settings. However, to properly interpret and model these data requires an understanding of the saturation dependence of the streaming potential. This study presents a methodology to determine the saturation dependence of the streaming potential coupling coefficient and streaming current charge density in unsteady-state drainage and imbibition experiments and applies the method to published experimental data. Unsteady-state experiments do not yield representative values of coupling coefficient and streaming current density (or other transport properties such as relative permeability and electrical conductivity) at partial saturation because water saturation within the sample is not uniform. An interpretation method is required to determine the saturation dependence of coupling coefficient and streaming current density within a representative elementary volume with uniform saturation. The method makes no assumptions about the pore-space geometry. We also applied pore network models that can capture the distribution of fluids and electrical charge in real complex porous media to investigate and quantify streaming potential signals during multiphase flow at the pore level. The network modelling results were tested against the interpreted data and experimental data of Estaillades carbonate and St. Bees sandstone, which provided reliable pore-scale explanations of the experimental observations. The results presented here can be used to help interpret SP measurements obtained in partially-saturated subsurface settings.
16

Xue, Song. "Towards improved methods for determining porous media multiphase flow functions." Texas A&M University, 2004. http://hdl.handle.net/1969.1/434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The mathematical modeling and simulation of the flow of fluid through porous media are important in many areas. Relative permeability and capillary pressure functions are macroscopic properties that are defined within the mathematic model. Accurate determinations of these functions are of great importance. An established inverse methodology provides the most accurate estimates of the unknown functions from the available data. When the inverse method is used to determine the flow functions, the media properties, absolute permeability and porosity are typically represented by single average values for the entire sample. Fortunately, an advanced core analysis tools utilizing nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) to determine complete distributions of porosity and permeability has been developed. The process for determining multiphase properties from experimental data is implemented with the computer program SENDRA. This program is built around a two-dimension, two-phase simulator. In this thesis, the computer code is extended to represent all three spatial coordinate directions so that the porosity and permeability distributions in three-dimensional space can be taken into account. Taking the sample's heterogeneity into account is expected to obtain more accurate multiphase property. Three synthetic experiments are used to show the erroneous estimation of flow functions associated with the homogeneity assumption. A proposal approach is used to predict the relative permeability of wetting phase using NMR relaxation data. Several sets of three-dimensional NMR experiments are performed. Three-dimensional saturation distribution and relaxation are determined. Relative permeability of wetting phase are calculated by applying an empirical relation. This approach provides a in situ measurement of relative permeability of wetting phase from NMR data.
17

Li, Xi-Kui. "Multiphase flow in deforming porous media : a finite element approach." Thesis, Swansea University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yamabe, Hirotatsu. "Multiphase fluid flow in porous media and its effect on seismic velocity." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bajaj, Reena. "An unstructured finite volume simulator for multiphase flow through fractured-porous media." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2009.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 77-78).
Modeling of multiphase flow in fractured media plays an integral role in management and performance prediction of oil and gas reserves. Geological characterization and nmultiphase flow simulations in fractured media are challenging for several reasons, such as uncertainty in fracture location, complexity in fracture geometry. dynamic nature of fractures etc. There is a need for complex sinmulation models that resolve the flow dynamics along fractures and the interaction with the porous matrix. The unstructured finite volume model provides a tool for the numerical simulation of multiphase flow (inmmiscible and incompressible two-phase flow) in two-dimensional fractured media. We use a finite volume formulation, which is locally imass conservative and it allows the use of fully unstructured grids to represent the coimplex geometry of the fracture networks. Fractures are represented as objects of lower diniensionality than that of the domain (in this case, ID objects in a 2D domain). The model permits fine-scale simulation of multiphase transport through fractured media. The non-Fickian transport resulting due to the presence of heterogeneity (as fractures or inhomogeneous permeability distribution) is captured by the traditional advection-diffusion equation using a highly discretized system. Today. many macroscopic flow models are being developed which account for the non-Fickian. non-local flow more accurately and efficiently with less computation. The finite volume simulator niodel described in this thesis will be instrumental as a tool to train and validate the macroscopic flow models which account for anomialous transport behavior.
(cont.) We illustrate the performance of this simulator on several synthetic cases with different fracture geometries and conclude the model effectively captures the miiultiphase fluid flow pattern in fractured media.
by Reena Bajaj.
S.M.
20

Zhang, Youqian. "Development, analysis and numerical methods for multicomponent, multiphase flow in porous media." Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3294765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D. in Applied Mathematics)--S.M.U., 2007.
Title from PDF title page (viewed Nov. 19, 2009). Source: Dissertation Abstracts International, Volume: 68-12, Section: B, page: 8072. Adviser: Zhangxin (John) Chen. Includes bibliographical references.
21

Lu, Qin. "A parallel multi-block/multi-physics approach for multi-phase flow in porous media /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Saeedi, Ali. "Experimental study of multiphase flow in porous media during CO2 geo‐sequestration processes." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/98.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A range of variable factors are expected to influence multiphase flow during CO2 geological sequestration. In order to investigate the effects of a number of these factors, a range of core-flooding experiments was carried out. Those factors which were expected to strongly influence the multiphase flow characteristics of the rock-fluids system during CO2 geo-sequestration, including cyclic CO2-brine flooding, flow direction, change in the reservoir net effective pressure and existence of residual natural gas saturation, were investigated.
23

Lenci, Alessandro. "Multiphase flow in porous media: meta-modeling techniques for sensitivity analysis and risk assessment." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.
24

Thorenz, Carsten. "Model adaptive simulation of multiphase and density driven flow in fractured and porous media." Hannover : Inst. für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964524406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pingo, Almada Monica. "Wetting and spreading effects on multiphase-flow in porous media for reservoir engineering practice." Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/11864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lee, Ki Young. "Development of a generalised compositional multiphase model for flow and transport in porous media." Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fresh water is one of the most important natural resources. However, like other natural resources, the usable water is limited while the demand for water increases as industrialization proceeds and the population grows. What makes matters worse is that water resources are being reduced by pollution. Groundwater is an important water resource. However, in many countries, it has not been fully developed yet, either because of sufficient surface water sources, technical problems, or geographical conditions. Generally groundwater is relatively clean and is better protected from pollutants than surface water. Thus groundwater is an important subject for water engineers and scientists who have focused on its development and protection. In both cases, research into the movement of pollutants plays an important role in the effective exploitation of groundwater. Recently hydrologists concerned with groundwater pollution have studied multiphase flows in the subsurface because many pollution problems are characterized by multiphase contamination. The simplest multiphase pollution problem is solute transport in the unsaturated zone. More complex multiphase pollution problems involve organic matter such as petroleum products discharged to use oil. Since many of organic products are essential to our normal life and industry, the potential for groundwater pollution by them is significant unless they are controlled properly. In multiphase problems, the organic compounds may form their own flows that are distinct from the subsurface water flow but partly dissolve with the water phase and cause low concentration long term pollution of the water phase. There have been many efforts dedicated to predicting the movement of pollutants. A lot of mathematical and numerical models have been developed with the aid of laboratory and field works. However almost all models have been developed to solve a few restricted scenarios. Model users are obliged to invest considerable time in understanding the various models; their numerical accuracy and coding.The purpose of this study is to categorize the pollution patterns in the subsurface and to develop a numerical model that can be applicable to a wide variety of subsurface contamination. The general primary variables and generalizing procedures are employed to make the numerical model applicable to various pollution patterns. Many kinds of tracers can be used to know the behaviors of fluid phases in the subsurface. Because the model is able to describe partitioning of mass of a component among fluid phases, tracer problems also can be simulated by the model.
27

JAĆIMOVIĆ, NENAD. "NUMERICAL MODELING OF MULTIPHASE FLOWS IN POROUS MEDIA AND ITS APPLICATION IN HYDRAULIC ENGINEERING." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/49127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2845号 ; 請求記号: 新制/工/1419 ; 整理番号: 25530
Multiphase flows are governed by three-dimensional Navier Stokes equations for each involved phase. Therefore, solution of these equations for given boundary and initial conditions, in principle, would determine the flow field in time and space. Generally, boundaries between involved phases are not known a priory, but are part of the, solution; or in the case of flows in a porous medium, these boundaries have too complicated geometry to be resolved mathematically. This resulted into development of simplified models, where the level of simplifications determines the model applicability. However, in order to represent simulated flows accurately, the model should include as much as possible relevant mechanisms and fluid properties. In this study, a numerical model is developed based on finite volume method, in which the volume averaged governing equations are solved. In contrary to the simplified models. a full momentum equations for each involved phase is considered. Such model is utilized in the study to investigate commonly adopted simplifications, and their effects on the model applicability. Namely, for the flows in porous media, the effects of acceleration terms in momentum equations are investigated; first for the saturated groundwater flow, and then; for the air/water flow during air injection into initially saturated soil. It is revealed that in the case of saturated flow in homogeneous, incompressible, low permeable soils, the pressure adapts the new imposed boundary conditions instantaneously, while the velocities reach the quasi-steady conditions extremely fast. In the case of heterogeneous soil, pressure and velocity field have transient nature, but quickly reach the quasi-steady conditions. Only during this onset of flow, the inertia terms play a role. In the case of air/water flow during air sparging, it is revealed that acceleration becomes important for porous medium with average grain size larger than 2 rum. This implies that simulations of such flow in coarse sands and gravels should include acceleration. It is explicitly shown that phenomena of flow pulsation, manifesting as steady pulsation at the constant air-injection flow rate, can be modeled only by inclusion of acceleration terms in governing equations. Theoretical analysis; conducted by application of one-dimensional stability analysis, revealed that inertial effects promote the instability, while the capillary forces oppose it. Ratio of these forces determines the onset of instability. It is showed that for materials with average grain size smaller than 2 mm, instability can not be expected. In order to apply the model for simulation of contaminant removal during air sparging, the contaminant transport model is supplied. Mechanistic numerical models inherently assume that involved phases are completely mixed, and by now reported models commonly assume the local equilibrium of contaminant between the air and water phase. As reported by many investigators, this leads toward an overestimated contaminant removal. Therefore, in this model a channel air flow pattern is considered, where transfer of contaminant between the water and the air phase is modeled according to two film theory. Diffusive process of contaminant transport toward the air phase is modeled by a first order kinetic process between two water compartments: a immobile compartment in contact with the air phase and mobile compartment which has no contact with the air phase. Application of the developed model to reported two-dimensional experiment, showed a good agreement between simulated and measured transient change of dissolved contaminant in the water. This study also showed that single numerical model, through the minor refinements, can be applied to wide variety of hydraulic engineering problems. By inclusion of gas compressibility, and mass exchange between the gas and the water phase in continuity equations, with adapting the drag term in momentum equations, a bubble phone model is proposed which can be utilized for simulation of lake amelioration by gas (air or pure oxygen) injection. Model is qualitatively and quantitatively validated by comparison with reported experiments from the literature. Hypothetical simulation of pure oxygen injection into 50 in deep lake showed that, due to ambient water entrainment into the gas plume, a significant spreading of dissolved oxygen can not be expected. Therefore, a optional gas injection strategy should be considered. Developed model can be utilized in order to propose an optimal gas injection design. Finally.. the same numerical model is proposed for simulation of flow in complex flow domains, consisting of bulk water and flow in porous medium with free surface boundary. Model is formulated in generalized curvilinear coordinates, in order to provide adequate representation of irregular boundaries. In contrast to earlier proposed boundary conditions at the two domain interface, in this model a continuity of velocities and stresses is assumed; for both regions a single set of governing equations is solved. Model application is illustrated by simulation of embankment overflow and its effect on effective stresses in the porous medium. It is showed that coupled, bulk water and groundwater flow, significantly influence the slope failure potential, here quantified by the Coulomb failure coefficient for non cohesive soils.
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第13374号
工博第2845号
新制||工||1419(附属図書館)
25530
UT51-2007-Q775
京都大学大学院工学研究科都市社会工学専攻
(主査)教授 細田 尚, 准教授 牛島 省, 准教授 後藤 仁志
学位規則第4条第1項該当
28

Rabbani, Harris. "Pore-scale investigation of wettability effects on two-phase flow in porous media." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/porescale-investigation-of-wettability-effects-on-twophase-flow-in-porous-media(4da35c39-fc12-4d2c-8645-53bb617696aa).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Physics of immiscible two-phase flow in porous media is relevant for various industrial and environmental applications. Wettability defined as the relative affinity of fluids with the solid surface has a significant impact on the dynamics of immiscible displacement. Although wettability effects on the macroscopic fluid flow behaviour are well known, there is a lack of pore-scale understanding. Considering the crucial role of wettability in a diverse range of applications; this research aims to provide a pore-scale picture of interface configuration induced by variations in the wetting characteristics of porous media. Besides, this study also relates the pore-scale interfacial phenomena with the macroscopic response of fluids. High-resolution direct numerical simulations (DNS) at multiscale (single capillary and a highly heterogeneous porous media) were performed using computational fluid dynamics (CFD) approach in which the Navier-Stokes equation coupled with the volume of fluid method is solved to represent immiscible displacement. Numerical results demonstrate that at pore scale as the wettability of porous media changes from strong to intermediate wet the effects of pore geometry (that includes corner angle and orientation angle) on the interfacial dynamics also enhances. This was demonstrated by the non-monotonic behaviour of entry capillary pressure at the junction of pore, curvature reversal in the converging-diverging capillary and the co-existence of concave and convex interfaces in heterogeneous porous media with uniform contact angle distribution. In addition to simulations, theoretical argument is also presented that rationalize the underlying physics of complex, yet intriguing interfacial phenomena shown by DNS. Overall this research extends the fundamental understanding of multiphase flow in porous media and paves the way for future studies on porous media.
29

Wang, Zhongzheng. "Capillary Effects on Fluid Transport in Granular Media." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fluid transport phenomena in granular media are of great importance due to various natural and industrial applications, including CO2 sequestration, enhanced oil recovery, remediation of contamination, and water infiltration into soil. Although numerous studies exist in the literature with aims to understand how fluid properties and flow conditions impact the transport process, some key mechanisms at microscale are often not considered due to simplifications of physical phenomenon and geometry, limited computational resources, or limited temporal/spatial resolution of existing imaging techniques. In this Thesis, we investigate fluid transport phenomena in granular media with a focus on the capillary effects. We move from relatively simple scenario on patterned surfaces to more complex granular media, tackling a variety of liquid-transport related problems that all have extensive industrial applications. The bulk of this Thesis is composed of six published papers. Each chapter is prefaced by an introductory section presenting the motivation for the corresponding paper and its context within the greater body of work. This Thesis reveals the impact of some previously neglected physical phenomena at microscale on the fluid transport in granular materials, providing new insights and methodology for describing and modelling fluid transport process in porous media.
30

Abd, Rahman N. "Finite element analysis of multiphase flow, heat flow and pollutant transport in deforming porous media for subsurface systems." Thesis, Swansea University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.635825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The simulation of groundwater contamination by nonaqueous phase liquids (NAPLs), such as organic solvents and petroleum hydrocarbons, requires a solution of the multiphase flow, heat flow and pollutant transport through soil. Also, the contaminant can exist within the gas and water phases. A multi-phase flow model, based on the two-phase flow model of Brooks and Corey, that expresses the dependence of saturation and relative permeability on capillary pressure is presented. The nonlinear behaviour of the saturation versus relative permeability functions is incorporated into a Galerkin finite element model that is used to simulate the vertical infiltration of immiscible/miscible fluid in unsaturated and saturated porous media. The governing partial differential equations, in terms of soil displacements, fluid pressures, energy balance and concentrations are coupled and behave non-linearly but can be solved by the finite element method. In order to apply the finite element model to a specific problem a number of parameters must be evaluated. These include relative permeabilities, saturation-pressure relations, mass transfer coefficients and densities. Numerical implementation of the formulation is discussed, and example problems are presented for verification. As a demonstration of the model's applicability, the migration of a contaminant is simulated in 1D and 2D problems. Also, an approximate numerical solution to the theoretical model is presented. The weighted residual finite element approach is employed to achieve spatial discretisation of the problem while temporal discretisation is achieved by a fully implicit scheme. A verification and validation programme has been implemented to assess the integrity of the theory, discretisation approach and the code itself. Several exercises verifying the consolidation model are presented. Validation exercises for the cases of isothermal, non-isothermal, saturated and unsaturated conditions of the coupled flow of heat, water and gas in a deforming porous medium, are performed. Finally, the fully coupled model is verified by comparison with results from an alternative model.
31

Xu, Ying. "Flow/acoustic interactions in porous media under a turbulent wind environment." Diss., Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/3510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

McDougall, Steven Robert. "The application of network modelling techniques to steady-and-unsteady-state multiphase flow in porous media." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Yang, Jianhui. "Multi-scale simulation of multiphase multi-component flow in porous media using the Lattice Boltzmann Method." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis consists of work mainly performed within the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC) project, focusing on the prediction of flow and transport properties in porous media. The direct pore scale simulation of complex fluid flow on reservoir rocks is the main topic of this work. A simulation package based on the lattice Boltzmann method has been developed to study single and multiphase flow as well as thermal and solute dispersion in porous media. The simulator has been extensively validated by comparing simulation results to reference solutions. Various numerical experiments have been performed to study the single/multiphase/solute dispersion flow in reservoir rocks. The simulator successfully predicts various transport properties including single phase and relative permeability, capillary pressure, initial-residual saturation, residual cluster size distribution and dispersion coefficient. The prediction has been compared to available experimental data and was generally found to be in good agreement. The simulator is also ready for exploring the two-phase dynamic problem with coupled and nonlinear physical processes including the effect of wettability, surface tension and hysteresis. To improve the efficiency of the lattice Boltzmann simulations, an optimised collision model and corresponding parallel operation are proposed and implemented. A sparse storage scheme which significantly reduces the memory requirement has been designed and implemented for complex porous media. Due to the application of these optimisation schemes, it is possible to perform simulations on large scale samples (Size >1024x512x512). The optimised code shows very good and promising performance, and nearly ideal scalability was achieved.
34

Fu, An. "Investigation of Fluid Wicking Behavior in Micro-Channels and Porous Media by Direct Numerical Simulation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563272437544414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Costa, Solé Albert. "High-order hybridizable discontinuous Galerkin formulation and implicit Runge-Kutta schemes for multiphase flow through porous media." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This dissertation presents high-order hybridisable discontinuous Galerkin (HDG) formulations coupled with implicit Runge-Kutta (RK) methods for the simulation of one-phase flow and two-phase flow problems. High-order-methods can reduce the computational cost while obtaining more accurate solutions with less dissipation and dispersion errors than low order methods. HDG is an unstructured, high-order accurate, and stable method. The stability is imposed using a single parameter. In addition, it is a conservative method at the element level, which is an important feature when solving PDEs in a conservative form. Moreover, a hybridization procedure can be applied to reduce the size of the global linear system. To keep the stability and accuracy advantages in transient problems, we couple the HDG method with high-order implicit RK schemes. The first contribution is a stable high-order HDG formulation coupled with DIRK schemes for slightly compressible one-phase flow problem. We obtain an analytical expression for the stabilization parameter using the Engquist-Osher monotone flux scheme. The selection of the stabilization parameter is crucial to ensure the stability and to obtain the high-order properties of the method. We introduce the stabilization parameter in the Newton’s solver since we analytically compute its derivatives. The second contribution is a high-order HDG formulation coupled with DIRK schemes for immiscible and incompressible two-phase flow problem. We set the water pressure and oil saturation as the main unknowns, which leads to a coupled system of two non-linear PDEs. To solve the resulting non-linear problem, we use a fix-point iterative method that alternatively solves the saturation and the pressure unknowns implicitly at each RK stage until convergence is achieved. The proposed fix-point method is memory-efficient because the saturation and the pressure are not solved at the same time. The third contribution is a discretization scheme for the two-phase flow problem with the same spatial and temporal order of convergence. High-order spatial discretization combined with low-order temporal discretizations may lead to arbitrary small time steps to obtain a low enough temporal error. Moreover, high-order stable DIRK schemes need a high number of stages above fourth-order. Thus, the computational cost can be severely hampered because a non-linear problem has to be solved at each RK stage. Thus, we couple the HDG formulation with high-order fully implicit RK schemes. These schemes can be unconditionally stable and achieve high-order temporal accuracy with few stages. Therefore, arbitrary large time steps can be used without hampering the temporal accuracy. We rewrite the non-linear system to reduce the memory footprint. Thus, we achieve a better sparsity pattern of the Jacobian matrix and less coupling between stages. Furthermore, we have adapted the previous fix-point iterative method. We first compute the saturation at all the stages by solving a single non-linear system using the Newton-Raphson method. Next, we solve the pressure equation sequentially at each RK stage, since it does not couple the unknowns at different stages. The last contribution is an efficient shock-capturing method for the immiscible and incompressible two-phase flow problem to reduce the spurious oscillations that may appear in the high-order approximations of the saturation. We introduce local artificial viscosity only in the saturation equation since only the saturation variable is non-smooth. To this end, we propose a shock sensor computed from the saturation and the post-processed saturation of the HDG method. This shock sensor is computationally efficient since the post-processed saturation is computed in an element-wise manner. Our methodology allows tracking the sharp fronts as they evolve since the shock sensor is computed at all RK stages.
Esta tesis presenta formulaciones de Galerkin discontinuo hibridizable de alto orden (HDG) acopladas con métodos implícitos de Runge-Kutta (RK) para la simulación de flujo monofásico y bifásico. Los métodos de alto orden pueden reducir el coste computacional mientras se obtienen soluciones más precisas con menos errores de disipación y dispersión que los de bajo orden. HDG es un método no estructurado, con precisión de alto orden y estable. La estabilidad se impone utilizando un solo parámetro. Además, es un método localmente conservativo, lo cual es importante al resolver EDPs de forma conservativa. Además, se pueden usar técnicas de hibridización para reducir el tamaño del sistema lineal global. Para mantener las ventajas de estabilidad y precisión en problemas transitorios, combinamos el método HDG con esquemas RK implícitos de alto orden. La primera contribución es una formulación HDG estable de alto orden con esquemas DIRK para problemas de flujo monofásico ligeramente compresible. Obtenemos una expresión analítica para el parámetro de estabilización utilizando el esquema de flujo monótono Engquist-Osher. La selección del parámetro de estabilización garantiza la estabilidad y las propiedades de alto orden del método. Introducimos el parámetro de estabilización en el método de Newton debido que calculamos analíticamente sus derivadas. La segunda contribución es una formulación HDG de alto orden con esquemas DIRK para problemas de flujo bifásico inmiscible e incompresible. Usamos la presión del agua y la saturación de petróleo como incógnitas principales, con lo que se obtiene un sistema acoplado de dos EDPs no lineales. Para resolver el problema no lineal, usamos un método iterativo de punto fijo que resuelve alternativamente la saturación y la presión implícitamente en cada etapa del RK hasta converger. Este método es eficiente en memoria porque la saturación y la presión no se resuelven a la vez. La tercera contribución es un esquema de discretización para el problema del flujo bifásico con el mismo orden de convergencia espacial y temporal. La discretización espacial de alto orden junto con discretizaciones temporales de bajo orden puede requerir pasos de tiempo arbitrariamente pequeños para obtener un error temporal suficientemente bajo. Además, los esquemas de DIRK estables de alto orden necesitan una gran cantidad de etapas a partir del cuarto orden. Por ello, el coste computacional puede verse gravemente afectado porque se debe resolver un problema no lineal en cada etapa del RK. Por lo tanto, combinamos la formulación HDG con esquemas RK totalmente implícitos de alto orden. Estos esquemas pueden ser incondicionalmente estables y lograr una precisión temporal de alto orden con pocas etapas. Por ello, se pueden utilizar pasos de tiempo arbitrariamente grandes sin perjudicar la precisión temporal. Reescribimos el sistema no lineal para reducir el requerimiento de memoria. De este modo, logramos un mejor patrón de llenado de la jacobiana y un menor acoplamiento entre etapas. Además, hemos adaptado el método iterativo de punto fijo anterior. Primero calculamos la saturación en todas las etapas resolviendo un solo sistema no lineal utilizando el método Newton-Raphson. Posteriormente, resolvemos la ecuación de presión secuencialmente en cada etapa del RK, ya que no combina las incógnitas en diferentes etapas. La última contribución es un método eficiente de captura de choque para el problema de flujo bifásico para reducir las oscilaciones espurias que pueden aparecer en las aproximaciones de la saturación. Introducimos viscosidad artificial localmente solo en la ecuación de saturación, ya que sólo la saturación no es suave. Por ello, calculamos un sensor de choque con la saturación y la saturación postprocesada del método HDG. Este sensor es eficiente ya que la saturación postprocesada se calcula a nivel elemental. Nuestra metodología permite seguir la evolución de los frentes, porque el sensor se calcula en cada etapa
36

Heida, Martin [Verfasser], and Willi [Akademischer Betreuer] Jäger. "Modeling Multiphase Flow in Porous Media With an Application to Permafrost Soil / Martin Heida ; Betreuer: Willi Jäger." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179229525/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lagree, Bertrand. "Modelling of two-phase flow in porous media with volume-of-fluid method." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066199/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La compréhension des écoulements multiphasiques en milieu poreux revêt une importance capitale dans de nombreuses applications industrielles et environnementales, à des échelles spatiales et temporelles variées. Par conséquent, la présente étude propose une modélisation des écoulements multiphasiques en milieu poreux par le biais de la méthode Volume de Fluide, et présente des simulations de digitations de Saffman-Taylor, motivées par l'analyse d'expériences de balayage dans des blocs de grès de Bentheimer quasi bidimensionnels initialement saturés en huile extra-lourde par de l'eau. Le code Gerris, permettant des calculs parallèles efficaces à l'aide d'un maillage de type octree, est utilisé. Des tests de précision et de rapidité de calcul sont réalisés à l'aide de divers niveaux de raffinement, ainsi qu'une comparaison avec des simulations de référence dans la littérature. Des simulations 3D dans des milieux réels numérisés sont réalisés avec des résultats encourageants. Même s'il n'est pas encore possible d'atteindre des nombres capillaires réalistes, des écoulements dans des domaines cubiques de 1 mm de côté sont simulés, avec un temps de calcul raisonnable. Des simulations 2D de digitations visqueuses avec injection centrale ou latérale sont également présentées, basées sur la loi de Darcy. L'aspect fractal des digitations est étudié aussi bien à l'aide de la dimension fractale que de la variation de l'aire des motifs obtenus par rapport à leur périmètre. Enfin, des balayages à l'aide de polymères suivant des balayages à l'eau dans un processus en deux temps sont simulés à partir d'une modélisation darcéenne
Understanding multiphase flow in porous media is of tremendous importance for many industrial and environmental applications at various spatial and temporal scales. The present study consequently focuses on modelling multiphase flows by the Volume-of-Fluid method in porous media and shows simulations of Saffman-Taylor fingering motivated by the analysis of waterflooding experiments of extra-heavy oils in quasi-2D square slab geometries of Bentheimer sandstone. The Gerris code which allows efficient parallel computations with octree mesh refinement is used. It is tested for accuracy and computational speed using several levels of refinement and comparing to reference simulations in the literature. Simulations of real rocks are realised in three dimensions with very promising results. Though it is not yet possible to attain realistic capillary numbers, it is possible to simulate flows in domains of physical size up to 1 mm3 in reasonable CPU time. 2D simulations of viscous fingering with both central and lateral injection are also presented in this study, based on Darcy's law. The fractal aspect of this fingering is studied by considering both its fractal dimension and the variation of the area of the resulting pattern with respect to its arclength. Finally, polymer flooding following waterflooding in a two-step process is simulated with Darcy modelling
38

Nuske, Philipp [Verfasser], and Rainer [Akademischer Betreuer] Helmig. "Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media / Philipp Nuske. Betreuer: Rainer Helmig." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1066239568/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nuske, Klaus Philipp [Verfasser], and Rainer [Akademischer Betreuer] Helmig. "Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media / Philipp Nuske. Betreuer: Rainer Helmig." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-97964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Fritz, Jochen [Verfasser]. "A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow / von Jochen Fritz." Stuttgart : Inst. für Wasserbau, 2010. http://d-nb.info/1007183225/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ferzly, Joëlle. "Adaptive inexact smoothing Newton method for nonlinear systems with complementarity constraints. Application to a compositional multiphase flow in porous media." Thesis, Sorbonne université, 2022. http://www.theses.fr/2022SORUS376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous considérons des inégalités variationnelles écrites sous forme d'équations aux dérivées partielles avec contraintes de complémentarité non linéaires. La discrétisation de tels problèmes conduit à des systèmes discrets non linéaires et non différentiables qui peuvent être résolus en employant une méthode de linéarisation itérative de type semi-lisse. Notre objectif est de concevoir une approche de régularisation qui approxime le problème par un système d'équations non linéaires différentiables. Une application directe des méthodes classiques de type Newton est ainsi possible. Nous construisons des estimations d'erreur a posteriori qui sont à la base d'un algorithme de Newton régularisé, inexact et adaptatif, pour une solution des problèmes considérés. Dans le chapitre 1, dans un cadre discret, nous nous intéressons aux systèmes algébriques non linéaires avec des contraintes de complémentarité provenant de discrétisations numériques d'EDP avec problèmes de complémentarité. Nous produisons une approximation différentiable d'une fonction non différentiable, en reformulant les conditions de complémentarité. Le système non linéaire qui en résulte est résolu par la méthode de Newton, ainsi qu'un solveur algébrique linéaire itératif. Nous établissons une borne supérieure sur le résidu du système considéré et concevons des estimateurs d'erreur a posteriori identifiant les composantes d'erreur de régularisation, de linéarisation et algébrique. Ces ingrédients sont utilisés pour formuler des critères d'arrêt efficaces pour les solveurs non linéaires et algébriques. Avec la même méthodologie, une méthode adaptative de points intérieurs est proposée. Nous appliquons notre algorithme au système algébrique d'inégalités variationnelles décrivant le contact entre deux membranes et à un problème d'écoulement diphasique. Nous fournissons une comparaison numérique de notre approche avec une méthode de Newton semi-lisse, éventuellement combinée avec une stratégie de path-following, et une méthode non-paramétrique de points intérieurs. Dans le chapitre 2, en dimension infinie, nous considérons le problème de contact entre deux membranes. Nous utilisons une discrétisation par la méthode des volumes finis et appliquons l'approche de régularisation proposée dans le chapitre 1 pour lisser la non-différentiabilité dans les contraintes de complémentarité. La résolution du système régularisé non linéaire qui en résulte est réalisée grâce à la méthode de Newton, en combinaison avec un solveur algébrique itératif. Nous concevons des reconstructions de potentiel H1-conformes et des reconstructions de flux équilibrés discrets H(div)-conformes. Nous prouvons une borne supérieure pour l'erreur totale par la norme d'énergie et concevons des estimateurs reflétant les erreurs provenant de la discrétisation en volumes finis, du lissage de la non-différentiabilité, de la linéarisation par la méthode de Newton et du solveur algébrique, respectivement. Cela nous permet d'établir des critères d'arrêt adaptatifs pour arrêter les différents solveurs dans l'algorithme proposé et de concevoir un algorithme adaptatif pilotant ces quatre composantes. Dans le chapitre 3, nous introduisons une application à un modèle industriel d’écoulement multiphasique compositionnel avec transitions de phase en milieu poreux. Une discrétisation par la méthode des volumes finis produit un système algébrique non linéaire et non différentiable que nous résolvons en utilisant notre technique de Newton régularisé et inexacte. En suivant le processus du chapitre 1, nous construisons des estimateurs a posteriori en majorant la norme du résidu du système discret, ce qui résulte des critères adaptatifs que nous incorporons dans l'algorithme employé. Des expériences numériques confirment l'efficacité de nos estimations. En particulier, nous montrons que les algorithmes adaptatifs développés réduisent significativement le nombre global d'itérations par rapport aux méthodes existantes
We consider variational inequalities written in the form of partial differential equations with nonlinear complementarity constraints. The discretization of such problems leads to nonlinear non-differentiable discrete systems that can be solved employing an iterative linearization method of semismooth type like, e.g., the Newton-min algorithm. Our goal in this thesis is to conceive a simple smoothing approach that involves approximating the problem as a system of nonlinear smooth (differentiable) equations. In this setting, a direct application of classical Newton-type methods is possible. We construct a posteriori error estimates that lie at the foundation of an adaptive inexact smoothing Newton algorithm for a solution of the considered problems. We first present the strategy in a discrete framework. Then, we develop the method for the model problem of contact between two membranes. Last, an application to a compositional multiphase flow industrial model is introduced. In Chapter 1, we are concerned about nonlinear algebraic systems with complementarity constraints arising from numerical discretizations of PDEs with nonlinear complementarity problems. We produce a smooth approximation of a nonsmooth function, reformulating the complementarity conditions. The ensuing nonlinear system is solved employing the Newton method, together with an iterative linear algebraic solver to approximately solve the linear system. We establish an upper bound on the considered system’s residual and design a posteriori error estimators identifying the smoothing, linearization, and algebraic error components. These ingredients are used to formulate efficient stopping criteria for the nonlinear and algebraic solvers. With the same methodology, an adaptive interior-point method is proposed. We apply our algorithm to the algebraic system of variational inequalities describing the contact between two membranes and a two-phase flow problem. We provide numerical comparison of our approach with a semismooth Newton method, possibly combined with a path-following strategy, and a nonparametric interior-point method. In Chapter 2, in an infinite-dimensional framework, we consider as a model problem the contact problem between two membranes. We employ a finite volume discretization and apply the smoothing approach proposed in Chapter 1 to smooth the non-differentiability in the complementarity constraints. The resolution of the arising nonlinear smooth system is again realized thanks to the Newton method, in combination with an iterative algebraic solver for the solution of the resulting linear system. We design H1-conforming potential reconstructions as well as H(div)-conforming discrete equilibrated flux reconstructions. We prove an upper bound for the total error in the energy norm and conceive discretization, smoothing, linearization, and algebraic estimators reflecting the errors stemming from the finite volume discretization, the smoothing of the non-differentiability, the linearization by the Newton method, and the algebraic solver, respectively. This enables us to establish adaptive stopping criteria to stop the different solvers in the proposed algorithm and design adaptive algorithm steering all these four components. In Chapter 3, we consider a compositional multiphase flow (oil, gas, and water) with phase transitions in a porous media. A finite volume discretization yields a nonlinear non-differentiable algebraic system which we solve employing our inexact smoothing Newton technique. Following the process of Chapter 1, we build a posteriori estimators by bounding the norm of the discrete system’s residual, resulting in adaptive criteria that we incorporate in the employed algorithm. Throughout this thesis, numerical experiments confirm the efficiency of our estimates. In particular, we show that the developed adaptive algorithms considerably reduce the overall number of iterations in comparison with the existing methods
42

Yamashita, Hiroshi, Shingo Satake, and Kazuhiro Yamamoto. "Microstructure and particle-laden flow in diesel particulate filter." Elsevier, 2009. http://hdl.handle.net/2237/20047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Tong, Fuguo. "Numerical modeling of coupled thermo-hydro-mechanical processes in geological porous media." Doctoral thesis, KTH, Teknisk geologi och geofysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coupled Thermo-Hydro-Mechanical (THM) behavior in geological porous media has been a subject of great interest in many geoengineering disciplines. Many attempts have been made to develop numerical prediction capabilities associated with topics such as the movement of pollutant plumes, gas injection, energy storage, geothermal energy extraction, and safety assessment of repositories for radioactive waste and spent nuclear fuel. This thesis presents a new numerical modeling approach and a new computer code for simulating coupled THM behavior in geological porous media in general, and compacted bentonite clays in particular, as buffer materials in underground radioactive waste repositories. New governing equations were derived according to the theory of mixtures, considering interactions among solid-phase deformation, flows of water and gases, heat transport, and phase change of water. For three-dimensional problems, eight governing equations were formulated to describe the coupled THM processes. A new thermal conductivity model was developed to predict the thermal conductivity of geological porous media as composite mixtures. The proposed model considers the combined effects of solid mineral composition, temperature, liquid saturation degree, porosity and pressure on the effective thermal conductivity of the porous media. The predicted results agree well with the experimental data for MX80 bentonite. A new water retention curve model was developed to predict the suction-saturation behavior of the geological porous media, as a function of suction, effective saturated degree, temperature, porosity, pore-gas pressure, and the rate of saturation degree change with time. The model was verified against experimental data of the FEBEX bentonite, with good agreement between measured and calculated results. A new finite element code (ROLG) was developed for modeling fully coupled thermo-hydro-mechanical processes in geological porous media. The new code was validated against several analytical solutions and experiments, and was applied to simulate the large scale in-situ Canister Retrieval Test (CRT) at Äspö Hard Rock Laboratory, SKB, Sweden, with good agreement between measured and predicted results. The results are useful for performance and safety assessments of radioactive waste repositories.
QC20100720
THERESA
44

Brunner, Fabian Verfasser], and Peter [Akademischer Betreuer] [Knabner. "Multiphase multicomponent flow in porous media with general reactions: efficient problem formulations, conservative discretizations, and convergence analysis / Fabian Brunner. Gutachter: Peter Knabner." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1081544104/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Thorenz, Carsten [Verfasser]. "Model adaptive simulation of multiphase and density driven flow in fractured and porous media / Carsten Thorenz. Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover." Hannover : Inst. für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, 2001. http://d-nb.info/964524406/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Du, Fengshuang. "Investigation of Nanopore Confinement Effects on Convective and Diffusive Multicomponent Multiphase Fluid Transport in Shale using In-House Simulation Models." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/100103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Extremely small pore size, low porosity, and ultra-low permeability are among the characteristics of shale rocks. In tight shale reservoirs, the nano-confinement effects that include large gas-oil capillary pressure and critical property shifts could alter the phase behaviors, thereby affecting the oil or gas production. In this research, two in-house simulation models, i.e., a compositionally extended black-oil model and a fully composition model are developed to examine the nano-pore confinement effects on convective and diffusive multicomponent multiphase fluid transport. Meanwhile, the effect of nano-confinement and rock intrinsic properties (porosity and tortuosity factor) on predicting effective diffusion coefficient are investigated. First, a previously developed compositionally extended black-oil simulation approach is modified, and extended, to include the effect of large gas-oil capillary pressure for modeling first contact miscible (FCM), and immiscible gas injection. The simulation methodology is applied to gas flooding in both high and very low permeability reservoirs. For a high permeability conventional reservoir, simulations use a five-spot pattern with different reservoir pressures to mimic both FCM and immiscible displacements. For a tight oil-rich reservoir, primary depletion and huff-n-puff gas injection are simulated including the effect of large gas-oil capillary pressure in flow and in flash calculation on recovery estimations. A dynamic gas-oil relative permeability correlation that accounts for the compositional changes owing to the produced gas injection is introduced and applied to correct for changes in interfacial tension (IFT), and its effect on oil recovery is examined. The results show that the simple modified black-oil approach can model well both immiscible and miscible floods, as long as the minimum miscibility pressure (MMP) is matched. It provides a fast and robust alternative for large-scale reservoir simulation with the purpose of flaring/venting reduction through reinjecting the produced gas into the reservoir for EOR. Molecular diffusion plays an important role in oil and gas migration in tight shale formations. However, there are insufficient reference data in the literature to specify the diffusion coefficients within porous media. Another objective of this research is to estimate the diffusion coefficients of shale gas, shale condensate, and shale oil at reservoir conditions with CO2 injection for EOR/EGR. The large nano-confinement effects including large gas-oil capillary pressure and critical property shifts could alter the phase behaviors. This study estimates the diffusivities of shale fluids in nanometer-scale shale rock from two perspectives: 1) examining the shift of diffusivity caused by nanopore confinement effects from phase change (phase composition and fluid property) perspective, and 2) calculating the effective diffusion coefficient in porous media by incorporating rock intrinsic properties (porosity and tortuosity factor). The tortuosity is obtained by using tortuosity-porosity relations as well as the measured tortuosity of shale from 3D imaging techniques. The results indicated that nano-confinement effects could affect the diffusion coefficient through altering the phase properties, such as phase compositions and densities. Compared to bulk phase diffusivity, the effective diffusion coefficient in porous shale rock is reduced by 102 to 104 times as porosity decreases from 0.1 to 0.03. Finally, a fully compositional model is developed, which enables us to process multi-component multi-phase fluid flow in shale nano-porous media. The validation results for primary depletion, water injection, and gas injection show a good match with the results of a commercial software (CMG, GEM). The nano-confinement effects (capillary pressure effect and critical property shifts) are incorporated in the flash calculation and flow equations, and their effects on Bakken oil production and Marcellus shale gas production are examined. The results show that including oil-gas capillary pressure effect could increase the oil production but decrease the gas production. Inclusion of critical property shift could increase the oil production but decrease the gas production very slightly. The effect of molecular diffusion on Bakken oil and Marcellus shale gas production are also examined. The effect of diffusion coefficient calculated by using Sigmund correlation is negligible on the production from both Bakken oil and Marcellus shale gas huff-n-puff. Noticeable increase in oil and gas production happens only after the diffusion coefficient is multiplied by 10 or 100 times.
Doctor of Philosophy
Shale reservoir is one type of unconventional reservoir and it has extremely small pore size, low porosity, and ultra-low permeability. In tight shale reservoirs, the pore size is in nanometer scale and the oil-gas capillary pressure reaches hundreds of psi. In addition, the critical properties (such as critical pressure and critical temperature) of hydrocarbon components will be altered in those nano-sized pores. In this research, two in-house reservoir simulation models, i.e., a compositionally extended black-oil model and a fully composition model are developed to examine the nano-pore confinement effects on convective and diffusive multicomponent multiphase fluid transport. The large nano-confinement effects (large gas-oil capillary pressure and critical property shifts) on oil or gas production behaviors will be investigated. Meanwhile, the nano-confinement effects and rock intrinsic properties (porosity and tortuosity factor) on predicting effective diffusion coefficient are also studied.
47

Momeni, Sina. "Non-linear diffusion in fractured porous media and application to dual-medium inter-porosity flux." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les transferts en milieu poreux fracturés sont importants dans de nombreuses applications industrielles telles que la production pétrolière, l'exploitation géothermique, la dépollution des sols ou le stockage géologique. L'analyse dimensionnelle des transferts matrice-fracture doit prendre en compte tous les mécanismes physiques entraînant les transferts, la diffusivité de la pression, la gravité/ségrégation, la force capillaire, l'écoulement visqueux, la diffusion moléculaire pour les transferts de composition et l'altération chimique du fluide/de la roche. La modélisation et la mise à l'échelle de ces transferts décrits par des équations de transport linéaires et non linéaires font l'objet de recherches actives. Le modèle double milieu est un outil puissant pour la mise à l'échelle des transferts à l'échelle des blocs matriciels des réservoirs naturellement fracturés, mais, malheureusement, la plupart de leurs formulations reposent sur la valeur asymptotique (aux temps longs) impliquant un « facteur de forme » déterminé dans un contexte d'écoulement monophasique. Nos travaux visent à améliorer la fiabilité de la mise à l'échelle des modèles matrice-fracture bi-milieu qui sont adoptés pour simuler le transport et les échanges de fluides à l'échelle des réservoirs géologiques. Les solutions analytiques pour la pression monophasique ou la diffusion moléculaire sont bien connues à l'échelle de Darcy. Ces modèles à l'échelle de Darcy ont fourni des solutions de référence dont l'analyse physique aide à mettre en place les méthodes de mise à l'échelle pour paramétrer les modèles à macro-échelle basés sur le concept de double milieu. Cette étude fournit un facteur de forme analytique pour la diffusion linéaire dans le modèle à double milieu avec des conditions aux limites de fracture spécifiques et suggère une correction pour améliorer le simulateur numérique à double milieu. Le transfert matrice-fracture est caractérisé par des comportements précoces et tardifs qui ont orienté notre méthodologie pour résoudre le transfert non linéaire en deux phases. Nous revisitons le problème non linéaire avec condition aux limites de Dirichlet en présentant deux solutions asymptotiques exactes valables pour les temps courts et longs, sous l'hypothèse que la diffusivité s'annule comme une loi de puissance des deux saturations de phase aux valeurs extrêmes de la saturation du fluide. Aux temps, courts une solution auto-similaire exacte déjà connue par ailleurs est adaptée. Dans le domaine des temps longs, un Ansatz s’écrivant sous la forme d'une décroissance temporelle en loi de puissance de la saturation Liquide en Phase Non Aqueuse. Les variations spatiales de la solution sont données analytiquement pour un milieu poreux unidimensionnel. La solution analytique est en très bon accord avec les résultats de simulations numériques impliquant divers ensembles réalistes de paramètres de transport d'entrée. Dans le cas multidimensionnel de forme arbitraire, un algorithme à convergence rapide basé sur une séquence en virgule fixe a été développé. Les comparaisons avec des simulations complètes pour plusieurs géométries de blocs typiques montrent un excellent accord. Ces solutions analytiques généralisent la représentation linéaire monophasique du terme d'échange matrice-fracture au transfert d'imbibition capillaire biphasique. Cette formulation tient compte de la non-linéarité des équations d'écoulement locales en utilisant la dépendance en loi de puissance de la conductivité pour une faible saturation en NAPL. L'exposant correspondant peut être prédit à partir des paramètres de conductivité d'entrée. La généralisation des résultats à des blocs matriciels représentatifs à deux ou trois dimensions est également présentée, et les résultats sont confirmés. Enfin, nous présentons un modèle de transfert matrice-fracture avec un temps caractéristique portant sur toute la gamme d'une imbibition capillaire à contre-courant dans un système de blocs 2D ou 3D
Transfers in fractured porous media are involved in many industrial applications such as oil production, geothermal exploitation, soil remediation, or geological storage. Dimensional analysis of matrix-fracture transfers must consider all physical mechanisms driving transfers, pressure diffusivity, gravity/segregation, capillary force, viscous flow, molecular diffusion for compositional transfers, and chemical alteration of fluid/rock. Modeling and up-scaling these transfers in linear and non-linear forms remain a major challenge in many applications. The “dual-medium” model is a powerful tool for up-scaling transfers in the matrix block scale of Naturally Fractured Reservoirs but, unfortunately, most of their formulations rely on the asymptotic value (at large/late times) of a so-called “shape factor” in a single-phase flow context. This research increases the reliability of up-scaling of matrix-fracture dual-medium models that are adopted to simulate fluid or heat transport at the scale of geological reservoirs. Analytical solutions for single-phase diffusion are well-known in Darcy-scale. These Darcy-scale models provided reference solutions whose physical analysis helps in setting up the upscaling methods for parameterizing the macro-scale models based on the dual-medium concept. This study derived an analytical shape factor for linear diffusion in the dual-medium model with specific fracture boundary conditions and suggested a correction function to modify the dual-medium numerical simulator. The matrix-fracture transfer time is characterized by early- and late-time behaviors that turned to our methodology to solve the non-linear two-phase transfer. In many situations of practical interest, capillarity is the dominant driving force and the saturation-dependent diffusion coefficient vanishes at the saturation end points, which renders the driving equation highly singular. We revisit this non-linear problem with Dirichlet boundary condition by presenting two exact asymptotic solutions valid for early- and late-times, under the assumption that the diffusivity vanishes as a power-law of both phase saturations at the extreme values of the fluid saturation. In the early-time an exact self-similar solution is adopted. Focusing on the late-time domain, the asymptotic solution is derived using an Ansatz that is written under the form of a power-law time decay of the NAPL saturation. The spatial variations of the solution are given analytically for a one-dimensional porous medium corresponding to parallel fracture planes. The analytical solution is in very good agreement with the results of numerical simulations involving various realistic sets of input transport parameters. Generalization to the case of two- or three-dimensional matrix blocks of arbitrary shape is proposed using a similar Ansatz. A fast converging algorithm based on a fixed-point sequence starting from a suitable first guess was developed. Comparisons with full-time simulations for several typical block geometries show an excellent agreement. These analytical results generalize linear single-phase representation of matrix-to-fracture exchange term to two-phase capillary imbibition transfer. This formulation accounts for the non-linearity of the local flow equations using the power-law dependence of the conductivity for low NAPL saturation. The corresponding exponent can be predicted from the input conductivity parameters. Similar findings are also presented and validated numerically for two- or three-dimensional matrix blocks. Finally, we present a matrix-fracture transfer model with a characteristic time that scales the full range of a counter-current capillary imbibition in a multi-dimensional system.That original approach paves the way to research leading to a more faithful description of matrix-to-fracture exchanges when considering a realistic fractured medium composed of a population of matrix blocks of various size and shapes
48

Ngachin, Merlin. "Simulation of Rising Bubbles Dynamics Using the Lattice Boltzmann Method." FIU Digital Commons, 2011. http://digitalcommons.fiu.edu/etd/466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main purpose of this thesis was to propose and test a new approach that captures the features of single and multiple bubbles dynamics using the Shan and Chen-type lattice Boltzmann method (LBM). Two dimensional bubbles motions were simulated considering the buoyancy effect for which the topology of the bubble is characterized by the Eötvös (Eo), and Morton (M) numbers. A qualitative and quantitative validation were performed using the Level set method. Bubble shape deformation was captured and analysis based on terminal Reynolds number and degree of circularity show very good agreement with the experimental results and with available simulation results. In sum, this study presents crucial preliminary information to further analyze multiphase fluid flows in various contexts.
49

ZHENG, WEIBO. "Pore-Scale Simulation of Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells (PEMFCs)." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555436163992345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Id, Moulay Mohamed. "Simulation numérique 3D d'Écoulement Multiphasiques Réactifs en Milieux Poreux." Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La modélisation du transport réactif est utilisée dans de nombreuses applications énergétiques et environnementales liées aux écoulements souterrains. La modélisation de tels problèmes conduit à un système hautement non linéaire d'EDP couplées à des équations différentielles ordinaires ou algébriques. Deux types d'approches pour la résolution numérique des problèmes de transport réactif sont largement utilisés dans la littérature. L'une est l'approche de séparation des opérateurs qui consiste à découpler les problèmes d'écoulement et de transport réactif. Ces derniers sont résolus séquentiellement à chaque pas de temps. L'autre stratégie est basée sur une approche entièrement couplée dans laquelle le système entier est résolu simultanément. Le but de la thèse de doctorat est le développement d'un schéma implicite en volumes finis pour la modélisation numérique d'écoulements multicomposants monophasiques et diphasiques avec transport réactif en milieu poreux.Deux nouveaux modules de transport réactif seront implémentés dans DuMuX, un simulateur libre pour les problèmes d'écoulements et de transport dans les milieuw poreux. Des simulations numériques bi et tridimensionnels comprenant des benchmarks et du calcul haute performance, seront effectuées pour valider les modules
Reactive transport modeling is used in many energy and environmental applications related to subsurface flows. Modeling such problems leads to a highly nonlinear system of PDEs coupled with algebraic or ODEs. Two types of approaches for the numerical solving of reactive transport problems are widely used in the literature. One is the operator-splitting approach which consists in splitting the flow and reactive transport problems. These latter are solved sequentially at each time step. The other strategy is based on the fully coupled approach in which the entire system is solved simultaneously. The goal of the PhD thesis is the development of a fully coupled fully implicit finite volume scheme for numerical modeling of single and two-phase multicomponent flows with reactive transport in porous media. New reactive transport modules will be implemented in DuMuX, a free and open-source simulator for flow and transport processes in porous media. Numerical simulations for 2D and 3D including benchmark tests and high performance computing will be performed to validate the modules

До бібліографії