Добірка наукової літератури з теми "Multioutput regression"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multioutput regression".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multioutput regression"
Tian, Qing, Meng Cao, Songcan Chen, and Hujun Yin. "Structure-Exploiting Discriminative Ordinal Multioutput Regression." IEEE Transactions on Neural Networks and Learning Systems 32, no. 1 (January 2021): 266–80. http://dx.doi.org/10.1109/tnnls.2020.2978508.
Повний текст джерелаLi, Shunlong, Huiming Yin, Zhonglong Li, Wencheng Xu, Yao Jin, and Shaoyang He. "Optimal sensor placement for cable force monitoring based on multioutput support vector regression model." Advances in Structural Engineering 21, no. 15 (May 7, 2018): 2259–69. http://dx.doi.org/10.1177/1369433218772342.
Повний текст джерелаTuia, D., J. Verrelst, L. Alonso, F. Perez-Cruz, and G. Camps-Valls. "Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation." IEEE Geoscience and Remote Sensing Letters 8, no. 4 (July 2011): 804–8. http://dx.doi.org/10.1109/lgrs.2011.2109934.
Повний текст джерелаKONDO, Tadashi. "Multiinput-Multioutput Type GMDH Algorithm Using Regression-Principal Component Analysis." Transactions of the Institute of Systems, Control and Information Engineers 6, no. 11 (1993): 520–29. http://dx.doi.org/10.5687/iscie.6.520.
Повний текст джерелаYun, Seokheon. "Performance Analysis of Construction Cost Prediction Using Neural Network for Multioutput Regression." Applied Sciences 12, no. 19 (September 24, 2022): 9592. http://dx.doi.org/10.3390/app12199592.
Повний текст джерелаWang, Yu, and Guohua Liu. "MLA-TCN: Multioutput Prediction of Dam Displacement Based on Temporal Convolutional Network with Attention Mechanism." Structural Control and Health Monitoring 2023 (August 25, 2023): 1–19. http://dx.doi.org/10.1155/2023/2189912.
Повний текст джерелаWu, Shengbiao, Huaning Li, and Xianpeng Chen. "Parametric Model for Coaxial Cavity Filter with Combined KCCA and MLSSVR." International Journal of Antennas and Propagation 2023 (June 7, 2023): 1–10. http://dx.doi.org/10.1155/2023/2024720.
Повний текст джерелаHuang, Kai, Ming-Yi You, Yun-Xia Ye, Bin Jiang, and An-Nan Lu. "Direction of Arrival Based on the Multioutput Least Squares Support Vector Regression Model." Mathematical Problems in Engineering 2020 (September 30, 2020): 1–8. http://dx.doi.org/10.1155/2020/8601376.
Повний текст джерелаRosentreter, Johannes, Ron Hagensieker, Akpona Okujeni, Ribana Roscher, Paul D. Wagner, and Bjorn Waske. "Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10, no. 5 (May 2017): 1938–48. http://dx.doi.org/10.1109/jstars.2017.2652726.
Повний текст джерелаZhen, Xiantong, Heye Zhang, Ali Islam, Mousumi Bhaduri, Ian Chan, and Shuo Li. "Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression." Medical Image Analysis 36 (February 2017): 184–96. http://dx.doi.org/10.1016/j.media.2016.11.008.
Повний текст джерелаДисертації з теми "Multioutput regression"
Elimam, Rayane. "Apprentissage automatique pour la prédiction de performances : du sport à la santé." Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Повний текст джерелаNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Частини книг з теми "Multioutput regression"
Silalahi, Margaretha Gracia Hotmatua, Muhammad Ahsan, and Muhammad Hisyam Lee. "Statistical Quality Control of NPK Fertilizer Production Process using Mixed Dual Multivariate Cumulative Sum (MDMCUSUM) Chart based on Multioutput Least Square Support Vector Regression (MLS-SVR)." In Advances in Computer Science Research, 4–13. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-332-0_2.
Повний текст джерелаТези доповідей конференцій з теми "Multioutput regression"
emami, seyedsaman, and Gonzalo Martínez-Muñoz. "Multioutput Regression Neural Network Training via Gradient Boosting." In ESANN 2022 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2022. http://dx.doi.org/10.14428/esann/2022.es2022-95.
Повний текст джерелаShao, Yiping, Shichang Du, and Lifeng Xi. "3D Machined Surface Topography Forecasting With Space-Time Multioutput Support Vector Regression Using High Definition Metrology." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67155.
Повний текст джерелаGainitdinov, Batyrkhan, Yury Meshalkina, Denis Orlova, Evgeny Chekhonin, Julia Zagranovskaya, Dmitri Koroteeva, and Yury Popov. "Predicting Mineralogical Composition in Unconventional Formations Using Machine Learning and Well Logging Data." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23487-ea.
Повний текст джерела