Статті в журналах з теми "Multilevel Finite Element Method"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Multilevel Finite Element Method.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Multilevel Finite Element Method".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Niekamp, R., and E. Stein. "The hierarchically graded multilevel finite element method." Computational Mechanics 27, no. 4 (April 7, 2001): 302–4. http://dx.doi.org/10.1007/s004660100242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Han, Xiaole, Yu Li, and Hehu Xie. "A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods." Numerical Mathematics: Theory, Methods and Applications 8, no. 3 (August 2015): 383–405. http://dx.doi.org/10.4208/nmtma.2015.m1334.

Повний текст джерела
Анотація:
AbstractIn this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This correction scheme can increase the overall efficiency of solving eigenvalue problems by the nonconforming finite element method. Furthermore, as same as the direct eigenvalue solving by nonconforming finite element methods, this multilevel correction method can also produce the lower-bound approximations of the eigenvalues.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Yamiao, Biwu Huang, Jiazhong Zhang, and Zexia Zhang. "A Multilevel Finite Element Variational Multiscale Method for Incompressible Navier-Stokes Equations Based on Two Local Gauss Integrations." Mathematical Problems in Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/4917054.

Повний текст джерела
Анотація:
A multilevel finite element variational multiscale method is proposed and applied to the numerical simulation of incompressible Navier-Stokes equations. This method combines the finite element variational multiscale method based on two local Gauss integrations with the multilevel discretization using Newton correction on each step. The main idea of the multilevel finite element variational multiscale method is that the equations are first solved on a single coarse grid by finite element variational multiscale method; then finite element variational multiscale approximations are generated on a succession of refined grids by solving a linearized problem. Moreover, the stability analysis and error estimate of the multilevel finite element variational multiscale method are given. Finally, some numerical examples are presented to support the theoretical analysis and to check the efficiency of the proposed method. The results show that the multilevel finite element variational multiscale method is more efficient than the one-level finite element variational multiscale method, and for an appropriate choice of meshes, the multilevel finite element variational multiscale method is not only time-saving but also highly accurate.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hoppe, Ronald H. W., and Barbara Wohlmuth. "Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods." Applications of Mathematics 40, no. 3 (1995): 227–48. http://dx.doi.org/10.21136/am.1995.134292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang Junlong, 黄俊龙, and 余景景 Yu Jingjing. "Bioluminescence Tomography Based on Multilevel Adaptive Finite Element Method." Chinese Journal of Lasers 45, no. 6 (2018): 0607003. http://dx.doi.org/10.3788/cjl201845.0607003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Axelsson, O., and M. Larin. "An algebraic multilevel iteration method for finite element matrices." Journal of Computational and Applied Mathematics 89, no. 1 (March 1998): 135–53. http://dx.doi.org/10.1016/s0377-0427(97)00241-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Akimov, Pavel A., Alexandr M. Belostosky, Marina L. Mozgaleva, Mojtaba Aslami, and Oleg A. Negrozov. "Correct Multilevel Discrete-Continual Finite Element Method of Structural Analysis." Advanced Materials Research 1040 (September 2014): 664–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.664.

Повний текст джерела
Анотація:
The distinctive paper is devoted to correct multilevel discrete-continual finite element method (DCFEM) of structural analysis based on precise analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients. Corresponding semianalytical (discrete-continual) formulations are contemporary mathematical models which currently becoming available for computer realization. Major peculiarities of DCFEM include universality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resulting systems and partial Jordan decompositions of matrices of coefficients, eliminating necessity of calculation of root vectors.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aslami, Mojtaba, and Pavel A. Akimov. "Wavelet-based finite element method for multilevel local plate analysis." Thin-Walled Structures 98 (January 2016): 392–402. http://dx.doi.org/10.1016/j.tws.2015.10.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xie, Hehu, and Tao Zhou. "A multilevel finite element method for Fredholm integral eigenvalue problems." Journal of Computational Physics 303 (December 2015): 173–84. http://dx.doi.org/10.1016/j.jcp.2015.09.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Qun, Hehu Xie, and Fei Xu. "Multilevel correction adaptive finite element method for semilinear elliptic equation." Applications of Mathematics 60, no. 5 (September 15, 2015): 527–50. http://dx.doi.org/10.1007/s10492-015-0110-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Talebi, Hossein, Goangseup Zi, Mohammad Silani, Esteban Samaniego, and Timon Rabczuk. "A Simple Circular Cell Method for Multilevel Finite Element Analysis." Journal of Applied Mathematics 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/526846.

Повний текст джерела
Анотація:
A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jung, Michael, and Ulrich Rüde. "Implicit Extrapolation Methods for Multilevel Finite Element Computations." SIAM Journal on Scientific Computing 17, no. 1 (January 1996): 156–79. http://dx.doi.org/10.1137/0917012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chen, Feng Wang and Jinru. "A Local Multilevel Preconditioners for the Adaptive Mortar Finite Element Method." Journal of Computational Mathematics 31, no. 5 (June 2013): 532–48. http://dx.doi.org/10.4208/jcm.1307-m4290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Atlamazoglou, P. E., G. C. Pagiatakis, and N. K. Uzunoglu. "A multilevel formulation of the finite-element method for electromagnetic scattering." IEEE Transactions on Antennas and Propagation 47, no. 6 (June 1999): 1071–79. http://dx.doi.org/10.1109/8.777134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Darbandi, Masoud, Soheyl Vakili, and Gerry E. Schneider. "Efficient multilevel restriction–prolongation expressions for hybrid finite volume element method." International Journal of Computational Fluid Dynamics 22, no. 1-2 (January 2008): 29–38. http://dx.doi.org/10.1080/10618560701737203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hu, Guanghui, Hehu Xie, and Fei Xu. "A multilevel correction adaptive finite element method for Kohn–Sham equation." Journal of Computational Physics 355 (February 2018): 436–49. http://dx.doi.org/10.1016/j.jcp.2017.11.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Eibert, T. F. "A multilevel fast spectral domain algorithm for electromagnetic analysis of infinite periodic arrays with large unit cells." Advances in Radio Science 4 (September 4, 2006): 41–47. http://dx.doi.org/10.5194/ars-4-41-2006.

Повний текст джерела
Анотація:
Abstract. A multilevel fast spectral domain algorithm (MLFSDA) is introduced for the efficient evaluation of the matrix vector products due to the boundary integral (BI) operator within a hybrid finite element - BI (FEBI) method for the analysis of infinite periodic arrays. The MLFSDA utilizes the diagonalization property of the spectral domain (SD) BI representation and handles the large numbers of Floquet modes required for large (with respect to wavelength) periodic unit cells by similar hierarchical techniques as applied in the multilevel fast multipole method/algorithm (MLFMM/MLFMA). With the capability of the MLFSDA to handle very large periodic unit cells, it becomes possible to model finite antennas and scatterers with the infinite periodic array model. For a cavity-backed antenna element and for a semi-finite array of 4 cavity-backed antenna elements in the finite direction, the dependence of the input impedances on the unit cell sizes is investigated and it is found that array resonances disappear for reasonably large unit cell dimensions. Finally, a semi-finite array of antipodal Vivaldi antenna elements is considered and simulation results for infinite periodic, finite, and semi-finite array configurations are compared to measured data.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Akimov, Pavel A., and Marina L. Mozgaleva. "Wavelet-Based Multilevel Discrete-Continual Finite Element Method for Local Plate Analysis." Applied Mechanics and Materials 351-352 (August 2013): 13–16. http://dx.doi.org/10.4028/www.scientific.net/amm.351-352.13.

Повний текст джерела
Анотація:
High-accuracy solution of the problem of plate analysis is normally required in some pre-known domains (regions with the risk of significant stresses that could potentially lead to the destruction of structure, regions which are subject to specific operational requirements). The distinctive paper is devoted to correct wavelet-based multilevel discrete-continual finite element method for local analysis of plates with regular (in particular, constant or piecewise constant) physical and geometrical parameters (properties) in one direction. Initial discrete-continual operational formulation of the considering problem and corresponding operational formulation with the use of wavelet basis are presented. Due to special algorithms of averaging within multigrid approach, reduction of the problem is provided. Resultant multipoint boundary problem of structural mechanics for system of ordinary differential equations with piecewise-constant coefficients is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Xu, Fei, Qiumei Huang, Huiting Yang, and Hongkun Ma. "Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations." Applied Numerical Mathematics 172 (February 2022): 224–41. http://dx.doi.org/10.1016/j.apnum.2021.10.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hong, Qichen, Hehu Xie, and Fei Xu. "A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems." SIAM Journal on Scientific Computing 40, no. 6 (January 2018): A4208—A4235. http://dx.doi.org/10.1137/17m1138157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

SHI, ZhongCi, XueJun XU, and PeiPei LU. "Local multilevel methods for adaptive discontinuous Galerkin finite element methods." SCIENTIA SINICA Mathematica 42, no. 5 (May 1, 2012): 409–28. http://dx.doi.org/10.1360/012011-1004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Tang, Shibing, and Xuejun Xu. "An Optimal Multilevel Method with One Smoothing Step for the Morley Element." Computational Methods in Applied Mathematics 21, no. 3 (June 3, 2021): 609–33. http://dx.doi.org/10.1515/cmam-2020-0061.

Повний текст джерела
Анотація:
Abstract In this paper, a class of multilevel preconditioning schemes is presented for solving the linear algebraic systems resulting from the application of Morley nonconforming element approximations to the biharmonic Dirichlet problem. Based on an appropriate space splitting of the finite element spaces associated with the refinements and the abstract Schwarz framework, we prove that the proposed multilevel methods with one smoothing step are optimal, i.e., the convergence rate is independent of the mesh sizes and mesh levels. Moreover, the computational complexity is also optimal since the smoothers are performed only once on each level in the algorithm. Numerical experiments are provided to confirm the optimality of the suggested methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Xie, Hehu, and Manting Xie. "A Multigrid Method for Ground State Solution of Bose-Einstein Condensates." Communications in Computational Physics 19, no. 3 (March 2016): 648–62. http://dx.doi.org/10.4208/cicp.191114.130715a.

Повний текст джерела
Анотація:
AbstractA multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the multilevel correction for eigenvalue problems and the multigrid method for linear boundary value problems. In this scheme, obtaining the optimal approximation for the ground state solution of Bose-Einstein condensates includes a sequence of solutions of the linear boundary value problems by the multigrid method on the multilevel meshes and some solutions of nonlinear eigenvalue problems some very low dimensional finite element space. The total computational work of this scheme can reach almost the same optimal order as solving the corresponding linear boundary value problem. Therefore, this type of multigrid scheme can improve the overall efficiency for the simulation of Bose-Einstein condensations. Some numerical experiments are provided to validate the efficiency of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

He, Xiaowei, Yanbin Hou, Duofang Chen, Yuchuan Jiang, Man Shen, Junting Liu, Qitan Zhang, and Jie Tian. "Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method." International Journal of Biomedical Imaging 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/203537.

Повний текст джерела
Анотація:
Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction withl1regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Starke, Gerhard. "Multilevel Boundary Functionals for Least-Squares Mixed Finite Element Methods." SIAM Journal on Numerical Analysis 36, no. 4 (January 1999): 1065–77. http://dx.doi.org/10.1137/s0036142997329803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kraus, Johannes, Maria Lymbery, and Svetozar Margenov. "Robust multilevel methods for quadratic finite element anisotropic elliptic problems." Numerical Linear Algebra with Applications 21, no. 3 (March 11, 2013): 375–98. http://dx.doi.org/10.1002/nla.1876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Akimov, Pavel A., and Marina L. Mozgaleva. "Wavelet-Based Multilevel Discrete-Continual Finite Element Method for Local Deep Beam Analysis." Applied Mechanics and Materials 405-408 (September 2013): 3165–68. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.3165.

Повний текст джерела
Анотація:
High-accuracy solution of the problem of deep beam analysis is normally required in some pre-known domains (regions with the risk of significant stresses that could potentially lead to the destruction of structure, regions which are subject to specific operational requirements). The distinctive paper is devoted to correct wavelet-based multilevel discrete-continual finite element method for local analysis of deep beams with regular (in particular, constant or piecewise constant) physical and geometrical parameters (properties) in one direction. Initial discrete-continual operational formulation of the considering problem and corresponding operational formulation with the use of wavelet basis are presented. Due to special algorithms of averaging within multigrid approach, reduction of the problem is provided. Resultant multipoint boundary problem of structural mechanics for system of ordinary differential equations with piecewise-constant coefficients is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gong, Wei, Hehu Xie, and Ningning Yan. "Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems." Journal of Scientific Computing 72, no. 2 (February 23, 2017): 820–41. http://dx.doi.org/10.1007/s10915-017-0386-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Hui, Xiaoyu Sun, Yuanjie Xu, and Xihua Chu. "A hierarchical multilevel finite element method for mechanical analyses of periodical composite structures." Composite Structures 131 (November 2015): 115–27. http://dx.doi.org/10.1016/j.compstruct.2015.05.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

He, Yinnian, and Kam-Moon Liu. "A multilevel finite element method in space-time for the Navier-Stokes problem." Numerical Methods for Partial Differential Equations 21, no. 6 (2005): 1052–78. http://dx.doi.org/10.1002/num.20077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Xu, Xuejun. "Optimality of Local Multilevel Methods for AdaptiveNonconforming P1 Finite Element Methods." Journal of Computational Mathematics 31, no. 1 (June 2013): 22–46. http://dx.doi.org/10.4208/jcm.1203-m3960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ewing, R. E., and J. Wang. "Analysis of multilevel decomposition iterative methods for mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis 28, no. 4 (1994): 377–98. http://dx.doi.org/10.1051/m2an/1994280403771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Baumgarten, Niklas, and Christian Wieners. "The parallel finite element system M++ with integrated multilevel preconditioning and multilevel Monte Carlo methods." Computers & Mathematics with Applications 81 (January 2021): 391–406. http://dx.doi.org/10.1016/j.camwa.2020.03.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yue, Jianguang. "Micro-Macro Simulation Technique Combined with Multilevel Damage Assessment Methodology for RC Building Structures." Advances in Materials Science and Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/764517.

Повний текст джерела
Анотація:
In order to assess the inherent damage mechanism of reinforced concrete (RC) structures, a micro-macro simulation technique combined with multilevel damage assessment methodology is presented. An element-coupling model is developed by combining mixed dimensional finite elements with the aid of multipoint constraint equations, which could be achieved from the energy conservation principle. Thus, the micro-scale damage details could be obtained in a macro-scale setting of the global structure. Furthermore, using different damage indicators, a generalized damage model is combined with the multilevel damage performance to assess the damage evolution. Finally, an in situ lateral loading test of a real RC frame structure was analyzed to verify this proposed damage assessment methodology. The finite element method utilizing the proposed damage model products results in good agreement with those of the tests. It shows that the proposed methodology is a very helpful tool to assess and reveal the inherent damage mechanism of RC structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bespalov, Alex, Dirk Praetorius, and Michele Ruggeri. "Two-Level a Posteriori Error Estimation for Adaptive Multilevel Stochastic Galerkin Finite Element Method." SIAM/ASA Journal on Uncertainty Quantification 9, no. 3 (January 2021): 1184–216. http://dx.doi.org/10.1137/20m1342586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ackermann, J., and R. Roitzsch. "A two-dimensional multilevel adaptive finite element method for the time-independent Schrödinger equation." Chemical Physics Letters 214, no. 1 (October 1993): 109–17. http://dx.doi.org/10.1016/0009-2614(93)85463-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dziekonski, Adam, Adam Lamecki, and Michal Mrozowski. "GPU Acceleration of Multilevel Solvers for Analysis of Microwave Components With Finite Element Method." IEEE Microwave and Wireless Components Letters 21, no. 1 (January 2011): 1–3. http://dx.doi.org/10.1109/lmwc.2010.2089974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Khodadadian, Amirreza, Maryam Parvizi, Mostafa Abbaszadeh, Mehdi Dehghan, and Clemens Heitzinger. "A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation." Computational Mechanics 64, no. 4 (February 25, 2019): 937–49. http://dx.doi.org/10.1007/s00466-019-01688-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Akimov, Pavel A., Marina L. Mozgaleva, Mojtaba Aslami, and Oleg A. Negrozov. "Local High-Accuracy Plate Analysis Using Wavelet-Based Multilevel Discrete-Continual Finite Element Method." Key Engineering Materials 685 (February 2016): 962–66. http://dx.doi.org/10.4028/www.scientific.net/kem.685.962.

Повний текст джерела
Анотація:
The distinctive paper is devoted to application of wavelet-based discrete-continual finite element method (WDCFEM), to analysis of plates with piecewise constant physical and geometrical parameters in so-called “basic” direction. Initial continual and discrete-continual formulations of the problem are presented. Due to special algorithms of averaging using wavelet basis within multigrid approach, reduction of the problem is provided. Resultant multipoint boundary problem for system of ordinary differential equations is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Layton, W., H. K. Lee, and J. Peterson. "Numerical Solution of the Stationary Navier--Stokes Equations Using a Multilevel Finite Element Method." SIAM Journal on Scientific Computing 20, no. 1 (January 1998): 1–12. http://dx.doi.org/10.1137/s1064827596306045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Aghabarati, Ali, and Jon P. Webb. "Multilevel Methods for $p$-Adaptive Finite Element Analysis of Electromagnetic Scattering." IEEE Transactions on Antennas and Propagation 61, no. 11 (November 2013): 5597–606. http://dx.doi.org/10.1109/tap.2013.2277713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kornhuber, Ralf, Christoph Schwab, and Maren-Wanda Wolf. "Multilevel Monte Carlo Finite Element Methods for Stochastic Elliptic Variational Inequalities." SIAM Journal on Numerical Analysis 52, no. 3 (January 2014): 1243–68. http://dx.doi.org/10.1137/130916126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Vassilevski, Panayot S., and Junping Wang. "Multilevel iterative methods for mixed finite element discretizations of elliptic problems." Numerische Mathematik 63, no. 1 (December 1992): 503–20. http://dx.doi.org/10.1007/bf01385872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Li, Shishun, Xinping Shao, and Zhiyong Si. "Local Multilevel Method on Adaptively Refined Meshes for Elliptic Problems with Smooth Complex Coefficients." Numerical Mathematics: Theory, Methods and Applications 8, no. 3 (August 2015): 336–55. http://dx.doi.org/10.4208/nmtma.2015.m1323.

Повний текст джерела
Анотація:
AbstractIn this paper, a local multilevel algorithm is investigated for solving linear systems arising from adaptive finite element approximations of second order elliptic problems with smooth complex coefficients. It is shown that the abstract theory for local multilevel algorithm can also be applied to elliptic problems whose dominant coefficient is complex valued. Assuming that the coarsest mesh size is sufficiently small, we prove that this algorithm with Gauss-Seidel smoother is convergent and optimal on the adaptively refined meshes generated by the newest vertex bisection algorithm. Numerical experiments are reported to confirm the theoretical analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Blondeel, Philippe, Pieterjan Robbe, Cédric Van hoorickx, Stijn François, Geert Lombaert, and Stefan Vandewalle. "p-Refined Multilevel Quasi-Monte Carlo for Galerkin Finite Element Methods with Applications in Civil Engineering." Algorithms 13, no. 5 (April 28, 2020): 110. http://dx.doi.org/10.3390/a13050110.

Повний текст джерела
Анотація:
Civil engineering applications are often characterized by a large uncertainty on the material parameters. Discretization of the underlying equations is typically done by means of the Galerkin Finite Element method. The uncertain material parameter can be expressed as a random field represented by, for example, a Karhunen–Loève expansion. Computation of the stochastic responses, i.e., the expected value and variance of a chosen quantity of interest, remains very costly, even when state-of-the-art Multilevel Monte Carlo (MLMC) is used. A significant cost reduction can be achieved by using a recently developed multilevel method: p-refined Multilevel Quasi-Monte Carlo (p-MLQMC). This method is based on the idea of variance reduction by employing a hierarchical discretization of the problem based on a p-refinement scheme. It is combined with a rank-1 Quasi-Monte Carlo (QMC) lattice rule, which yields faster convergence compared to the use of random Monte Carlo points. In this work, we developed algorithms for the p-MLQMC method for two dimensional problems. The p-MLQMC method is first benchmarked on an academic beam problem. Finally, we use our algorithm for the assessment of the stability of slopes, a problem that arises in geotechnical engineering, and typically suffers from large parameter uncertainty. For both considered problems, we observe a very significant reduction in the amount of computational work with respect to MLMC.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ghosh, S., and S. Raju. "Localized metal forming simulation by r-s-adapted arbitrary Lagrangian-Eulerian finite element method." Journal of Strain Analysis for Engineering Design 32, no. 4 (May 1, 1997): 237–52. http://dx.doi.org/10.1243/0309324971513373.

Повний текст джерела
Анотація:
In this paper, an adaptive arbitrary Lagrangian—Eulerian (ALE) large deformation finite element method (FEM) is developed for solving metal forming problems with strain localization. The ALE mesh movement is coupled with r-adaptation of automatic node relocation to minimize mesh distortion during the process of deformation. A strain localization phenomenon is incorporated through constitutive relations for porous ductile materials. Prediction of localized deformation is achieved through a multilevel mesh superimposition method, called s-adaptation. A few metal forming problems are simulated to test the effectiveness of this model.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wan, Ting, and Zhaoneng Jiang. "Multilevel compressed block decomposition-based finite-element domain decomposition method for the fast analysis of finite periodic structures." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 30, no. 5 (September 30, 2016): e2194. http://dx.doi.org/10.1002/jnm.2194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Foresti, S., G. Brussino, S. Hassanzadeh, and V. Sonnad. "Multilevel solution method for the p-version of finite elements." Computer Physics Communications 53, no. 1-3 (May 1989): 349–55. http://dx.doi.org/10.1016/0010-4655(89)90172-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Carreño, A., A. Vidal-Ferrándiz, D. Ginestar, and G. Verdú. "Multilevel method to compute the lambda modes of the neutron diffusion equation." Applied Mathematics and Nonlinear Sciences 2, no. 1 (June 24, 2017): 225–36. http://dx.doi.org/10.21042/amns.2017.1.00019.

Повний текст джерела
Анотація:
AbstractDetermination of the reactor kinetic characteristics is very important for the design and development of a new reactor system. In this sense, the computation of lambda modes associated to a nuclear power reactor has interest since these modes can be used to analyze the reactor criticality and to develop modal methods to analyze transient situations in the reactor. In this paper, the lambda problem has been discretized using a high order finite element method to obtain a generalized algebraic eigenvalue problem. A multilevel method is proposed to solve this generalized eigenvalue problem combining a hierarchy of meshes with a Modified Block Newton method. The Krylov-Schur method is used to compare the efficiency of the multilevel method solving several benchmark problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wang, Wei-Jie, Xiao-Jie Chen, Han-Yu Li, Hai-Jing Zhou, and Wen-Yan Yin. "A Multilevel Method With Novel Correction Strategy for Parallel Finite-Element Analysis of Electromagnetic Problems." IEEE Transactions on Antennas and Propagation 66, no. 7 (July 2018): 3787–91. http://dx.doi.org/10.1109/tap.2018.2816680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії