Добірка наукової літератури з теми "Multilayer shields"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multilayer shields".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multilayer shields"

1

Kwak, Jeongkwon, Boravy Muth, Hyeon-Woo Yang, Chang Je Park, Woo Seung Kang, and Sun-Jae Kim. "Shielding Analysis of Metal Hydride-based Materials for Both Neutron and Gamma Rays Using Monte Carlo Simulation." Korean Journal of Metals and Materials 59, no. 12 (December 5, 2021): 921–25. http://dx.doi.org/10.3365/kjmm.2021.59.12.921.

Повний текст джерела
Анотація:
Radiation causes damage to the human body, the environment, and electronic equipment. Shielding against neutron and gamma rays is particularly difficult because of their strong ability to penetrate materials. Conventional gamma ray shields are typically made of materials containing Pb. However, they pose problems in that Pb is a heavy metal, and human poisoning and/or pollution can result from the manufacturing, use, and disposal of these materials. In addition, neutron rays are shielded by materials rich in H2 or concrete. In the case of the latter, the manufacturing cost is high. Thus, it is necessary to develop a new multilayer structure that can shield against both neutron and gamma rays. We set up a simulation model of a multilayered structure consisting of metal hydrides and heavy metals, and then evaluated the simulations using Monte Carlo N-Particle Transport Code. Monte Carlo simulation is an accurate method for simulating the interaction between radiation and materials, and can be applied to the transport of radiation particles to predict values such as flux, energy spectrum, and energy deposition. The results of the study indicated the multilayer structure of ZrH2, U, and W could shield both neutron and gamma rays, thus showing potential as a new shielding material to replace Pb and concrete.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Jinjing, and Weidong Yu. "Structure Designing and Property Investigation of Flexible Multilayer Thermal Insulation Materials." Research Journal of Textile and Apparel 15, no. 3 (August 1, 2011): 21–27. http://dx.doi.org/10.1108/rjta-15-03-2011-b003.

Повний текст джерела
Анотація:
In this paper, a method of designing flexible multilayer insulation is analyzed and discussed, with focus on reducing the three basic modes of heat transfer (thermal radiation, solid spacer and residual gas conduction). The foundation for designing the new flexible thermal insulation material is provided. The insulation performances of different types (by choosing different reflection shields and spacers) of flexible multilayer insulation materials are obtained through measurements using a KES-F7 Thermal Labo II apparatus. The thermal performance of flexible multilayer insulation materials at different layers are also presented, and the best is about 20∼25 layers. To improve the thermal performance of multilayer insulation materials, treble spacers between double aluminized shields are applied. Aluminized shields with air, meshes, wool fibres, etc. are compared with each other. The aluminized shields with meshes fixed with down can reduce thermal contact, which reduces the radiation heat transfer more fully and can be more steady than the other spacers in the project applications. With the same layers and spacers, the thermal conductivity of crinkled aluminized shields is lower than that of the smooth aluminized shields. The effects of compressive loads on layer density and thermal performance are also investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kola, K. S., D. Mandal, J. Tewary, V. P. Roy, and A. K. Bhattacharjee. "Optimum Design of ThinWideband Multilayer Electromagnetic Shield Using Evolutionary Algorithms." Advanced Electromagnetics 6, no. 2 (May 20, 2017): 59. http://dx.doi.org/10.7716/aem.v6i2.471.

Повний текст джерела
Анотація:
This paper describes the method of optimum design of multilayer perforated electromagnetic shield using Evolutionary algorithms, namely Particle Swarm Optimization Algorithm (PSO) and Genetic Algorithm (GA). Different parameters which are inherently conflicting in nature corresponds to the multilayer structure of the electromagnetic shields have been considered. The goal is to minimize the overall mass of the shield with respect to its shielding effectiveness and cost. Three different models are considered and synthesized using evolutionary algorithms. Numerical optimal results for each model using different algorithms are presented and compared with each other to establish the effectiveness of the proposed method of designing.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Chao, Yingming Song, Zehuan Zhang, Jie Mao, Weiwei Yuan та Bo Wang. "A Novel and High-Precision Method for Calculating the γ-Ray Build-Up Factor for Multilayer Shields". Science and Technology of Nuclear Installations 2021 (25 січня 2021): 1–15. http://dx.doi.org/10.1155/2021/8860762.

Повний текст джерела
Анотація:
In the field of radiation protection, the point-kernel code method is a practical tool widely used in the calculation of 3-D radiation field, and the accuracy of the point-kernel integration method strongly depends on the accuracy of the build-up factor. It is well known that calculation of the build-up factor for single-layer shields is composed of single material, but it is very complicated to calculate the build-up factor for multilayer shields (MLBUF). Recently, a novel and high-precision method based on the deep neural network (DNN) for calculating MLBUF has been proposed. In this paper, the novel method is described completely by slab models. Through the study of photon transport in multilayer shields, the parameters that mainly affect the calculation of build-up factor are analyzed. These parameters are trained by DNN as the input vectors, and the build-up factor for multilayer shields is predicted based on the trained DNN. The results predicted by DNN confirm that the method can calculate the build-up factor for multilayer shields quickly and accurately. The method has been preliminarily applicated into a 3-D radiation field calculation software, and it has proved that the method for calculating MLBUF has a broad application prospects in 3-D radiation field calculation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dmitrenko, V. V., Phyo Wai Nyunt, K. F. Vlasik, V. M. Grachev, S. S. Grabchikov, S. S. Muravyev-Smirnov, A. S. Novikov, et al. "Electromagnetic shields based on multilayer film structures." Bulletin of the Lebedev Physics Institute 42, no. 2 (February 2015): 43–47. http://dx.doi.org/10.3103/s1068335615020037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Shugang, Ni Gao, Tianlin Shen, Yuechao Yang, Bin Gao, Yuncong C. Li, and Yongshan Wan. "One-step synthesis of superhydrophobic and multifunctional nano copper-modified bio-polyurethane for controlled-release fertilizers with “multilayer air shields”: new insight of improvement mechanism." Journal of Materials Chemistry A 7, no. 16 (2019): 9503–9. http://dx.doi.org/10.1039/c9ta00632j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sasaki, T., and I. Itoh. "Multilayer NbTi superconducting magnetic shields via interfacial pinning." Cryogenics 35, no. 5 (May 1995): 335–38. http://dx.doi.org/10.1016/0011-2275(95)95353-g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bavastro, Davide, Aldo Canova, Luca Giaccone, and Michele Manca. "Numerical and experimental development of multilayer magnetic shields." Electric Power Systems Research 116 (November 2014): 374–80. http://dx.doi.org/10.1016/j.epsr.2014.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Онучин, Е. С., В. А. Фельдштейн, Н. А. Товарнова, Л. Б. Васильченко та Д. А. Орлов. "Энергоемкость тканевых материалов при ударном нагружении". Механика композиционных материалов и конструкций 27, № 2 (30 червня 2021): 272–87. http://dx.doi.org/10.33113/mkmk.ras.2021.27.02.272_287.08.

Повний текст джерела
Анотація:
Space orbital stations operations support consists an adoption of meaningful measures to protect space station against impacts of space debris and meteoroids. This goal can be reached by using multilayered protection shields that are made with the fabric material layers. Shields designing and modeling requires specific characteristics that define energy absorbed volume by the fabric destruction under impact. The paper describes the methodology and experimental determination method for absorbed energy volume results by using multilayer fabrics of orbital manned stations shielding constructions under distributed impulse loading caused by the space debris impacts. The energy absorbed volume by the multilayer fabrics is obtained from the experiments by analysis of specimen and flat metal projectile impact. Projectile was accelerated by the air gas gun. The obtained experimental determination results of energy absorbed volume in pressure range up to 1,5 GPa are given. Using the model of fabric as a porous material its energy absorption volume dependence in pressure range up to 10 GPa and compared with experimental data. It is shown that for materials with high porosity absorbed energy volume against pressure dependence is close to linear. Corresponding asymptotic dependence for materials with high porosity under the high pressure is obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moldovanu, A., H. Chiriac, C. Ioan, E. Moldovanu, M. Lozovan, and V. Apetrei. "Functional study of a system of magnetic multilayer shields." International Journal of Applied Electromagnetics and Mechanics 9, no. 4 (October 1, 1998): 421–25. http://dx.doi.org/10.3233/jaem-1998-124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Multilayer shields"

1

Ніколенко, Богдан Миколайович. "Електромагнітні екрани для надвисокочастотних полів". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/25889.

Повний текст джерела
Анотація:
Актуальність теми: екранування надвисокочастотних електромагнітних полів завад є важливим завданням фізичного захисту та підвищення електромагнітної сумісності радіоелектронної апаратури. Мета дослідження: визначення матеріалів, що найкращі для використання у електромагнітних екранах для придушення надвисокочастотних завад. Об'єкт дослідження: електромагнітні екрани. Предмет дослідження: ефективність екранування з оцінкою коефіцієнтів екранування. Наукова новизна одержаних результатів: наукова новизна полягає у підвищенні ефективності екранування апаратури від електромагнітних завад надвисокої частоти шляхом конструювання екранів у вигляді трьох шарів різнотипних металів (магнітного та немагнітного), коли проміжний шар магнітний, а граничні — немагнітні. Окрім того, тришаровий екран суттєво підвищує коефіцієнт екранування за рахунок збільшення ефективності механізму відбиття електромагнітної хвилі від границь шарів. Публікації: Ніколенко Б. М. Електромагнітні екрани для надвисокочастотних полів / Комп'ютерне моделювання та оптимізація складних систем (КМОСС-2018): матеріали IV Міжнародної науково-технічної конференції / ДВНЗ "УДХТУ". - Дніпро: Баланс-клуб, 2018. - с. 91 - 93.
Relevance of the topic: Shielding of ultrahigh frequency electromagnetic interference fields is an important task of physical protection and electromagnetic compatibility improvement in radio electronic devices. Research purpose: the defining of materials the best to use in electromagnetic shields for ultrahigh frequency interferences rejecting. Object of research: electromagnetic shields. Subject of research: shielding efficiency with shielding factor estimation. Scientific novelty: scientific novelty lies in improving the efficiency of equipment shielding from electromagnetic ultrahigh frequency interferences. It is doing by constructing the shields as three layers of different types of metals (magnetic and nonmagnetic), when the intermediate layer is magnetic and the boundary layers are nonmagnetic. Furthermore, the three-layer shield greatly increases the shielding factor by raising the mechanism of efficiency by reflection of the electromagnetic wave from layer boundaries. Publications: Ніколенко Б. М. Електромагнітні екрани для надвисокочастотних полів / Комп'ютерне моделювання та оптимізація складних систем (КМОСС-2018): матеріали IV Міжнародної науково-технічної конференції / ДВНЗ "УДХТУ". - Дніпро: Баланс-клуб, 2018. - с. 91 - 93.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

SU, ZHE-WEI, and 蘇哲尉. "Analyses of dispersion characteristics of a shielded multilayer microstrip line." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/24726451891423920217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Multilayer shields"

1

Andropov, Alexey V., Sergey V. Kuzmin, and Konstantin O. Korovin. "Design of Compact Shielded Multilayer Directional Coupler." In Springer Proceedings in Physics, 577–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81119-8_63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baritchi, D., T. Nicol, and W. Boroski. "Conceptual Design for the Thermal Shield Bridges and Multilayer Insulation in the Interconnect Region for the SSC." In Supercollider 3, 217–24. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3746-5_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Perić, Mirjana, Saša Ilić, and Slavoljub Aleksić. "Quasi-TEM Analysis of Multilayered Shielded Microstrip Lines Using Hybrid Boundary Element Method." In Engineering Mathematics I, 115–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42082-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Megahid, R. M., El-Sayed H. El-Kalla, and M. W. Esmaiel. "Study of Filtration of Reactor Beam of Neutrons with Cadmium in a Multilayer Shield Containing Boron Carbide / Untersuchung der Filtration des Reaktorneutronenstrahls durch Kadmium in einer mehrschichtigen Abschirmung, die Borkarbid enthält." In August 1985, 287–90. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112523148-007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multilayer shields"

1

Canova, Aldo, Fabio Freschi, Luca Giaccone, and Maurizio Repetto. "Optimal design of closed multilayer magnetic shields." In 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES). IEEE, 2017. http://dx.doi.org/10.23919/ropaces.2017.7916413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Merizgui, Tahar, Abdechafik Hadjadj, Bachir Gaoui, and Mecheri Kious. "Comparison Electromagnetic Shielding Effectiveness Between Smart Multilayer Arrangement Shields." In 2018 International Conference on Applied Smart Systems (ICASS). IEEE, 2018. http://dx.doi.org/10.1109/icass.2018.8651965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bachir, Gaoui, Hadjadj Abdechafik, and Kious Mecheri. "Comparison electromagnetic shielding effectiveness between single layer and multilayer shields." In 2016 51st International Universities Power Engineering Conference (UPEC). IEEE, 2016. http://dx.doi.org/10.1109/upec.2016.8114106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cotoros, Ingrid, and Ab Hashemi. "Multilayer Insulation Venting During Payload Depressurization." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80658.

Повний текст джерела
Анотація:
Multilayer Insulation (MLI) blankets consist of closely spaced aluminum coated shields that are spaced apart to reduce heat transfer between the payload and the environment, particularly in vacuum. In space application, satellite systems and sub-systems are wrapped in MLI blankets to thermally isolate them from the environment and achieve thermal control requirements. During spacecraft launch, the payload undergoes a rapid depressurization before reaching steady state condition. The MLI blankets are usually perforated and/or connected at the boundaries with Velcro strips to allow out-gassing. The blankets can lose their integrity and functionality if the depressurization process is too rapid: the out-gassing flow can tear the perforations, and the pressure differential built-up across the blanket can pull the Velcro strips apart. This paper describes the design and modeling of depressurization through X-slits cut into the blanket and Velcro strips taped along the sides. A methodology is developed, and a model for quantifying the pressure differential build-up is described and applied to a payload enclosure aboard a Delta II rocket.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raj, Nisha, and Chitra Bhukkal. "Program BUF: A computer toolkit for primary investigations of buildup factors in single and multilayer shields." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lusk, Craig, and Daniel E. Perez. "Shield Design for Shape-Shifting Surfaces." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12186.

Повний текст джерела
Анотація:
Shape-Shifting Surfaces (SSSs) are multilayered surfaces that are able to change shape while maintaining their integrity as physical barriers. SSSs are composed of polygonal unit cells, which can change side lengths and corner angles. These changes are made possible by each side and corner consisting of at least two different shields, or layers of material. As the layers undergo relative motion, the unit cell changes shape. In order for the SSS to retain its effectiveness as a barrier, no gaps can open between different layers. Also, the layers cannot protrude past the boundaries of the unit cell. Based on these requirements, a design space exploration was performed to determine, using equilateral triangle unit cells and triangular shields, the maximum deformation range of a unit cell. It was found that the triangular shields with maximum allowable deformation were right triangles with one of the angles being equal to 37.25 degrees and the adjacent side equal to 61% of the side length of the unit cell. The key contribution of this paper is a first algorithm for systematic SSS shield design. Possible applications for SSSs include protection, by creating body-armor systems; reconfigurable antennas able to broadcast through different frequencies; recreational uses, and biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gu, Lixing. "Generalized Equation for Thermal Conductivity of MLI at Temperatures From 20K to 300K." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41830.

Повний текст джерела
Анотація:
Multilayer insulation (MLI) has the lowest thermal conductivity of any currently used insulation in high vacuum environments and is used in cryogenic insulation system to minimize heat leaks in liquid hydrogen storage tanks. MLI consists of highly reflective radiation shields separated by spacers or insulation. The thermal conductivity of MLI varies with both temperature and vacuum level. Most published apparent thermal conductivities were measured for temperatures between 80K and 300K; some of the published data were for temperatures between 20K and 80K. Since the temperature of liquid hydrogen is 20K and the storage tanks are exposed to ambient air, it is essential to know the thermal performance of MLI for the temperature range of 20K to 300K. In addition, in order to provide a detailed temperature distribution and to optimize insulation systems with respect to the number of layers of MLI, layer density, insulation weight, and separator configuration, the layer-by-layer thermal performance of MLI has to be established for efficient storage tank design. A general equation for thermal conductivity was developed based on heat transfer principles for a wide range of temperature differences and vacuum levels. The equation consists of four heat transfer modes: 1) thermal radiation between two adjacent reflectors, 2) thermal radiation absorbed by spacers 3) gas conduction, and 4) solid spacer conduction. The equation can be applied for the temperature ranges of liquid hydrogen up to ambient, and for pressure ranges between 1.33 mPa to 1.33 kPa (0.01 millitorr and 10 torr). The predicted layer-by-layer temperatures, heat fluxes and apparent thermal conductivities using the developed thermal conductivity equation show very good agreement with measured data between the temperatures of 80K and 300K at the various pressure levels. When the equation was applied for a temperature of 20K, heat fluxes increased due to the larger temperature difference, while apparent thermal conductivities decreased due to the lower cold side temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, H., Y. Du, and Q. Cheng. "Fast Surrogate-Assisted Design of Multilayered Magnetic Shields." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Watanabe, Atom O., Seungtaek Jeong, Subin Kim, Youngwoo Kim, Junki Min, Denny Wong, Markondeya R. Pulugurtha, Ravi Mullapudi, Joungho Kim, and Rao R. Tummala. "Highly-Effective Integrated EMI Shields with Graphene and Nanomagnetic Multilayered Composites." In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016. http://dx.doi.org/10.1109/ectc.2016.294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Danyu, and Yuandan Dong. "Compact Surface-Mount Shielded and Multilayer Dual-Band Filter." In 2021 IEEE/MTT-S International Microwave Symposium - IMS 2021. IEEE, 2021. http://dx.doi.org/10.1109/ims19712.2021.9574848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії