Добірка наукової літератури з теми "Multifunctional Textiles"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multifunctional Textiles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multifunctional Textiles"

1

Chen, Guopu, Jie Hu, Zhiwu Hong, Gefei Wang, Zhiming Wang, Canwen Chen, Jinjian Huang, Xiuwen Wu, and Jianan Ren. "Multifunctional Electrospun Textiles for Wound Healing." Journal of Biomedical Nanotechnology 18, no. 3 (March 1, 2022): 796–806. http://dx.doi.org/10.1166/jbn.2022.3288.

Повний текст джерела
Анотація:
The novel multifunctional electrospun textiles were fabricated by incorporating sheet-like kaolinite and silver nanoparticles (AgNps) into a polyurethane (PU) textile by using electrostatic spinning to promote wound-healing process. Threedimensional network of PU electrospun textiles offered an appropriate framework for loading kaolinite nanosheets and AgNps. Moreover, the kaolinite nanosheets healed bleeding wounds by accelerating plasma absorption, increasing blood cell concentrations, and stimulating coagulation factors. Furthermore, the AgNps killed microbes by destroying the cell membrane, while the deleterious effects were controlled by incorporation into the electrospun textile. The therapeutic effects of multifunctional electrospun textile in treating full-thickness abdominal wall defect were explored. The wound healing process could be accelerated via the textile by restoring the abdominal physiological environment, reducing the inflammatory response, and promoting collagen deposition, angiogenesis, and epithelization.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wei, Xiao, Xiaotong Liang, Chongguang Meng, Shuze Cao, Qiongfeng Shi, and Jun Wu. "Multimodal electronic textiles for intelligent human-machine interfaces." Soft Science 3, no. 2 (2023): 17. http://dx.doi.org/10.20517/ss.2023.09.

Повний текст джерела
Анотація:
Smart wearable electronic devices capable of information exchanging (such as human-machine interfaces) have developed into key carriers for the interconnection, intercommunication, and interaction between humans and machines. Multimodal electronic textiles that incorporate multifunctional sensors into daily clothing are an emerging technology to realize smart wearable electronics. This has greatly advanced human-machine interface technology by bridging the gap between wearing comfort and traditional wearable electronic devices, which will facilitate the rapid development and wide application of natural human-machine interfaces. In this article, we provide a comprehensive summary of the latest research progress on multimodal electronic textiles for intelligent human-machine interfaces. Firstly, we introduce the most representative electronic textile manufacturing strategies in terms of functional fiber preparation and multimodal textile forming. Then, we explore the multifunctional sensing capability of multimodal electronic textiles and emphasize their advanced applications in intelligent human-machine interfaces. Finally, we present new insights on the future research directions and the challenges faced in practical applications of multimodal electronic textiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Visileanu, Emilia, Alexandra Ene, Carmen Mihai, and Marek Kowalczuk. "Polymers for Multifunctional Textiles." Macromolecular Symposia 242, no. 1 (October 2006): 295–306. http://dx.doi.org/10.1002/masy.200651041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vashist, Paribha, Santanu Basak, and Wazed Ali. "Bark Extracts as Multifunctional Finishing Agents for Technical Textiles: A Scientific Review." AATCC Journal of Research 8, no. 2 (March 1, 2021): 26–37. http://dx.doi.org/10.14504/ajr.8.2.4.

Повний текст джерела
Анотація:
Bark extracts are important sources of natural dyes. They possess many functional properties of potential interest to the textile industry. Currently, textiles with eco-friendly functional finishing are increasingly sought for in medical and protective clothing due to stringent environmental laws and the associated toxicity of synthetic agents. In view of this, recent studies on bark extracts for multi-functional finishing of textiles, particularly for antimicrobial and UV protective finishing, is reviewed. Bark extracts from various trees are able to effectively impart antimicrobial resistance and UV protection properties to treated fabrics; however, their long-term sustenance and strength depend on a multitude of factors. However, the application of bark extracts on several types of textile fabrics have no significant impact on textile quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gowri, Sorna, Mohammad Akram Khan, and Avanish Kumar Srivastava. "Textile Finishing Using Polymer Nanocomposites for Radiation Shielding, Flame Retardancy and Mechanical Strength." Textile & Leather Review 4, no. 3 (September 7, 2021): 160–80. http://dx.doi.org/10.31881/tlr.2021.07.

Повний текст джерела
Анотація:
The uses of nanotechnologies in textiles are strategic and allow textiles to become multifunctional. There is an ever-increasing demand for new functionalities, like flame retardancy, radiation shielding, improved mechanical strength etc., for highly specific applications. There is no industrial supply for the above-mentioned functionalities. Keeping in view of this background, surface treatment becomes one of the most important methods to create new textile properties. Polymer nanocomposites based on coatings for textiles have a huge potential for innovative modifications of surface properties like flame retardancy, radiation shielding and improved mechanical properties, which can be applied with a comparatively low technical effort and at moderate temperatures. This review compiles recent research on polymer nanocomposites for functional finishing of textiles to understand the theoretical and experimental tools on polymer nanocomposites and their applications in textiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kan, Chi-Wai, and Yin-Ling Lam. "Future Trend in Wearable Electronics in the Textile Industry." Applied Sciences 11, no. 9 (April 26, 2021): 3914. http://dx.doi.org/10.3390/app11093914.

Повний текст джерела
Анотація:
Smart wearable textiles can sense, react, and adapt themselves to external conditions or stimuli, and they can be divided into active and passive smart wearable textiles, which can work with the human brain for cognition, reasoning, and activating capacity. Wearable technology is among the fastest growing parts of health, entertainment, and education. In the future, the development of wearable electronics will be focused on multifunctional, user-friendly, and user acceptance and comfort features and shall be based on advanced electronic textile systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lupino, Jo�o Henrique Barcha, Gustavo Pereira Saito, Marco Aur�lio Cebim, and Marian Rosaly Davolos. "UV-protective compound-containing smart textiles: A brief overview." Ecl�tica Qu�mica Journal 48, no. 1 (January 1, 2023): 16–40. http://dx.doi.org/10.26850/1678-4618eqj.v48.1.2023.p16-40.

Повний текст джерела
Анотація:
Excessive exposure to solar ultraviolet (UV) radiation causes human health damages, such as sunburns and skin cancer. Thus, the use of sun-protective clothing is a simple, easy, and practical method for UV protection of the human organism. In this perspective, incorporation, coating, and anchorage of UV-protective compounds in textile fibers have been employed to enhance the UV-blocking ability and/or promote functional finishings to smart fabrics. This review describes recent research efforts on the development of UV-protective compound-containing smart fabrics highlighting the UV-blocking properties and multifunctional activities. Different compound class examples and discussions are presented in order to contribute to new insights into sun-protective clothing and future applications of multifunctional textiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Afroj, Shaila, Mohammad Hamidul Islam, and Nazmul Karim. "Multifunctional Graphene-Based Wearable E-Textiles." Proceedings 68, no. 1 (January 15, 2021): 11. http://dx.doi.org/10.3390/proceedings2021068011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salam, Abdul, Duy-Nam Phan, Saif Ullah Khan, Syed Zameer Ul Hassan, Tufail Hassan, Raja Muhammad Waseem Ullah Khan, Khalid Pasha, Muhammad Qamar Khan, and Ick Soo Kim. "Development of a Multifunctional Intelligent Elbow Brace (MIEB) Using a Knitted Textile Strain Sensor." Fibres and Textiles in Eastern Europe 30, no. 1(151) (February 28, 2022): 22–30. http://dx.doi.org/10.5604/01.3001.0015.6457.

Повний текст джерела
Анотація:
Passive smart textiles are the textile structures that can sense stimuli, which may come from mechanical, thermal, electrical, or chemical sources. Textile strain sensors are smart textiles products in which the sensor’s resistance changes with applied strain. This study consists in the development of a textile strain sensor and its application on a Multifunctional Intelligent Elbow Brace (MIEB). The hand-knitted sensor was developed using knitting needles. The material used for this sensor was conductive yarn and lycra. The sensor developed was subjected to a stretch recovery test using a universal testing machine,, and the electrical resistance was measured using an electrical multimeter. The sensor developed has good sensing ability against cyclic loading and unloading at a 5%, 20%, 35% strain level. After testing, the sensor was stitched on an elbow brace to develop an MIEB. This study involved the best economical method for measuring the bowling angle of the player using this MIEB without any need for a biomechanical test, which is very expensive. This MIEB can also be used for rehabilitation purposes and for monitoring joint movement.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Glažar, Dominika, Ivan Jerman, Brigita Tomšič, Raghuraj Singh Chouhan, and Barbara Simončič. "Emerging and Promising Multifunctional Nanomaterial for Textile Application Based on Graphitic Carbon Nitride Heterostructure Nanocomposites." Nanomaterials 13, no. 3 (January 19, 2023): 408. http://dx.doi.org/10.3390/nano13030408.

Повний текст джерела
Анотація:
Nanocomposites constructed with heterostructures of graphitic carbon nitride (g-C3N4), silver (Ag), and titanium dioxide (TiO2) have emerged as promising nanomaterials for various environmental, energy, and clinical applications. In the field of textiles, Ag and TiO2 are already recognized as essential nanomaterials for the chemical surface and bulk modification of various textile materials, but the application of composites with g-C3N4 as a green and visible-light-active photocatalyst has not yet been fully established. This review provides an overview of the construction of Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-C3N4 heterostructures; the mechanisms of their photocatalytic activity; and the application of photocatalytic textile platforms in the photochemical activation of organic synthesis, energy generation, and the removal of various organic pollutants from water. Future prospects for the functionalization of textiles using g-C3N4-containing heterostructures with Ag and TiO2 are highlighted.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Multifunctional Textiles"

1

Berglin, Lena. "Interactive Textile Structures : Creating Multifunctional Textiles based on Smart Materials." Doctoral thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3490.

Повний текст джерела
Анотація:
Textiles of today are materials with applications in almost all our activities. We wear clothes all the time and we are surrounded with textiles in almost all our environments. The integration of multifunctional values in such a common material has become a special area of interest in recent years. Smart Textile represents the next generation of textiles anticipated for use in several fashion, furnishing and technical textile applications. The term smart is used to refer to materials that sense and respond in a pre-defined manner to environmental stimuli. The degree of smartness varies and it is possible to enhance the intelligence further by combining these materials with a controlling unit, for example a microprocessor. As an interdisciplinary area Smart Textile includes design spaces from several areas; the textile design space, the information technology design space and the design space of material science. This thesis addresses how Smart Textiles affect the textile design space; how the introduction of smart materials and information technology affects the creation of future textile products. The aim is to explore the convergence between textiles, smart materials and information technology and to contribute to providing a basis for future research in this area. The research method is based on a series of interlinked experiments designed through the research questions and the research objects. The experiments are separated into two different sections: interactive textile structures and health monitoring. The result is a series of basic methods for how interactive textile structures are created and a general system for health monitoring. Furthermore the result consists of a new design space, advanced textile design. In advanced textile design the focus is set on the relation between the different natures of a textile object: its physical structure and its structure in the context of design and use.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Motay, Marvin. "Multifunctional photocatalytic substrates and textiles constructed via Layer-by-Layer self-assembly of Ag and TiO2 nanoparticles." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF030/document.

Повний текст джерела
Анотація:
Des films multicouches à base de nanoparticules de TiO2 et d’Ag ont été construits sur des substrats modèles et des textiles via la technique du Layer-by-Layer (LbL). Les films à base de nanoparticules de TiO2 construits sur substrats modèles ont montré un comportement photocatalytique non conventionnel pour la minéralisation de l’acide formique en phase gaz sous irradiation UV-A, et une minéralisation très importante a été obtenue avec un film possédant une unique couche de nanoparticule de TiO2. Ces films ont également montré des propriétés biocides sous irradiation UV-A. La mise en œuvre d’une méthode one-pot, combinant la synthèse photo-induite des nanoparticules d’Ag et dépôt de la couche de TiO2 par LbL, a permis la synthèse de nanoparticules d’Ag directement au sein des films et une exaltation très importante des propriétés photocatalytiques des films. Les méthodes de constructions ont été transférées avec succès sur textiles. Les films restent photocatalytiquement actifs et biocides sous irradiation UV-A après plusieurs cycles de lavages
TiO2 and Ag nanoparticle multilayered films were constructed on model substrates and textiles via Layer-by-Layer (LbL) assembly. The TiO2 nanoparticle based films constructed on model substrates showed a non-conventional photocatalytic behaviour for gas phase formic acid mineralisation upon UV-A irradiation, and a high mineralisation was obtained for a single layer TiO2 nanoparticle film. These films also showed biocidal properties upon UV-A irradiation. The elaboration of a one-pot method, combining the photo-induced synthesis of Ag nanoparticles and the LbL deposition of TiO2 nanoparticle layer, allowed the direct synthesis of Ag nanoparticles within the films and a high enhancement of the film photocatalytic properties. The construction methods were successfully transfered on textile surfaces. The films were photocatalytically active and biocidal under UV-A irradiation after several washing treatment cycles
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mandlekar, Neeraj Kumar. "Integration of wood waste to develop multifunctional fully biobased textile structure." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I062/document.

Повний текст джерела
Анотація:
Les textiles jouent un rôle important dans notre vie quotidienne. La plupart des fibres textiles et des tissus sont fabriqués à partir de polymères à base de pétrole, des matériaux inflammables et potentiellement dangereux. Afin de conférer le caractère ignifuge aux fibres textiles; entre autres, les composés halogénés sont plus efficaces et largement utilisés pour améliorer le comportement ignifuge des matières textiles. Cependant, en raison de la toxicité des composés halogénés et de l'épuisement progressif des ressources pétrolières, les communautés scientifiques et industrielles sont obligées de trouver des solutions alternatives. Par conséquent, on s’intéresse de plus en plus aux ressources durables, en particulier au développement de systèmes ignifugeants fabriqués à partir de ressources biologiques et respectueux de l’environnement non halogénés. Dans le contexte de l’utilisation de ressources biologiques, une attention particulière a été appelée pour la biomasse. Après la cellulose, la lignine est le deuxième polymère de biomasse le plus abondant et le principal à base d'unités aromatiques. En particulier, la lignine est avantageuse car c’est un coproduit des industries de la pâte à papier et de la fabrication du papier et non une ressource qui nécessite une production spécifique. En fait, sa structure chimique hautement aromatique permet d’améliorer différentes propriétés fonctionnelles telles que la résistance aux UV, l’antioxydant et l’ignifugation des polymères. Récemment, la lignine a fait l’objet d’une grande attention en tant qu’additif retardateur de flamme d'origine biologique en raison de son aptitude élevée à la formation de carbone après la décomposition thermique. Cette capacité de formation de carbone de la lignine en fait un candidat de choix comme source de carbone pour un système intumescent avec un autre additif ignifuge. Lors du chauffage, les matériaux intumescents ignifuges (FR) forment une couche carbonisée cellulaire expansée; agissant comme une barrière physique contre le transfert de chaleur et de masse, qui protège le matériau sous-jacent de l'action du flux de chaleur et de la flamme.Au meilleur de nos connaissances, aucune étude n'a été publiée concernant l'introduction de la lignine en tant que source de carbone dans les structures textiles pour leur conférer des propriétés ignifugeantes. Par conséquent, dans cette étude, la lignine a été introduite dans la structure textile lors de la composition. Cette thèse porte sur le développement de la structure textile ignifuge entièrement biosourcée. Pour atteindre cet objectif, l'approche en plusieurs étapes est adoptée. Dans une première étape, la matrice polymère biosourcée a été sélectionnée pour produire la structure textile et la méthode d’incorporation de la lignine a été étudiée et optimisée. Ensuite, les propriétés ignifuges apportées par la lignine ont été caractérisées et améliorées en ajoutant un additif ignifuge dans les formulations (par exemple, utilisation de sources acides pour développer un système intumescent pouvant améliorer la résistance des textiles au feu). Dans la deuxième phase du projet, la lignine a été combinée à la source d'acide d'origine biologique pour développer une nouvelle génération de structures durables (100% biosourcées) destinées aux marchés du textile. La principale avancée technologique consiste à utiliser et à combiner différents composants biosourcés utilisés dans d'autres industries, telles que l'industrie du plastique, afin de développer des solutions textiles
It has been chosen to study valorization of low-cost industrial lignin as additive in designing the flame retardant (FR) system for polyamide 11 (PA) to develop biobased textile structure. The main focus of this thesis work is to consider lignin as carbon source and introduce in a textile structure in combination with phosphinate salt (FR agent). In the primary study, chemically different industrial lignins were incorporated in PA by extrusion to investigate the charring and fire retardant behaviour of the prepared binary blends. In addition, the introduction of sulphonated lignins significantly reduced the peak of the heat release rate (PHRR) and of the total heat release (THR), and a noticeable increase of the char residue was observed after forced combustion test. In the next approach, lignin was exploited as carbon source in combination with commercially available phosphinate FR (i.e., ZnP and AlP). To achieve this objective, a preliminary study carried out with laboratory grade lignin (LS) combined with ZnP to investigate the thermal stability and fire performance as well as the possible synergy between lignin and ZnP and with the polymer matrix. The results obtained in this study permitted to continue further, the practical implementation of lignin and multifilament production. In the next step, flame retarded blends were developed with direct addition of low-cost industrial lignins (LL and DL) with phosphinate FR. For the systematic understanding, various FR formulations were developed by varying the lignin and FR loading and characterized. Thermal decomposition analysis showed that the presence of lignin decreases the initial decomposition temperature (T5%) due to the decomposition of lignin which starts at a lower temperature region with the evolution of less thermally stable compounds and the maximum decomposition temperature (Tmax) shifts to higher temperature region, at this stage the formation of phenolic, carbonyls, hydrocarbons and CO2 along with phosphinate compounds occurs. Meanwhile, in the condensed phase thermally stable aromatic charred layer is formed because of lignin decomposition and phosphate compounds formation due to the presence of phosphinate metal salt. A higher amount of char residue is obtained when LL combined with ZnP/AlP as compared to the DL and ZnP/AlP blends. It is assumed that, during decomposition of LL, the sulfonate compounds release SO2 and transformed into thermally stable Na2SO4, hence giving rise to the stable char residue. The fire properties were assessed by cone calorimeter tests revealed the combination of lignin and phosphinate FR significantly reduced the PHRR and other fire-related parameters due to the formation of a protective char layer. The presence of lignin not only improve fire retardancy but also reduced the evolution of carbon monoxide (CO). More enhanced fire retardant properties were obtained with LL and ZnP/AlP combination reaches to 10 wt% in ternary blends, which not only promotes char formation but also confer the stability to char in the condensed phase. Furthermore, the most enhanced forced combustion results were obtained with LL and AlP (in particular, PA80-LL10-AlP10). Multifilament yarns were successfully produced for PA-DL-ZnP and PA-LL-ZnP combinations. However, the blends of AlP with lignin were not spinnable because of low compatibility and dispersion level of AlP in the polymer. Optical microscopy and tensile tests were performed to study the physical properties of multifilaments. A double layer (interlock structure) knitted fabrics were developed to evaluate fire behaviour analysis on fabric samples
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agnhage, Tove. "Eco-designed functionalization of polyester fabric." Doctoral thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12408.

Повний текст джерела
Анотація:
There is an increased awareness of the textile dyeing and finishing sector’s high impact on the environment due to high water consumption, polluted wastewater, and inefficient use of energy. To reduce environmental impacts, researchers propose the use of dyes from natural sources. The purpose of using these is to impart new attributes to textiles without compromising on environmental sustainability. The attributes given to the textile can be color and/or other characteristics. A drawback however, is that the use of bio-sourced dyes is not free from environmental concerns. Thus, it becomes paramount to assess the environmental impacts from using them and improve the environmental profile, but studies on this topic are generally absent. The research presented in this thesis has included environmental impact assessment, using the life cycle assessment (LCA) tool, in the design process of a multifunctional polyester (PET) fabric using natural anthraquinones. By doing so an eco-design approach has been applied, with the intention to pave the way towards eco-sustainable bio-functionalization of textiles. The anthraquinones were obtained from the root extracts of the madder plant (Rubia tinctorum L.), referred to as madder dye. The research questions were therefore formulated related to the use of madder dye. Three research questions have been answered: (I) Can madder dye serve as a multifunctional species onto a PET woven fabric? (II) How does the environmental profile of the dyeing process of PET with madder dye look like, and how can it be improved? (III) What are the main challenges in using LCA to assess the environmental impacts of textile dyeing with plant-based dyes? It is concluded that there is a potential for the madder dye to serve as a multifunctional species onto PET. Based on the encouraging result, a recommendation for future work would be to focus on the durability of the functionalities presented and their improvement potential, both in exhaustion dyeing and pad-dyeing. LCA driven process optimization of the exhaustion dyeing enabled improvement in every impact category studied. However, several challenges have been identified which need to be overcome for the LCA to contribute to the sustainable use of multifunctional plant-based species in textile dyeing. The main challenges are the lack of available data at the research stage and the interdisciplinary nature of the research arena. It is envisaged that if these challenges are addressed, LCA can contribute towards sustainable bio-functionalization of textiles.
Le secteur de la teinture et de l’ennoblissement textile est de plus en plus conscient de son impact sur l’environnement dû principalement à la consommation élevée de l’eau et à sa pollution, et aux pertes d’énergie. Pour réduire ces impacts, les chercheurs proposent l’utilisation de molécules issues de ressources naturelles, pour traiter les textiles en limitant les impacts sur l’environnement. C’est le cas pour l’obtention de textiles colorés ou pour l’attribution de toute autre fonctionnalité. Cependant, il n’est pas évident que ces molécules bio-sourcées n’aient aucun impact sur l’environnement. On comprend l’importance d’évaluer les impacts de leur utilisation et d’améliorer leur profil environnemental. Or ce type d’étude est peu présent dans la littérature. La recherche présentée dans cette thèse comporte l’évaluation des impacts environnementaux en utilisant l’outil d’analyse du cycle de vie (ACV) pour la conception du traitement d’un tissu de polyester (PET) multifonctionnel avec des anthraquinones naturelles. La méthodologie d’éco conception que nous avons appliquée ouvre la voie à une bio-fonctionnalisation des textiles plus respectueuse de l’environnement. Les anthraquinones ont été obtenues par extraction des racines de plantes de garance et constituent le colorant appelé garance. Les trois questions principales abordées lors de ce travail de recherche sont formulées autour de l’utilisation de la garance : (I) Peut-on traiter les tissus de PET avec de la garance pour obtenir des propriétés multifonctionnelles ? (II) Quel est le profil environnemental du procédé de teinture du PET par la garance et comment l’améliorer ? (III) Quels sont les principaux challenges pour l’utilisation de l’ACV dans l’évaluation environnementale du traitement des textiles par des colorants naturels? Nous avons montré que la garance peut être utilisée pour conférer des propriétés multifonctionnelles au PET. Ensuite, nous avons pu orienter notre étude pour améliorer la durabilité des traitements par les procédés de fonctionnalisation à la fois par épuisement ou par foulardage. En s’appuyant sur l’ACV, l’optimisation de la teinture que nous avons réalisée réduit tous les impacts sur l’environnement. Cette étude nous permet d’identifier les challenges qui doivent être surmontés pour que l’ACV puisse contribuer à l’utilisation de bio-molécules pour la teinture des textiles dans le respect des principes de développement durable. Ils concernent le manque de données pour ces travaux de recherche et leur nature interdisciplinaire. Ainsi, en résolvant ces questions, on peut envisager aboutir à une bio- fonctionnalisation des textiles respectueuse de l’environnement.
Den höga miljöpåverkan från textilfärgning och efterbehandling, på grund av hög vattenförbrukning, dess förorening, och ineffektiv användning av energi, är idag välkänt. För att minska miljöpåverkan föreslår forskningsvärlden användning av färgämnen från naturliga resurser. Syftet med att använda dessa är att ge nya attribut till textilier utan att göra avkall på miljömässig hållbarhet. Attribut som ges kan vara färg och/eller andra egenskaper. En nackdel är dock att användningen av bio-baserade färgämnen är inte fri från att belasta miljön. Det blir därför av största betydelse att bedöma denna miljöpåverkan och förbättra miljöprofilen. Sådana studier är dock i allmänhet sällsynta. Studien som presenteras i denna avhandling har inkluderat miljöpåverkans- bedömning, med hjälp av livscykelanalys (LCA), i designprocessen av en multifunktionell polyester (PET) väv via naturliga antrakinoner. Genom att göra så har ett eko-design tillvägagångssätt använts, med avsikt att bana väg för miljömässigt hållbar bio-funktionalisering av textil. Antrakinonerna erhölls från rot extrakt av växten krapp (Rubia tinctorum L.), och hänvisas till som krapp färgämne. Frågeställningar var därför formulerade relaterat till användningen av krapp färgämne. Tre forskningsfrågor har besvarats: (I) Kan krapp färgämne verka multifunktionellt på en PET väv? (II) Hur ser miljöprofilen ut, från färgningsprocessen av PET med krapp färgämne, och hur kan den förbättras? (III) Vilka är de största utmaningarna med att använda LCA för att bedöma miljökonsekvenserna av textilfärgning med växtbaserade färgämnen? Det kan konkluderas att det finns potential för krapp färgämne att verka multifunktionellt på PET. Baserat på uppmuntrande resultat är en rekommendation för det framtida arbetet att fokusera på kvalitén hos de attribut som presenterats och deras förbättringspotential, både i färgning via färgbad och via foulard. LCA driven processoptimering av textilfärgningen förbättrade i varje miljöpåverkans- kategori som studerats. Emellertid har flera utmaningar identifierats som måste  övervinnas för att LCA skall kunna bidra till en hållbar användning av multifunktionella växtbaserade färgämnen för textil. De största utmaningarna är bristen på tillgängliga data i forskningsstadiet och den tvärvetenskapliga forskningsarenan. Det är tänkt att om dessa utmaningar bemästras kan LCA bidra till en hållbar bio-funktionalisering av textil.

Disputationen kan följas via länk i sal U401b, Textilhögskolan, Högskolan i Borås


Erasmus Mundus Joint Doctorate program: Sustainable Management and Design for Textiles
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Halavska, Liudmyla, and Oleksandra Batrak. "The study of consumer properties of dual-layer weft knitted fabric using eco-raw materials." Thesis, Technical University of Liberec, 2017. https://er.knutd.edu.ua/handle/123456789/8910.

Повний текст джерела
Анотація:
In today's world, more and more people pay attention to various aspects that can maintain and improve their health and quality of their life. So nowadays such interest in expanding the range of ecological knitwear for functional purposes produced using natural raw materials is increasing again. The structure and the proposed fueling data to develop an integrated knitted fabric, which is due to the use for the formation of a one coat of dual-layer fabric with hemp and nettle yarn can be used as a functional textile material for the underwear manufacturing with therapeutic and preventive action, including underwear for wounded soldiers during their treatment and rehabilitation. The designed structure is a two-layer fabric with the forged connections between layers in the main thread. In forging load canvas connectors are arranged in a checkerboard pattern. In the areas of connecting load the non-cross-cutting holes are formed. They provide ventilation and rapid water removal from under the clothes. The studies determined the impact of eco-type materials in integrated layers of a dual-layer fabric to replace the linear dimensional jersey, relaxation characteristics, level of capillarity and fluid change level in time.
В сучасному світі все більше людей приділяють увагу різноманітним аспектам, що можуть зберегти та покращити їхнє здоров’я та рівень життя. Тому в наш час знову підвищився інтерес до розширення асортименту екологічного трикотажу функціонального призначення, виготовленого з використанням натуральних видів сировини. Розроблено структуру й запропоновані заправні дані для вироблення інтегрованого трикотажного полотна, яке завдяки використанню для формування одного з шарів двошарового трикотажу конопляної чи кропив'яної пряжі може бути використане у якості функціонального текстильного матеріалу для виготовлення білизняних виробів лікувально-профілактичної дії, зокрема для натільної білизни поранених військовослужбовців у період їх лікування та реабілітації. Розроблена структура являє собою двошарове полотно з пресовим з'єднанням шарів основними нитками. У полотні з'єднувальні пресові накиди розташовані у шаховому порядку. В місцях формування з'єднувальних накидів утворюються ненаскрізні отвори, що забезпечують вентиляцію та швидке виведення пароподібної вологи з під одягового простору. У ході досліджень визначено характер впливу виду еко-сировини одного з шарів інтегрованого двошарового трикотажу на зміну лінійних розмірів трикотажу, релаксаційні характеристики, рівень капілярності та зміну рівня підняття рідини в часі його функціональних шарів.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ZAHID, MUHAMMAD. "Multifunctional and Responsive Textile Nanocomposites for High Value Applications." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jonsson, Marcus. "Design of Multifunctional and Sustainable Backpacks : Combining Skiing, Snowboarding, and Urban Usage." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69707.

Повний текст джерела
Анотація:
Today, backpacks and duffel bags are often designed with a focus on a specific area of use, which makes it difficult to use them on other occasions. A clear example where the differences are noticeable is between functional mountaineer bags and urban bags. It is not uncommon for people staying in these environments to have far beyond two bags in their possession. Overconsumption is harmful to the environment, especially when it is from an industry that is pursued with poor working conditions and dangerous emissions in nature. Therefore, multifunctionality and sustainable design have been of high priority when the products in this project were developed. In this thesis, two models of bags have been developed through a human-centered design process. A large number of user interviews and expert interviews, as well as a focus group, laid the foundation for the requirements and needs of the bags. Spektrum’s company values, as well as the identity of their current products, were interpreted to create brand recognition in the new products. Idea generation was performed through various creative sessions, prototyping, and through a workshop. Evaluation and concept selection was performed by representatives from the target group in the form of personas, as well as by Spektrum. Finally, detailed technical drawings of the concepts were created in Adobe Illustrator. The first model is a backpack designed to work just as well on the mountain as in the city. The other model is a duffel bag that can be carried both on the back and in the hand. It is also designed to perform well in both mountain and urban environments. Both bags are made of polyester from recycled PET bottles and the material is controlled and approved by the highly rated environmental certification bluesign®. The metal parts of the bags are made of recycled aluminum. Both models are adjustable to fit all users within the 5th to 95th percentile. The thesis resulted in the ordering of two alpha prototypes of each model, factory-made by my technical drawings. According to Spektrum, the designs have created great interest among retailers and company shareholders. Both models will, therefore, be put into production and released to the market within two years.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haentzsche, Eric, Moritz Frauendorf, Chokri Cherif, Andreas Nocke, Michaela Reichardt, Marko Butler, and Viktor Mechtcherine. "Multifunctional components from carbon concrete composite C³ – integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopes." Sage, 2018. https://tud.qucosa.de/id/qucosa%3A35422.

Повний текст джерела
Анотація:
This contribution will introduce carbon-reinforced concrete components (so-called carbon concrete composites, or C³) with sensor functionalities for innovative building envelopes. For a continuous in situ structural monitoring, these textile-reinforced concrete components are equipped with textile sensor networks consisting of resistive carbon fiber sensors (CFSs), which are integrated into the carbon fiber non-crimp fabrics of the concrete reinforcement by multiaxial warp-knitting. The in situ CFSs, consisting of 1 k or 50 k carbon fiber roving with added staple fiber/multifilament dielectric cladding, are later integral to the load-distributing elements of the concrete component, and elongations within these are easy to record with good correlation to ohmic resistance changes. Gage factors of k = 0.52–1.23 at linearity deviations of ALin=4.0–8.7% are feasible. This allows a monitoring of C³ building envelopes for structural mechanical changes caused by physical changes within the component through mechanical or thermal loads or deformation and cracks.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sankaran, Vignaesh, Tristan Ruder, Steffen Rittner, Evelin Hufnagl, and Chokri Cherif. "A multiaxial warp knitting based yarn path manipulation technology for the production of bionic-inspired multifunctional textile reinforcements in lightweight composites." Sage, 2016. https://tud.qucosa.de/id/qucosa%3A35615.

Повний текст джерела
Анотація:
Composites have now revolutionized most industries, like aerospace, marine, electrical, transportation, and have proved to be a worthy alternative to other traditional materials. However for a further comprehensive usage, the tailorability of hybrid composites according to the specific application needs on a large-scale production basis is required. In this regard, one of the major fundamental research fields here involves a technology development based on the multiaxial warp-knitting technique for the production of bionic-inspired and application-specific textile preforms that are force compliant and exhibit multi-material design. This article presents a newly developed yarn (warp) path manipulation unit for multiaxial warp-knitting machines that enables a targeted production of customized textile preforms with the above characteristics. The technological development cycle and their experimental validation to demonstrate the feasibility of new technology through production of some patterns for different field of applications are then discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dostál, Jan. "Polyfunkční dům ve Velkých Opatovicích." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265634.

Повний текст джерела
Анотація:
This master's thesis addresses the processing of project documentation for construction of three storey, multifunctional house in Velké Opatovice. The building is designed on flat terrain, it is terrace graded to the east and south and has a warm flat roof. On the first floor there is a pharmacy, travel agency, textile shop and technical facilities of the building. On the second floor there is an office space for advertising and graphics company. The third floor is designed as a large-area apartment for a family of four.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Multifunctional Textiles"

1

Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-02500-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nguyen, Tuan Anh, Andrea Ehrmann, and Phuong Nguyen Tri. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tri, Phuong Nguyen, Tuán Anh Nguyen, and Andrea Ehrman. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Multifunctional Polymer Nanocomposites. CRC Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leng, Jinsong, and Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leng, Jinsong, and Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leng, Jinsong, and Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duquesne, Sophie, Carole Magniez, and Giovanni Camino. Multifunctional Barriers for Flexible Structure: Textile, Leather and Paper. Springer London, Limited, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Multifunctional barriers for flexible structure: Textile, leather and paper. Germany [1990-onward]: Springer Verlag, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duquesne, Sophie, Carole Magniez, and Giovanni Camino. Multifunctional Barriers for Flexible Structure: Textile, Leather and Paper. Springer Berlin / Heidelberg, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Multifunctional Textiles"

1

Shabbir, Mohd, S. Wazed Ali, and Faqeer Mohammad. "Eco-Fabrication of Nanomaterials for Multifunctional Textiles." In Handbook of Ecomaterials, 1–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_56-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shabbir, Mohd, S. Wazed Ali, and Faqeer Mohammad. "Eco-fabrication of Nanomaterials for Multifunctional Textiles." In Handbook of Ecomaterials, 1483–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zangani, Donato. "Multifunctional Textiles for Protection against Natural Hazards." In Emboding Intelligence in Structures and Integrated Systems, 601–8. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-13-3.601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wankhade, Prachity, Neha Mehra, and Vijay Gotmare. "Development of Ecofriendly Multifunctional Textiles Using Peppermint Oil." In Functional Textiles and Clothing 2020, 149–58. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9376-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mishra, Kundlata, and Ela Dedhia. "Application of Protective Finishes on Denim and Analysis of Its Multifunctional Performances." In Functional Textiles and Clothing 2020, 129–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9376-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kroll, Lothar. "Textile- and plastic-based technologies." In Multifunctional Lightweight Structures, 295–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-62217-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Demir, Didem, Ashok Vaseashta, and Nimet Bölgen. "Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection." In NATO Science for Peace and Security Series B: Physics and Biophysics, 275–89. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chowdhury, K. P. "Nanomaterials for Multifunctional Textiles." In Emerging Applications of Nanomaterials, 169–217. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902288-8.

Повний текст джерела
Анотація:
The textile industry has been booming in recent decades due to new market explosion and consumer appeal for inventive apparel. Nanotechnology has played an exclusive role in such multifunctional high-performance textiles. Nanomaterials offer antimicrobial, flame retardance, self-cleaning, UV-protection, wrinkle-free, anti-static functionalities to textiles apart from their use for traditional aesthetic and decorative purposes. The nanoscale modified textiles offer new value-added functionalities while upgrading the existing aesthetic and physical properties. This chapter depicts an overall development on functional nanomaterials incorporated into textiles fabrics by different textile processes, featuring the aspects of nanotechnology to develop multifunctional textiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leal-Junior, Arnaldo, and Anselmo Frizera-Neto. "Wearable multifunctional smart textiles." In Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics, 223–43. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-32-385952-3.00021-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kizildag, Nuray. "Smart textiles with PCMs for thermoregulation." In Multifunctional Phase Change Materials, 445–505. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85719-2.00013-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multifunctional Textiles"

1

Dubova, Ilze, Agnija Apine, Dace Grauda, Dalius Butkauskas, Inga Lashenko, and Līga Jankevica. "Adaptation of methods for the determination of biodegradation of bio-textiles with amber particles." In 79th International Scientific Conference of the University of Latvia. University of Latvia, 2022. http://dx.doi.org/10.22364/iarb.2021.07.

Повний текст джерела
Анотація:
One of the criteria for bio-textiles is the potential for biodegradation. Our goal was to adapt methods for the determination of biodegradation of bio-textiles containing amber particles. We adapted methods EN ISO 11721-1: 2001 and ISO 11721-2: 2003 developed for the study of interaction of cellulose – containing textiles and microorganisms. To determine the changes of fabrics, the mechanical properties and level of biodegradation were examined. Experiments revealing level of biodegradation of bio-textile were carried out at the Institute of Biology, University of Latvia while mechanical properties were tested at the Scientific Laboratory of Mechanics and Bio-textiles of the Institute of Mechanics and Mechanical Engineering, Riga Technical University. The study was financially supported by the EUREKA project E!11170 “Innovative multifunctional bio-textile, integrated with silica dioxide and succinate development, and its impact on biosystems” (IFSITEX).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Antunes, Joana C., Tânia Ferreira, Luisa M. Arruda, Maria Sousa-Silva, Fernanda Gomes, Fernando Cunha, Inês P. Moreira, Mariana Henriques, and Raúl Fangueiro. "Multifunctional Coated Textiles for Active Biological Protection." In MATERIAIS. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/materproc2022008143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aileni, Raluca M., Lilioara Surdu, and Lutfi Oksuz. "Human health impact of multifunctional textiles obtained by using plasma technology." In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sarbu, Teodor. "Smart Textiles Based on Conductive Woven Structures." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.i.7.

Повний текст джерела
Анотація:
We live in a knowledge-based society, which is facing an increasing impact of science and technology on all aspects of life through products, services and consumer needs. The field of functional textiles is an interdisciplinary field that incorporates science, technology and design, and its future lies in the potential to combine different technologies. Functional textiles will serve to improve the quality of life by increasing the well-being of society and could lead to significant savings for health and budget. The uniqueness and challenge of technical textiles lies in the need to understand and apply the principles of textiles science and engineering to provide the right solutions for the growing and varied demands of their applications in areas such as protective clothing, automotive textiles, geotextiles, agricultural textiles, medical textiles, textiles used for construction, specialized textiles for defense and military applications, etc. Woven fabrics of copper and stainless steel wires, because of their structural order and ability to bend and conform to the most desirable forms, offers a great opportunity to develop a new generation of multifunctional and interactive textiles. The term “Smart Textiles” refers to a wide range of studies and products that extend the functionality and usefulness of common fabrics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nguyen, Tuan-Anh. "Multifunctional Smart Textiles: Influences of Hydrophobic Additional Finishes on Antimicrobial Treated Cotton Fabric." In 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2018. http://dx.doi.org/10.1109/gtsd.2018.8595621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gabriela Ene, Alexandra, Lucia Secareanu, Ovidiu Iordache, Mirela Blaga, and Cristina Lite. "Characterization Studies of A Commercial Blue Clay For Cosmetic Textiles With Antibacterial Activity." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003642.

Повний текст джерела
Анотація:
Since the beginning of the present century, tests have shown that some types of clay can present antibacterial activity. In addition, the clay considered for pharmaceutical and cosmetic products have been found to be non-toxic and non-irritating materials, therefore, the use of these types of clay for cosmetic and pharmaceutical purposes has increased in recent years. The above being said, different types of clay have been used over time due to their antibacterial properties, but the analytical methods for their characterization are just beginning to develop. This article is part of a study having as main objective the development of multifunctional antimicrobial textile materials to prevent fungal and bacterial proliferation, thus creating an antimicrobial shield for the human body, especially for blemish-prone skin. In this paperwork, a commercial blue clay was characterized through modern techniques. One of these techniques is X-ray Diffraction (XRD). Coupling SEM with an Energy Dispersive X-Ray detector (EDX), complete information of the morphology and elemental composition of the clay powder can be obtained. Additionally, a microbiological characterization was also performed in order to assess the anti fungal properties. Thus, the obtained results provided an overview of the main features of the selected blue clay. Further studies will be directed to the development of different types of clay-based dispersion and also for the characterization of different types of textile materials, in order to choose a "clay-textile" pair with improved antimicrobial activity.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

M. Conti, G., and R. Gaddi. "Design through the layers: Smart textiles for contemporary design solutions and sustainable consumption processes." In Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100952.

Повний текст джерела
Анотація:
"As individual consumers, one of the most responsible actions we can take to protect the planet is to extend the life of the things we already use."Taking under advisement the indication of Rose Marcario, CEO of Patagonia, the Salewa Metro System project aims to analyse and understand which aesthetic, functional and technical characteristics must be integrated in a garment to ensure maximum longevity, counteracting the trend towards massive consumption of contemporary society. Today the textile and fashion industry is the least sustainable and most polluting among the entire industrial system, both considering the production side where "every phase of its production chain threatens our planet" (Shen, 2014), and that of consumption, which hardly adopts or induces habits that contribute to the cause of a more equitable fashion system. Starting from a stylistic and product analysis of the so-called "vintage" sector, the aesthetic and functional characteristics that allow a garment to remain desirable, regardless of the fashion cycles, have been defined. Quality, functionality, style and sustainability are critical factors both from an environmental and also a commercial point of view, if we consider the ever-increasing sensitivity of the market to issues related to the protection of the planet. In the hyper-connected contemporary society, the ever-increasing search for technologies and materials related to well-being and health, in contrast with an extremely tiring urban environment, have been analysed together with the latest growing fashion trends as “athleisure”, where the demand for stylistic freedom, comfort and sporting performance is central. The Salewa Metro System project is a collection of urban and sporty, convertible and multifunctional outerwear composed of three layers of fabric that can be coupled according to the conditions of the external environment. The technical analysis of the layering system, that is the technical garments with which mountaineers are equipped, has generated the guidelines for the development of a collection that starts from pure technical performance, smoothing out the most extreme accents (useful only in situations of extreme meteorological hostility) to then propose itself to an urban and low mountain market. The use of smart materials and nano textile technologies has made it possible to create a layered system of garments with different functions that can always guarantee the best conditions in which to make the human body work. Used correctly, a good sequence of layers provides protection from environmental atmospheric agents and pollutants, perfect skin transpiration as well as the conservation and dissipation of body heat. The project was carried out in collaboration with the Salewa sportswear company, and the garments are designed to remain intact as long as possible, prepared for care, repairs and replacement of parts. They remain aesthetically attractive in the long term thanks to the classic stylistic choices that can be modified according to the occasion. They are always upgradeable in performance: the individual textile components are always replaceable. They tolerate aging well, have a long-life cycle and hit the market objectives together with increasingly design inputs for a more sustainable fashion process.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cupal, M., J. Dřínovský, T. Götthans, J. Láčík, J. Prášek, Z. Raida, D. Kráčalová, et al. "Textile-Integrated Transmitting Unit." In I European Conference On Multifunctional Structures. CIMNE, 2020. http://dx.doi.org/10.23967/emus.2019.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gibson, Phillip, and Heidi Schreuder-Gibson. "Production and Characterization of Nanoporous Polymer Membranes Produced by an Electrospraying Process." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1949.

Повний текст джерела
Анотація:
Abstract Electrospinning is a process by which high voltages are used to produce an interconnected membrane-like web of small fibers (10 to 500 nanometers in diameter). This novel fiber spinning technique provides the capacity to lace together a variety of types of polymers, fibers, and particles to produce ultrathin layers which are useful for chemical protective clothing. Of particular interest are electrospun membranes composed of elastomeric fibers, which are under development for several protective clothing applications. The various factors influencing electrospun nonwoven fibrous membrane structure and transport properties are discussed. Performance measurements on experimental electrospun fiber mats compared favorably with transport properties of textiles and membranes currently used in protective clothing systems. It was found that electrospun layers presented minimal impedance to moisture vapor diffusion required for evaporative cooling. There may be special considerations in the application of elastomeric membranes for protective clothing. Effects of membrane distortion upon transport behavior of the structure might be significant. Preliminary measurements have found that changes in elastomeric membrane structure under different states of biaxial strain were reflected in measurements of air flow through the membrane. Changes in membrane structure were also evident in environmental scanning electron microscope images of the pore/fiber rearrangement as the membrane was stretched. Experimental measurements and theoretical calculations show electrospun fiber mats to be extremely efficient at trapping airborne particles. The high filtration efficiency is a direct result of the submicron-size fibers generated by the electrospinning process. Electrospun nanofiber coatings were applied directly to an open cell polyurethane foam. The air flow resistance and aerosol filtration properties correlated with the electrospun coating add-on weight. Particle penetration through the foam layer, which is normally very high, was eliminated by extremely thin layers of electrospun nanofibers sprayed on to the surface of the foam. Electrospun fiber coatings produce an exceptionally lightweight multifunctional membrane for protective clothing applications which exhibits high breathability, elasticity, and filtration efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tian, Bin, and Wei Wu. "Printed Stretchable Multifunctional E-textile for Wearable electronics." In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021. http://dx.doi.org/10.1109/edtm50988.2021.9420864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії