Добірка наукової літератури з теми "Multichannel fixed bed reactor modelling"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multichannel fixed bed reactor modelling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multichannel fixed bed reactor modelling"

1

Nosek, Radovan, Jozef Jandacka, and Andrzej Szlek. "Boiler Modelling of Simple Combustion Processes." International Journal of Energy Optimization and Engineering 1, no. 3 (July 2012): 96–119. http://dx.doi.org/10.4018/ijeoe.2012070105.

Повний текст джерела
Анотація:
The aim of the work is to investigate coal combustion in fixed bed reactor. The experimental results were worked out in the form of approximation functions describing gas composition at the exit of fixed bed reactor. Furthermore, developed functions were applied for defining the boundary conditions at the interface between the fixed bed and gas phase using FLUENT. The simulations of a domestic boiler have been done and the relative effects of different factors in CFD code were evaluated by sensitivity analysis. The validity of the model was verified by measurements which were done in a 25 kW domestic boiler. Model predictions were compared with the experimental gas temperature and species concentration measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bell, N. H., and T. F. Edgar. "Modelling of a fixed-bed water-gas shift reactor." Journal of Process Control 1, no. 2 (March 1991): 59–67. http://dx.doi.org/10.1016/0959-1524(91)80002-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bell, N. H., and T. F. Edgar. "Modelling of a fixed-bed water-gas shift reactor." Journal of Process Control 1, no. 1 (January 1991): 22–31. http://dx.doi.org/10.1016/0959-1524(91)87004-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dhaundiyal, Alok, Suraj B. Singh, and Istvan Bacskai. "Mathematical Modelling of Pyrolysis of Hardwood (Acacia)." Acta Technologica Agriculturae 23, no. 4 (December 1, 2020): 176–82. http://dx.doi.org/10.2478/ata-2020-0028.

Повний текст джерела
Анотація:
AbstractThis paper emphasises the analogous modelling of hardwood (acacia) pyrolysis. The impacts of physical characteristics of hardwood chips on the pyrolysis are examined through the conservation of biomass solid mass fraction. The ONORM standard chips of sizes ‘G30’ and ‘G50’ and their combination are individually tested in the pyrolysis reactor. In the analogous situation, the fixed bed is assumed to be a wooden slab with a porosity equivalent to the voidage of bed. Bulk density, bed length and porosity are several of the physical attributes of a fixed bed used to examine the variation in the hardwood solid mass across the fixed bed. To measure temperature, the four-temperature sensors separated from each other by 80 mm are fixed along periphery of a reactor. The heating element of 2 kWe is provided to initiate the biomass pyrolysis. The proposed model is also used to establish the relationship between the kinetics of pyrolysis and the structural properties of hardwood.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ching, C. B., and K. H. Chu. "Modelling of a fixed bed and a fluidized bed immobilized enzyme reactor." Applied Microbiology and Biotechnology 29, no. 4 (October 1988): 316–22. http://dx.doi.org/10.1007/bf00265813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dixon, Anthony G. "Fixed bed catalytic reactor modelling-the radial heat transfer problem." Canadian Journal of Chemical Engineering 90, no. 3 (December 28, 2011): 507–27. http://dx.doi.org/10.1002/cjce.21630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dhaundiyal, Alok, and Suraj Bhan Singh. "Mathematical Modelling of Volatile Gas Using Lattice Boltzmann Method." Environmental and Climate Technologies 24, no. 1 (January 1, 2020): 483–500. http://dx.doi.org/10.2478/rtuect-2020-0030.

Повний текст джерела
Анотація:
AbstractThis study investigates the behaviour of pyrolysis gas, generated by the thermal decomposing of biomass, in a pilot size reactor. The discreet mathematical model, Lattice Boltzmann, has adopted for mathematical simulation of flow of pyrolysis gas across a porous bed of biomass. The effect of permeability, pressure gradient, voidage of bed, density, temperature, and the dynamic viscosity on the mass flow rate of gas is examined by simulating the gas flow across the fixed bed of hardwood. The Darcy equation is used to estimate the flow rate of gas across the fixed bed of hardwood chips. The temperature in the reactor varies from 32 °C to 600 °C. The reactor has an external diameter of 220 mm and the vertical height of 320 mm. Rockwool insulation is used to prevent heat loss across the reactor. The external heating element of 2 kWe was provided to trigger the pyrolysis reaction. The properties of the system have been recorded by the pressure and temperature sensors, which are retrofitted along the periphery of the reactor. The temperature sensors are located at 80 mm apart from each other; whereas the pressure sensor, placed at the bottom circumference of the reactor. The effect of input parameters on the flow properties of gas is also examined to add up the qualitative assessment of the system to biomass pyrolysis. The polytropic equation of gas is found to be PV2.051 = C, whereas the compressibility of gas varies from 0.0025–0.042 m2·N–1.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Acharya, D. R., and R. Hughes. "Modelling of butene-1 dehydrogenation in a fixed bed reactor - bed and pellet profiles." Canadian Journal of Chemical Engineering 68, no. 1 (February 1990): 89–96. http://dx.doi.org/10.1002/cjce.5450680111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhapbasbayev, U. K., G. I. Ramazanova, and O. B. Kenzhaliev. "Modelling of turbulent flow in a radial reactor with fixed bed." Thermophysics and Aeromechanics 22, no. 2 (March 2015): 229–43. http://dx.doi.org/10.1134/s0869864315020092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ciambelli, P., A. Di Benedetto, R. Pirone, and G. Russo. "Spontaneous isothermal oscillations in N2O catalytic decomposition: fixed-bed reactor modelling." Chemical Engineering Science 54, no. 20 (October 1999): 4521–27. http://dx.doi.org/10.1016/s0009-2509(99)00162-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Multichannel fixed bed reactor modelling"

1

Hazard, Browning Barbara. "Dynamic Modelling of a Fixed Bed Reactor to Study the First Instants of Gas Phase Ethylene Polymerisation." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10109/document.

Повний текст джерела
Анотація:
La polymérisation des oléfines à l'aide de catalyseurs metallocène est une réaction développée au niveau industriel. Bien que les premiers instants de la réaction aient une importance déterminante pour le procédé, ils n'ont fait l'objet que de très peu de travaux de recherche. Dernièrement, le l'équipe du prof. Mc Kenna a conçu un réacteur de type lit fixe pour étudier en détail ces premiers instants de la réaction. Néanmoins, face à la complexité de la réaction étudiée, un travail de modélisation s'avérait nécessaire afin de mieux appréhender l'ensemble des phénomènes influant sur les résultats et ainsi proposer des améliorations à ce montage expérimental. C'est ce travail qui est présenté dans ce manuscrit. Le premier modèle considère le réacteur comme un calorimètre semi-ouvert sur la matière en entrée, et utilise des lois cinétiques simplifiées. Il a ainsi était démontré que l'augmentation de la température dans le réacteur était un paramètre particulièrement important. Le design a ainsi été modifié en conséquence afin de contrôler l'exothermie de la réaction. Dans un second temps, une étude fine sur les mesures de pression récupérées dans le réacteur a été réalisée mettant en avant que le régime transitoire de montée en pression avait un rôle clef sur cette réaction. L'intégration de ces données a permis d'améliorer le modèle utilisé. Contrairement aux résultats obtenus sur des temps de réaction longs, il a été démontré que la désactivation était plus rapide à basse température lors des premiers instants de la réaction
The behaviour of silica supported metallocene catalyst in the early moments of olefin polymerization is not well understood. The complexity, rapidity and high exothermicity of the reaction impede observation of the kinetics and morphological changes. The fixed bed reactor constructed by McKenna’s group is designed to study these first instants of gas phase olefin polymerisation. The purpose of the modelling work presented is to gain understanding and improve the set-up through better knowledge of the reactor conditions. After a literature survey, the existing set-up was reviewed and analysed. A reactor model was constructed and programmed with polymerisation kinetics represented by a simple relation. The model was validated for individual experiments under optimised conditions. Use of the reactor as a calorimeter was evaluated and a state observer for the polymerisation rate was tested. The model was also used to show that very high temperatures are possible in the reactor bed and to simulate effects of changes to reactor construction and operating conditions. The reactor pressurisation profile is non negligible for experiments of shorter duration. New kinetics based on this were incorporated into the model: these were able to represent series of experiments and take account of the deactivation reaction. Contrary to results from longer duration experiments, our model finds initial deactivation does not appear to be controlled by temperature
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nugrahany, Febryana. "Modelling of Biomass Pyrolysis with Ex-situ Catalytic Upgrading for Bio-crude Production." Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231489.

Повний текст джерела
Анотація:
This study presents a techno-economic assessment of slow pyrolysis of pine sawdust continued by ex-situ catalytic upgrading. The overall process consists of six sections: feed drying, pyrolysis, vapor filtration, ex-situ catalytic upgrading, vapor quenching, and combustion of permanent gas. In the process simulation, biomass is objected to slow pyrolysis at 450ºC in an electrically-heated screw reactor and pyrolysis vapors is upgraded in fixed catalytic bed reactor at 425 ºC (using HZSM-5). The model is then used to investigate effects of feed moisture variation and type of heating source in pyrolysis unit, i.e. thermal vs. electrical heating, to oil energy efficiency. According to the simulation model, the endothermic pyrolysis step requires1.46 MJ/kg dry-feed. On the other hand, ex-situ upgrading is slightly exothermic and releases50kJ/kg dry-feed. Overall, the conversion of biomass to bio-oil demonstrates a mass efficiency of 19.65%wt and an energy efficiency of 29.10%. The energy efficiency raises to 32.81% if a direct thermal source is applied instead of electrical heating. The bio-oil energy efficiency increases by 1.38% if the moisture content of the biomass decreases by 10%wt. In average,bio-oil and char production in ex-situ catalytic upgrading generate profit 1.47 SEK/kg dry feed. The uncertainty of bio-oil price causes the highest profit variation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Try, Rasmey. "Étude expérimentale et modélisation dynamique d'un réacteur catalytique modulaire pour l'hydrogénation du CO2 en méthane." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1038/document.

Повний текст джерела
Анотація:
Ce travail s'inscrit dans le cadre Power-to-Gas, dont l'objectif est de stocker les surplus d'énergie électrique issus de sources renouvelables sous forme d'énergie chimique, en l'occurrence le méthane. L'intermittence de la production électrique requiert une certaine flexibilité du système de méthanation par rapport aux variations temporelles de conditions opératoires. Dans ce contexte, les travaux effectués au cours de cette thèse sont dédiés à l'étude du comportement dynamique d'un réacteur-échangeur de méthanation à lit fixe catalytique. Une maquette de réacteur finement instrumentée en thermocouples est conçue et permet l'étude expérimentale des performances du réacteur et de son comportement thermique en régime dynamique. En particulier, des phénomènes de fronts d'onde thermique, de dépassements et de réponses inverses sont retrouvés. Les paramètres hydrodynamiques et thermiques du lit ont été caractérisés expérimentalement. Une modélisation de la maquette de réacteur-échangeur est également établie et permet de simuler son fonctionnement. Les résultats expérimentaux sont comparés aux résultats de simulation, permettant l'analyse précise des comportements observés dans le réacteur
This work is within the Power-to-Gas framework, which aims to store the electrical energy surpluses from renewable energy in chemicals, here the methane. The intermittency of the electrical production requires the methanation system to have a certain level of flexibility with respect to temporal changes of operational conditions. In this context, the work carried out during this thesis is dedicated to the study of the dynamic behavior of a catalytic fixed-bed heat-exchanger methanation reactor. A reactor-exchanger highly equipped with thermocouples is designed and is used for the experimental study of the performances and the dynamics behavior of such a reactor. In particular, phenomena of thermal wave fronts, overshoot and inverse responses are found. The hydrodynamic and thermal parameters of the bed have been experimentally characterized. Modeling of the reactor-exchanger is also established and simulations of the reactor behavior are done. The experimental results are compared with the simulation results, allowing the precise analysis of the behaviors observed in the reactor
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Phan, Duy Dũng. "Modelling and Evaluation of Fixed-Bed Photocatalytic Membrane Reactors." Doctoral thesis, 2019. https://tud.qucosa.de/id/qucosa%3A36776.

Повний текст джерела
Анотація:
This work aims at modelling and evaluating a new type of photocatalytic reactors, named fixed-bed photocatalytic membrane reactor (FPMR). Such reactors are based on the deposition of a thin layer of photocatalysts on a permeable substrate by filtration. This layer serves as a photocatalytic membrane, named fixed-bed photocatalytic mem-brane (FPM), which is perpendicularly passed by the reactant solution and illuminated by a suitable light source. One advantage of FPMs is their renewability. The model, which was developed for this reactor, relates the overall reaction rate in the FPM with the intrinsic reaction kinetic at the catalyst surface and accounts for light intensity, structural and optical layer properties as well as the mass transfer in the pores. The concept of FPMR was realised by using a flat sheet membrane cell. It facilitated principal investigations into the reactor performance and the validity of the model. For this purpose, the photocatalytic degradation of organic compounds, such as meth-ylene blue and diclofenac sodium, was conducted at varying conditions. Pyrogenic ti-tania was used as a photocatalyst. The experimental data support the developed mod-el. They also indicate a significant impact of the flow conditions on the overall photo-catalytic activity, even though the Reynolds number in the FPM was very small; the to-tal mass transfer rate in the FPM amounted to more than 1.0 s−1. The experiments also showed a sufficient structural strength of the FPM and photocatalytic stability. In addi-tion, the renewal and regeneration of FPMs was successfully demonstrated. Furthermore, another FPMR was designed by means of submerged ceramic mem-branes. This reactor was mainly used to assess the effectiveness and efficiency of FPMRs at the example of the photocatalytic degradation of oxalic acid. The correspond-ing reactor was run closed loop and in continuous mode. The effectiveness of the reac-tor was evaluated based on common descriptors, such as apparent quantum yield, photocatalytic space-time yield and light energy consumption. The results showed that the FPMR based on submerged ceramic membrane had a higher efficiency than other reported photocatalytic reactors. The comparison of the different modes of operation revealed that the closed loop FPMR is most efficient with regard to light energy con-sumption. Finally, this work discusses the up-scaling of FPMRs for industrial applications and proposes a solution, which can e.g. be employed for wastewater treatment or CO2 conversion.:Abstract iii Kurzfassung v Acknowledgment vii Contents ix Nomenclature xiii 1 Introduction 1 1.1 Motivation 1 1.2 Aim and objectives of the work 3 1.3 Thesis outline 3 2 Heterogeneous photocatalytic reactors 5 2.1 Introduction to photocatalysis 5 2.2 Processes in heterogeneous photocatalysis 6 2.2.1 Optical phenomena 7 2.2.2 Mass transfer 8 2.2.3 Adsorption and desorption 9 2.2.4 Photocatalytic reactions 10 2.2.5 Factors affecting heterogeneous photocatalysis 12 2.3 Photocatalytic reactor systems towards water treatment 16 2.3.1 Introduction to photocatalytic reactors 16 2.3.2 Development of photocatalytic reactor designs 17 2.3.3 Quantitative criteria for evaluating photocatalytic reactor designs 21 2.4 Cake layer formation in membrane microfiltration 22 2.4.1 Suspension preparation 22 2.4.2 Cake layer formation 23 2.5 Fluid flow through a fixed bed of particles 25 2.5.1 Pressure drop through a fixed-bed 25 2.5.2 Liquid-solid mass transfer correlation in fixed-bed 25 3 Concept and mathematical modelling of FPMRs 29 3.1 Concept of fixed-bed photocatalytic membrane reactors 29 3.2 Modelling of fixed-bed photocatalytic membrane reactors 31 3.3 Model sensitivity analysis 37 3.4 Chapter summary 39 4 FPMR realised with flat sheet polymeric membrane 41 4.1 Introduction 41 4.2 Materials and set-up 41 4.2.1 Materials 41 4.2.2 Experimental set-up 43 4.3 Experiments and methods 48 4.3.1 Formation of fixed-bed photocatalytic membrane 48 4.3.2 Reactor performance 50 4.3.3 Parameters study and model verification 53 4.3.4 Catalyst layer characterisation 56 4.3.5 Measurement and evaluation of photocatalytic activity of FPM 59 4.4 Results and model verification 60 4.4.1 Reactor performance 60 4.4.2 Influence parameters 71 4.4.3 Model verification 79 5 FPMR realised with submerged ceramic membrane 92 5.1 Introduction 92 5.2 Materials and reactor set-up 93 5.2.1 Reactor set-up 93 5.2.2 Chemicals 97 5.3 Experiments and methods 97 5.3.1 Formation of fixed-bed photocatalytic membranes 97 5.3.2 Photocatalytic performance 97 5.3.3 Parameter study 98 5.3.4 Reactor model for calculating reaction rate constant of FPM 99 5.3.5 Comparison of different reactor schemes 102 5.4 Results and discussions 105 5.4.1 Reactor performance 105 5.4.2 Consistency of CPMR and LPMR data 107 5.4.3 Influence of catalyst loading 108 5.4.4 Influence of permeate flux and light intensity 109 5.4.5 Reactor efficiency 111 5.4.6 Comparison of different reactor schemes 113 5.5 Proposed up-scaled FPMR systems 113 5.6 Concluding remarks 116 6 Conclusion and outlook 118 6.1 Summary of thesis contributions 118 6.2 Discussion and outlook 120 References 122 List of Figures 134 List of Tables 138 Appendix A Calibration 139 A.1 Distribution of light intensity on the surface of catalyst layer 139 A.2 Concentration and absorbance of diclofenac 141 A.3 TOC concentration and electrical conductivity of oxalic acid 141 A.4 Concentration and absorbance of methylene blue 142 Appendix B Mathematical modelling 143 B.1 Influence of axial dispersion on the reaction rate 143 B.2 Special case 146 Appendix C Comparison the photocatalytic activity of TiO2 and ZnO 147 Appendix D Mathematical validation of model for LPMR and CPMR 148 D.1 Model for LPMR (cf. Eq. (5 12)):148 D.2 Model for CPMR (cf. Eq. (5 17)) 149 Appendix E Particle size distribution 151
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zakari, A. Y., Yakubu M. John, B. O. Aderemi, Rajnikant Patel, and Iqbal M. Mujtaba. "Modelling, simulation and sensitivity analysis of naphtha catalytic reforming reactions." 2019. http://hdl.handle.net/10454/17587.

Повний текст джерела
Анотація:
No
In this paper, a model of catalytic naphtha reforming process of commercial catalytic reforming unit of Kaduna Refining & Petrochemical Company (KRPC) is adopted and simulated using the gPROMS software, an equation-oriented modelling software. The kinetic and thermodynamic parameters and properties were obtained from literature. The model was used to monitor the behaviour of the temperature and concentrations of parafins, naphthenes and aromatics with respect to the changing heights of the reactors. A comprehensive sensitivity analysis of the product quality (Aromatics) and product yield, reformate, lighter gases and hydrogen yields is performed by varying the operating conditions of the reaction and the following conclusions were made. It was found that the production of aromatics, hydrogen yield, lighter gases and coke on catalyst increase with increasing temperature of the reaction while the reformate yield decreases with the increasing temperature and vice versa. The aromatics, hydrogen yield, coke on catalyst and lighter gases decrease with increasing pressure while the reformate yield decreases with decreasing pressure and vice versa. Hydrogen-hydrocarbon ratio (HHR) affects the product quality slightly by increasing the reformate and hydrogen yield and decreasing the aromatics slightly as well decreasing the coke on catalyst.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pereira, Sara Filipa Fagulha. "The thermal effects on the methanol-to-olefins reaction: A modelling and experimental approach." Master's thesis, 2015. http://hdl.handle.net/10362/15798.

Повний текст джерела
Анотація:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Multichannel fixed bed reactor modelling"

1

Elnashaie, S. S. E. H., and S. S. Elshishini. "The Overall Reactor Models." In Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors, 261–397. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203746769-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Henda, Redhouane. "Transient Runaway in a Fixed-Bed Catalytic Reactor." In Modelling and Simulation. I-Tech Education and Publishing, 2008. http://dx.doi.org/10.5772/5985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bo Hwang, Young, and D. Dochain. "DYNAMICAL MODELLING OF A BIOLOGICAL DETOXICATION PROCESS IN A FIXED BED REACTOR." In Computer Applications in Biotechnology, 148–53. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-08-042377-7.50029-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Silva, Jornandes Dias da, and Sérgio Mário Lins Galdino. "Mathematical Modelling for the Storage Process of Hydrogen in a Catalyst (ZSM-5)-Assisted Fixed Bed Reactor: Adsorption and Simulation." In Engenharia química: princípios fundamentais. Editora Conhecimento Livre, 2022. http://dx.doi.org/10.37423/220606136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multichannel fixed bed reactor modelling"

1

Dehestani, Davood, Hung Nguyen, Fahimeh Eftekhari, Jafar Madadnia, Steven Su, and Ying Guo. "Comprehensive Mathematical Modeling and Dynamic Simulation of Fixed Bed Reactor with Finite Element Method." In Modelling and Simulation. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.735-077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jamaleddine, Tarek J., and Ramsey M. Bunama. "CFD Modelling of the Dehydrogenation Reaction of Isobutane to Isobutylene in a Fixed Bed Reactor." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-1071.

Повний текст джерела
Анотація:
The catalytic dehydrogenation reaction of isobutane to isobutylene is simulated in a commercial-scale heterogenous fixed bed reactor (FBR). The porous medium method in ANSYS Fluent combined with the reaction model capability was utilized to predict the flow behavior and species transport in a bed of spherical particles. Physical and material properties of a dehydrogenating catalyst of Chromium Oxide (Cr2O3) on Aluminum Oxide Support (Al2O3) were employed in the model. Several reaction models were implemented using a customized User-defined Function (UDF) subroutine. Simulation results were validated against literature data for a similar process. Good agreement was observed for the conversion of alkanes to alkenes within acceptable accuracy. It is concluded that the power-law model showed the least fit for the feed conversion and product selectivity compared to the other studied reaction models.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gopan, Gokul, Lalhmingsanga Hauchhum, Renjith Krishnan, and Satyajit Pattanayak. "Pyrolysis and liquefaction of rice straw and computational modelling of fixed-bed reactor for heat distribution." In Proceedings of the Mizoram Science Congress 2018 (MSC 2018) - Perspective and Trends in the Development of Science Education and Research. Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msc-18.2018.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Modelling of the rinsing of a Fixed Bed Reactor for Solid Phase Peptide Synthesis using COMSOL Multiphysics®." In The 34th European Modeling & Simulation Symposium. CAL-TEK srl, 2022. http://dx.doi.org/10.46354/i3m.2022.emss.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії