Дисертації з теми "Multi-Scale Material Characterization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-15 дисертацій для дослідження на тему "Multi-Scale Material Characterization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Nagpure, Shrikant C. "Multi-scale Characterization Studies of Aged Li-ion Battery Materials for Improved Performance." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325255329.
Повний текст джерелаSánchez, Camargo César Moisés. "Mechanical multi-scale characterization of metallic materials by nanoindentation test." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0010/document.
Повний текст джерелаWith the development of functional materials (multi-materials, multilayers, ...), the mechanical behavior characterization by conventional macroscopic methods has become progressively difficult. These conventional methods are therefore gradually substituted by multiscale characterization processes. Among these methods, the nanoindentation, this can solve certain challenges of micro-characterization such as the presence of indissociable phases, multilayer systems, ultra-thin coatings, etc. This tool has become a high-precision technique capable of testing very small volumes of matter and providing rich information for material characterization. However, this tool is used mainly to identify the elastic properties and, qualitatively, some parameters such as hardness, ductility and internal stresses.This thesis work focuses on the characterization of elastoplastic behavior by nanoindentation at two scales: the macroscopic scale and the crystal scale.The first challenge of this work is experimental. It involves generating surfaces with properties representative of the studied microstructure. This challenge is important because the material used as a model is 316L steel which is very ductile and whose surface is sensitive to small perturbations. An experimental protocol was implemented at the end of this work, and the errors and dispersions of the nanoindentation response introduced by the different surface generation steps were quantified. Then, a wide database was implemented with different indenter geometries and several depths. This database will feed inverse identification strategies based on a coupling between optimization algorithms and finite element modeling of this test. Two types of algorithm have been applied: Levenberg-Marquardt and genetic algorithms. The latter is very consumer in computing time. Different axisymmetric and 3D FE models have been used. These models have been carefully optimized with respect to computation time.Several identification strategies were employed based on various experimental databases from the nanoindentation test such as the loading-unloading curve, the residual imprint shape and the association of several indent geometries. Some models of isotropic hardening have been identified. On the macroscopic scale, classical isotropic hardening models have been determined. At the grain scale, the crystal plasticity constitutive model of Méric and Cailletaud has been identified. The results obtained were compared on the macroscopic scale with identifications carried out on the same material from the tensile and compression tests. The comparison showed that the combination of multiple indentation geometries makes it possible to reproduce the volume behavior of the 316L with acceptable accuracy. For crystal behavior, micropillar compression tests were used to obtain reference data at this scale. The comparison shows a lot of dispersion in both cases. Indeed, some phenomena related to the density of dislocation very variable from one grain to another are responsible of this dispersion. This dislocation density is not taken into account, as a variable, in the used crystal constitutive model. The use of a more physical law integrating the dislocation density and its evolution makes it possible to improve these results. Finally, a new identification method has been proposed. This method is based on estimating and introducing the real indent geometry in the FE model used for identification. The method has been validated in the case of Berkovich tip and shows very promising results
Li, Fujun, and 李福军. "Synthesis, characterization and electrochemical applications of multi-scale porous carbons." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47147714.
Повний текст джерелаYu, Xinghua. "Multi-Scale Characterization of Heat-Affected Zone in Martensitic Steels." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1348081074.
Повний текст джерелаSidlipura, Ravi Kumar Sujith Kumar. "Multi-modal and multiscale image analysis work flows for characterizing through-thickness impregnation of fiber reinforced composites manufactured by simplified CRTM process." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2024. http://www.theses.fr/2024MTLD0010.
Повний текст джерелаThis thesis presents an experimental study to advance thermoplastic Compression Resin Transfer Molding (CRTM), focusing on industrial efficiency, sustainability, and recyclability goals aligned with the Sustainable Development Goals for Industry, Innovation, and Climate Action. By addressing multi-scale resin flow complexity in CRTM, this research investigates transverse flow and process-induced porosity at the meso scale of glass fiber bundles to improve impregnation uniformity and compaction control, bridging theoretical frameworks with scalable applications. The study focuses on a thermoplastic polypropylene matrix reinforced with six layers of bidirectional UD woven glass fibers ([0/90]3) consolidated on a CRTM setup. The “Simplified CRTM” method is developed on an industrial press, using displacement-controlled compaction ratios. This method omits active resin injection, relying on a uniformly distributed viscous polymer pool beneath the unsaturated preform to drive resin flow uniformly with a unidirectional flow path. Controlled displacement and pressure optimize resin paths, manage fiber volume fraction, and reduce porosity. Three multi-step compaction configurations are evaluated: Configuration 1 (Reference): Uses force compaction as a baseline for comparing resin distribution and fiber structure. Configuration 2 (simplified CRTM): Displacement-controlled compaction enhances resin infiltration but faces challenges like edge race-tracking and fiber volume fraction (Vf) variability, affecting impregnation. Configuration 3 (simplified CRTM with Edge Sealing): Introduces high-temperature sealant tape at mold edges, limiting resin escape, maintaining transverse flow, and reducing porosity and race-tracking. Configuration 3 edge-sealing technique establishes a reproducible process for high quality CRTM composites. An advanced 2D multi-modal imaging protocol, tailored for partially impregnated samples produced via simplified CRTM with unfilled spaces and fragile microstructures, includes polarized light microscopy, fluorescence microscopy, and scanning electron microscopy for qualitative and quantitative characterization. An original two-step polishing process preserves surface integrity, and image post-processing workflows quantify impregnation quality and void distribution. The study is completed with a fine evaluation of the impregnation mechanisms using X-ray micro computed tomography technique (micro-CT) relying on helicoidal inspection method. Results demonstrate that compaction parameters directly impact impregnation level, reaching an impregnation limit. This thesis establishes a scalable, data-driven CRTM framework bridging laboratory experimentation with industrial requirements for high-performance thermoplastic composites. It offers insights into streamlined protocols and microstructure-based analysis, enhancing understanding of the interplay between impregnation and permeability in CRTM. These findings align with precision demands in sectors like automotive and aerospace, where CRTM composites are crucial for structural applications
Jain, Ayush. "Development and Characterization of Multi-scale Polymer Composite Materials for Tribological Applications." Thesis, Luleå tekniska universitet, Maskinelement, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65241.
Повний текст джерелаParadis, Fortin Laura. "Germanite derivative materials : synthesis, crystallographic structure from multi-scale characterizations and thermoelectric properties." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC249.
Повний текст джерелаThe work presented in this Ph.D. thesis deals with the synthesis, the structural and electronic properties characterization of the Cu22Fe8Ge4S32 copper sulfide, a material derived of the germanite mineral with promising thermoelectric properties. The first two chapters are dedicated to the optimization of the thermoelectric properties. The last chapter is an in-depth structural study of Cu22Fe8Ge4S32. First, the specific synthesis conditions to yield a ‘‘pure’’ germanite sample by sealed tube are investigated by the means of in situ reactions. Then, two different powder synthesis approaches are compared, namely mechanical alloying and conventional sealed tube synthesis, combined with two different densification methods: spark plasma sintering and hot pressing. This study drags attention to the process impact on the transport properties of complex Cu-based sulfides. Second, the series of compounds Cu22-xZnxFe8Ge4S32 (0 ≤ x ≤ 2) and Cu22Fe8Ge4-xSnxS32 (0 ≤ x ≤ 4) were investigated in the hope to enhance the TE properties through enhanced phonon scattering due to differences in atomic mass. In fact, in addition to lowering the κ_Latt, the Cu by Zn substitution in Cu22-xZnxFe8Ge4S32 leads to a decrease in the concentration of hole carriers. In addition, a reduction of κ_Lattis observed with the Sn-incorporation due to point defect scattering enhancement of the heat carrying phonons as a result of mass, size, and bonding strength disparities. Finally, a new structural model for synthetic germanite was proposed with respect to the space group and lattice parameter of the mineral material, P4 ̅3n and a ≈ 10.595 Å. The crystal structure is proposed based on the complementarity from powder and single crystal XRD, 57Fe Mössbauer spectroscopy and resonant scattering. The originality of this work lies in the experimental approach that was developed to overcome the inherent complexity of germanite cationic distribution
Zhang, Chao. "Multi-Scale Characterization and Failure Modeling of Carbon/Epoxy Triaxially Braided Composite." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384174136.
Повний текст джерелаGershon, Alan Lawrence. "Multi-scale mechanical characterization and modeling of hierarchically-structured materials synthetic nano-enhanced polymers and natural palmetto wood /." College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9474.
Повний текст джерелаThesis research directed by: Dept. of Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Willeman, Héloïse. "Multi-scale characterization of deformation mechanisms of poly-ether-ether-ketone (PEEK) under tensile stretching." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0006.
Повний текст джерелаThe aim of this PhD work is accessing the microscopic deformation mechanisms of bulk poly-ether-ether-ketone (PEEK) under tensile stretching. Beforehand, the thermal and mechanical properties of two commercial grades of PEEK were characterized. Tensile specimens were then compression-molded to obtain morphologies as isotropic as possible and characterized below and above the glass transition temperature. Deformations at the scales of lamellar stacks and of the crystalline unit cell have been characterized by small and wide-angle X-ray scattering (SAXS and WAXS) performed in-situ during tensile tests. Simultaneously, the strain field within the samples was followed by digital image correlation (DIC) in order to compare microscopic and macroscopic strains. At both temperatures, lamellae tend to orient perpendicular to the tensile direction (TD). This orientation mechanism (which we denote as ‘Chain Network model’) is driven by the amorphous chains which transmit the stress between adjacent lamellae. The tensile strain in lamellar stacks perpendicular to TD is lower than the macroscopic tensile strain, which must be compensated by increased shear in inclined stacks. Some differences of behavior have been observed depending on the test temperature, especially at high deformation. A highly oriented morphology is ultimately obtained in all cases. However, the central scattering profiles changes with testing temperatures. Below Tg, the presence of small entities randomly oriented is indicated. Above Tg, the material is fibrillar and contains cavities
Réquilé, Samuel. "De la plante aux biocomposites : caractérisation des interfaces multiples et étude des paramètres pertinents Exploring the link between flexural behaviour of hemp and flax stems and fiber stiffness Peeling experiments for hemp retting characterization targeting biocomposites Deeper insight into the moisture-induced hygroscopic and mechanical properties of hemp-reinforced biocomposites. Interfacial properties of hemp fiber/epoxy: effect of moisture sorption and induced hygroscopic stresses Propriétés hygroscopiques et mécaniques d'un biocomposite renforcé par des fibres de chanvre." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS529.
Повний текст джерелаIndustry environmental concerns and strategies to become part of a more sustainable economic system, leads to a growing interest in research on biocomposite. The strong polar and hydrophilic nature of plant fibers leads, when used as a reinforcement, to a complexity of biocomposite manufacturing and limits in terms of load transfer at the fiber/matrix interface. These major locks (fiber polarity and moisture sensitivity) for biocomposites development are the guidelines of this thesis work taking its inspiration in the design of hemp stem tissue interfaces. The multi-scale evolution of gradient microstructure and internal mechanics is crucial for the integrity and functioning of the stem through smooth transitions regions. These potential weak interfaces are investigated by applying a retting process that affect the stem internal microstructure and tissue cohesion. From the stems of agricultural crops to the hierarchical elementary fibers, studying the mechanical behavior of natural systems may serve as inspiration for a biomimetic transfer of the fundamental principles to fiber-reinforced composites. Aimed at increasing the understanding of the effect of moisture present during composite use, hygro-mechanical coupling highlights an optimum in hemp fibre-based unidirectional composites performances from a beneficial effect of moisture sorption. Deeper analysis at the micro-scale attributed a significant contribution of this hygroscopic behavior to fiber/matrix interface performances through the creation of residual stresses and capillary adhesion mechanisms. Generally described in the literature as a drawback, this research demonstrates that water sensitivity of plant fibers and moisture sorption in biocomposite could promote load transfer and be beneficial for their performance
Fantou, Alexandre. "Étude multi-physique et multi-échelle de la réaction d'hydratation du sulfate de calcium hémihydraté." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0099.
Повний текст джерелаBecause of their setting ability, hydraulic binders are used for a wide variety of applications (e.g., construction materials, bone substitutes, ...). The setting reaction is always initiated by mixing one or several fine powders with an aqueous solution. The dissolution of the initial reactive powders results in the formation of a viscous paste, whose properties evolve with time to form a porous monolithic ceramic through the nucleation and precipitation of more stable phase(s). In this thesis, gypsum plaster CaSO4·2H2O obtained by the hydration reaction of calcium sulfate hemihydrate CaSO4·0,5H2O is studied under standard conditions (e.g., liquid/solid mass ratio, temperature and pressure), in order to develop multi-physic and multi-scale characterization techniques in-situ and ex-situ to monitor the evolution of:- the phase composition (rate of dissolution and precipitation) using calorimetric measurements, X-ray diffraction and Fourier-transform infrared spectrophotometry techniques;- the microstructure using scanning electron microscopy and X-ray microtomography;- the mechanical properties using ultrasonic propagation velocity measurement, shear and compressive dynamic mechanical analysis and compressive strength testing. This panel of techniques enabled to monitor and to correlate the various physical transitions occurring during the setting reaction, and thus to draw a global picture of the on-going phenomena
"Evaluation of the Performance of Multi-Component Cementitious Composites: Multi-Scale Experimental Characterization and Numerical Simulation." Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.51600.
Повний текст джерелаDissertation/Thesis
Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018
"Multi-Scale Characterization of Bitumen Doped with Sustainable Modifiers." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.57428.
Повний текст джерелаDissertation/Thesis
Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
Piscitelli, Filomena. "EPOXY-BASED ORGANIC-INORGANIC HYBRID MATERIALS BY SOL-GEL METHOD: CHEMICAL TAILORING AND MULTI-SCALE CHARACTERIZATION." Tesi di dottorato, 2010. http://www.fedoa.unina.it/8277/1/Piscitelli_Filomena_23.pdf.
Повний текст джерела