Добірка наукової літератури з теми "Multi-photon polymerization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multi-photon polymerization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multi-photon polymerization"
Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen, and Cheng Wang. "Two-photon induced polymerization in a porous polymer film to create multi-layer structures." Chemical Communications 57, no. 37 (2021): 4516–19. http://dx.doi.org/10.1039/d1cc01383a.
Повний текст джерелаLin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang, and Jie Sun. "Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization." Materials 12, no. 23 (November 24, 2019): 3876. http://dx.doi.org/10.3390/ma12233876.
Повний текст джерелаVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi, and Uri Banin. "A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization." Nanoscale 11, no. 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Повний текст джерелаGlöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini, and Daniel Claus. "Two-photon-polymerization enabled and enhanced multi-channel fibre switch." Engineering Research Express 3, no. 4 (November 11, 2021): 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.
Повний текст джерелаPisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio, and Ferruccio Pisanello. "An open source three-mirror laser scanning holographic two-photon lithography system." PLOS ONE 17, no. 4 (April 15, 2022): e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.
Повний текст джерелаFilippidis, G., J. Catherine, M. Farsari, V. Zorba, and C. Fotakis. "Construction of micron three-dimensional structures employing multi-photon polymerization." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, no. 4 (December 2005): 165–68. http://dx.doi.org/10.1243/17403499jnn48.
Повний текст джерелаZhao, Yuxia, Xue Li, Feipeng Wu, and Xiangyun Fang. "Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives." Journal of Photochemistry and Photobiology A: Chemistry 177, no. 1 (January 2006): 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.
Повний текст джерелаCui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang, and Qi-Huang Gong. "Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization." Applied Physics A 105, no. 4 (August 19, 2011): 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.
Повний текст джерелаLee, W., S. A. Pruzinsky, and P. V. Braun. "Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals." Advanced Materials 14, no. 4 (February 19, 2002): 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271::aid-adma271>3.0.co;2-y.
Повний текст джерелаParkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari, and Maria Vamvakaki. "Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity." Polymer Chemistry 11, no. 25 (2020): 4078–83. http://dx.doi.org/10.1039/d0py00281j.
Повний текст джерелаДисертації з теми "Multi-photon polymerization"
Müller, Jonathan Benedikt [Verfasser], and M. [Akademischer Betreuer] Wegener. "Exploring the Mechanisms of Three-Dimensional Direct Laser Writing by Multi-Photon Polymerization / Jonathan Benedikt Müller. Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1072464608/34.
Повний текст джерелаOgor, Florie. "Microfabrication 3D par polymérisation multiphotonique massivement parallélisée pour des applications photoniques et biomédicales." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0413.
Повний текст джерелаSubmicron 3D structures are required in many fields (photonics, optics, biology, etc.). Fabricating such structures is difficult. Multiphoton polymerization is a suitable technique, but current fabrication times are long (one day to fabricate a mm3 structure), making industrial production costly and limiting the development of these structures. We present our contribution to the development and optimization of a massively parallelised multiphoton polymerization fabrication process for these structures. Two parallelization techniques are investigated at IMT Atlantique: one using a diffractive optical element and another, studied in this thesis, using a spatial light modulator in an imaging configuration and an ultra-sensitive TTA resist (Triplet-Triplet Annihilation), enabling writing with 1920 × 1080 beams in parallel. The use of multiple write beams can lead to resolution limiting proximity effects. We present our numerical simulation model of the photochemical process to understand, predict and correct these effects. We present possible improvements based on these simulations and the improved understanding of the optical system. The fabrication method we have developed enables us to fabricate structures with a resolution of around one micrometer in X,Y and several tens of micrometers in height on surfaces of the order of cm2 in just a few minutes. Finally, examples of applications in biology and ophthalmology, adapted to the photoplotter performance are presented
Liang, Wen Ping, and 梁文評. "Fabrication of two- and three-dimensional photonic crystals with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/39234243665121255414.
Повний текст джерела國立中正大學
光機電整合工程研究所
93
We demonstrated theoretically and experimentally a simple and easy method using multi-exposure of two-beam interference technique for fabrication of large-area two- and three-dimensional photonic crystals. Multi-exposure of two-beam interference pattern of a He-Cd laser or an argon laser into a negative SU8 or a positive AZ photopolymerizable photoresist is used to pattern square, rectangular, and hexagonal two- and three-dimensional periodic structures. The type of periodic structures depends on the orientation of photoresist with respect to the laser beam and the number of exposure. The lattice constants of three-dimensional periodic structures obtained by this technique are close in three dimensions, which is difficult to be obtained by one-exposure of multi-beam interference. In particular, we proposed a new ideal to fabricate two- and three-dimensional photonic crystals with well-defined defects by using the combination of interference and multi-photon polymerization techniques. Desired defects are introduced in the photonic crystals (fabricated by multi-exposure of two-beam interference technique) by tightly focused 100 femto-second duration pulses at 830nm-wavelength through an objective lens (numerical aperture = 0.85) to generate multi-photon absorption effect. A 6mm ´ 6mm photonic crystal with the lattice constant as small as 650nm embedding several kinds of defects, such as bending waveguides, numbers or letters defects, is obtained by employing this combination technique. Our new fabrication technique using multi-exposure of two-beam interference and its combination with multi-photon polymerization should be useful for mass production of photonic crystals and optoelectronics devices.
Тези доповідей конференцій з теми "Multi-photon polymerization"
Tkaczyk, Tomasz S., Jiawei Lu, and Haimu Cao. "Imaging Snapshot Spectrometers enabled with 2-Photon Polymerization based Additive Manufacturing." In Imaging Systems and Applications, IM1G.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im1g.7.
Повний текст джерелаShahriar, Shaimum, Javier J. Pazos, Robin Howell, Tyrone Morales, Desiree Aguilar, Stephen M. Kuebler, and Jimmy Touma. "Morpho Butterfly-Inspired Sensors Created by Multi-Photon Polymerization." In 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2022. http://dx.doi.org/10.1109/rapid54472.2022.9911536.
Повний текст джерелаGregory, Serge L. H. F., and Elijah Kannatey-Asibu. "Analysis of Voxel Size During Two-Photon Polymerization." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7374.
Повний текст джерелаObata, Kotaro, Jürgen Koch, and Boris N. Chichkov. "Individually controlled multi-focus laser processing for two-photon polymerization." In SPIE LASE, edited by Hiroyuki Niino, Michel Meunier, Bo Gu, and Guido Hennig. SPIE, 2010. http://dx.doi.org/10.1117/12.842117.
Повний текст джерелаSomers, Paul, Xiaolong He, and Xianfan Xu. "Numerical modeling of multi-photon polymerization by ultrafast laser (Conference Presentation)." In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, edited by Beat Neuenschwander, Gediminas Račiukaitis, Tetsuya Makimura, and Costas P. Grigoropoulos. SPIE, 2018. http://dx.doi.org/10.1117/12.2290612.
Повний текст джерелаObata, Kotaro, Sven Passinger, Andreas Ostendorf, and Boris Chichkov. "Multi-focus system for two-photon polymerization using phase modulated holographic technique." In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061168.
Повний текст джерелаZhang, Qianyi, Antoine Boniface, Virendra Kumar Parashar, and Christophe Moser. "Multi-Photon Polymerization with Upconversion Nanoparticles for Adaptive Feature-Size 3D Printing." In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232766.
Повний текст джерелаTsunemitsu, Kaneto, Ryo Sano, Akira Watanabe, Hiroaki Onoe, and Mitsuhiro Terakawa. "Microfabrication of double-network hydrogel with enhanced mechanical properties by multi-photon polymerization." In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, edited by Carlos Molpeceres, Aiko Narazaki, and Jie Qiao. SPIE, 2021. http://dx.doi.org/10.1117/12.2576707.
Повний текст джерелаKurth, Daniel, and Alexander Verl. "Kinematic multi-axis two-photon polymerization printer concept for the manufacturing of micro optics." In 3D Printing for Lighting, edited by Nadarajah Narendran, Samuel T. Mills, and Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2675889.
Повний текст джерелаObata, Kotaro, Francesc Caballero Lucas, and Koji Sugioka. "Multi-photon polymerization by GHz burst mode femtosecond laser pulses for improvement of process resolution." In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII, edited by Laura Gemini, Aiko Narazaki, and Jie Qiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2610529.
Повний текст джерела