Дисертації з теми "Multi-omics Integration"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-33 дисертацій для дослідження на тему "Multi-omics Integration".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sathyanarayanan, Anita. "Integration of multi-omics data in cancer." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/225924/1/Anita_Sathyanarayanan_Thesis.pdf.
Повний текст джерелаZandonà, Alessandro. "Predictive networks for multi meta-omics data integration." Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/367893.
Повний текст джерелаZandonà, Alessandro. "Predictive networks for multi meta-omics data integration." Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2547/1/zandona2017_phdthesis.pdf.
Повний текст джерелаPATRIZI, SARA. "Multi-omics approaches to complex diseases in children." Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3015193.
Повний текст джерела“-Omic” technologies can detect the entirety of the molecules in the biological sample of interest, in a non-targeted and non-biased fashion. The integration of multiple types of omics data, known as “multi-omics” or “vertical omics”, can provide a better understanding of how the cause of disease leads to its functional consequences, which is particularly valuable in the study of complex diseases, that are caused by the interaction of multiple genetic and regulatory factors with contributions from the environment. In the present work appropriate multi-omics approaches are applied to two complex conditions that usually first manifest in childhood, have rising incidence and gaps in the knowledge of their molecular pathology, specifically Congenital Lung Malformations and Coeliac Disease. The aims are, respectively, to verify if cancer-associated genomic variants or DNA methylation features exist in the malformed lung tissue and to find common alterations in the methylome and the transcriptome of small intestine epithelial cells of children with CD. The methods used in the Congenital Lung Malformations project are Whole Genome Methylation microarrays and Whole Genome Sequencing, and for the Coeliac Disease the whole genome methylation microarrays and mRNA sequencing. Differentially methylated regions in possibly cancer-related genes were found in each one of the 20 lung malformation samples included. Moreover, 5 malformed samples had at least one somatic missense single nucleotide variant in genes known as lung cancer drivers, and 5 malformed samples had a total of 2 deletions of lung cancer driver tumour suppressor and 10 amplifications of lung cancer driver oncogenes. The data showed that congenital lung malformations can have premalignant genetic and epigenetic features, that are impossible to predict with clinical information only. In the second project, Principal Component Analysis of the whole genome methylation data showed that CD patients divide into two clusters, one of which overlaps with controls. 174 genes were differentially methylated compared to the controls in both clusters. Principal Component Analysis of gene expression data (mRNA-Seq) showed a distribution that is similar to the methylation data, and 442 genes were differentially expressed in both clusters. Six genes, mainly related to interferon response and antigen processing and presentation, were differentially expressed and methylated in both clusters. These results show that the intestinal epithelial cells of individuals with CD are highly variable from a molecular point of view, but they share some fundamental differences that make them able to respond to interferons, process, and present antigens more efficiently than controls. Despite the limitations of the present studies, they have shown that targeted multi-omics approaches can be set up to answer the relevant disease-specific questions by investigating many cellular functions at once, often generating new hypotheses and making unexpected discoveries in the process.
Serra, Angela. "Multi-view learning and data integration for omics data." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2580.
Повний текст джерелаIn recent years, the advancement of high-throughput technologies, combined with the constant decrease of the data-storage costs, has led to the production of large amounts of data from different experiments that characterise the same entities of interest. This information may relate to specific aspects of a phenotypic entity (e.g. Gene expression), or can include the comprehensive and parallel measurement of multiple molecular events (e.g., DNA modifications, RNA transcription and protein translation) in the same samples. Exploiting such complex and rich data is needed in the frame of systems biology for building global models able to explain complex phenotypes. For example, theuseofgenome-widedataincancerresearch, fortheidentificationof groups of patients with similar molecular characteristics, has become a standard approach for applications in therapy-response, prognosis-prediction, and drugdevelopment.ÂăMoreover, the integration of gene expression data regarding cell treatment by drugs, and information regarding chemical structure of the drugs allowed scientist to perform more accurate drug repositioning tasks. Unfortunately, there is a big gap between the amount of information and the knowledge in which it is translated. Moreover, there is a huge need of computational methods able to integrate and analyse data to fill this gap. Current researches in this area are following two different integrative methods: one uses the complementary information of different measurements for the 7 i i “Template” — 2017/6/9 — 16:42 — page 8 — #8 i i i i i i study of complex phenotypes on the same samples (multi-view learning); the other tends to infer knowledge about the phenotype of interest by integrating and comparing the experiments relating to it with respect to those of different phenotypes already known through comparative methods (meta-analysis). Meta-analysis can be thought as an integrative study of previous results, usually performed aggregating the summary statistics from different studies. Due to its nature, meta-analysis usually involves homogeneous data. On the other hand, multi-view learning is a more flexible approach that considers the fusion of different data sources to get more stable and reliable estimates. Based on the type of data and the stage of integration, new methodologies have been developed spanning a landscape of techniques comprising graph theory, machine learning and statistics. Depending on the nature of the data and on the statistical problem to address, the integration of heterogeneous data can be performed at different levels: early, intermediate and late. Early integration consists in concatenating data from different views in a single feature space. Intermediate integration consists in transforming all the data sources in a common feature space before combining them. In the late integration methodologies, each view is analysed separately and the results are then combined. The purpose of this thesis is twofold: the former objective is the definition of a data integration methodology for patient sub-typing (MVDA) and the latter is the development of a tool for phenotypic characterisation of nanomaterials (INSIdEnano). In this PhD thesis, I present the methodologies and the results of my research. MVDA is a multi-view methodology that aims to discover new statistically relevant patient sub-classes. Identify patient subtypes of a specific diseases is a challenging task especially in the early diagnosis. This is a crucial point for the treatment, because not allthe patients affected bythe same diseasewill have the same prognosis or need the same drug treatment. This problem is usually solved by using transcriptomic data to identify groups of patients that share the same gene patterns. The main idea underlying this research work is that to combine more omics data for the same patients to obtain a better characterisation of their disease profile. The proposed methodology is a late integration approach i i “Template” — 2017/6/9 — 16:42 — page 9 — #9 i i i i i i based on clustering. It works by evaluating the patient clusters in each single view and then combining the clustering results of all the views by factorising the membership matrices in a late integration manner. The effectiveness and the performance of our method was evaluated on six multi-view cancer datasets related to breast cancer, glioblastoma, prostate and ovarian cancer. The omics data used for the experiment are gene and miRNA expression, RNASeq and miRNASeq, Protein Expression and Copy Number Variation. In all the cases, patient sub-classes with statistical significance were found, identifying novel sub-groups previously not emphasised in literature. The experiments were also conducted by using prior information, as a new view in the integration process, to obtain higher accuracy in patients’ classification. The method outperformed the single view clustering on all the datasets; moreover, it performs better when compared with other multi-view clustering algorithms and, unlike other existing methods, it can quantify the contribution of single views in the results. The method has also shown to be stable when perturbation is applied to the datasets by removing one patient at a time and evaluating the normalized mutual information between all the resulting clusterings. These observations suggest that integration of prior information with genomic features in sub-typing analysis is an effective strategy in identifying disease subgroups. INSIdE nano (Integrated Network of Systems bIology Effects of nanomaterials) is a novel tool for the systematic contextualisation of the effects of engineered nanomaterials (ENMs) in the biomedical context. In the recent years, omics technologies have been increasingly used to thoroughly characterise the ENMs molecular mode of action. It is possible to contextualise the molecular effects of different types of perturbations by comparing their patterns of alterations. While this approach has been successfully used for drug repositioning, it is still missing to date a comprehensive contextualisation of the ENM mode of action. The idea behind the tool is to use analytical strategies to contextualise or position the ENM with the respect to relevant phenotypes that have been studied in literature, (such as diseases, drug treatments, and other chemical exposures) by comparing their patterns of molecular alteration. This could greatly increase the knowledge on the ENM molecular effects and in turn i i “Template” — 2017/6/9 — 16:42 — page 10 — #10 i i i i i i contribute to the definition of relevant pathways of toxicity as well as help in predicting the potential involvement of ENM in pathogenetic events or in novel therapeutic strategies. The main hypothesis is that suggestive patterns of similarity between sets of phenotypes could be an indication of a biological association to be further tested in toxicological or therapeutic frames. Based on the expression signature, associated to each phenotype, the strength of similarity between each pair of perturbations has been evaluated and used to build a large network of phenotypes. To ensure the usability of INSIdE nano, a robust and scalable computational infrastructure has been developed, to scan this large phenotypic network and a web-based effective graphic user interface has been built. Particularly, INSIdE nano was scanned to search for clique sub-networks, quadruplet structures of heterogeneous nodes (a disease, a drug, a chemical and a nanomaterial) completely interconnected by strong patterns of similarity (or anti-similarity). The predictions have been evaluated for a set of known associations between diseases and drugs, based on drug indications in clinical practice, and between diseases and chemical, based on literature-based causal exposure evidence, and focused on the possible involvement of nanomaterials in the most robust cliques. The evaluation of INSIdE nano confirmed that it highlights known disease-drug and disease-chemical connections. Moreover, disease similarities agree with the information based on their clinical features, as well as drugs and chemicals, mirroring their resemblance based on the chemical structure. Altogether, the results suggest that INSIdE nano can also be successfully used to contextualise the molecular effects of ENMs and infer their connections to other better studied phenotypes, speeding up their safety assessment as well as opening new perspectives concerning their usefulness in biomedicine. [edited by author]
L’avanzamento tecnologico delle tecnologie high-throughput, combinato con il costante decremento dei costi di memorizzazione, ha portato alla produzione di grandi quantit`a di dati provenienti da diversi esperimenti che caratterizzano le stesse entit`a di interesse. Queste informazioni possono essere relative a specifici aspetti fenotipici (per esempio l’espressione genica), o possono includere misure globali e parallele di diversi aspetti molecolari (per esempio modifiche del DNA, trascrizione dell’RNA e traduzione delle proteine) negli stessi campioni. Analizzare tali dati complessi `e utile nel campo della systems biology per costruire modelli capaci di spiegare fenotipi complessi. Ad esempio, l’uso di dati genome-wide nella ricerca legata al cancro, per l’identificazione di gruppi di pazienti con caratteristiche molecolari simili, `e diventato un approccio standard per una prognosi precoce piu` accurata e per l’identificazione di terapie specifiche. Inoltre, l’integrazione di dati di espressione genica riguardanti il trattamento di cellule tramite farmaci ha permesso agli scienziati di ottenere accuratezze elevate per il drug repositioning. Purtroppo, esiste un grosso divario tra i dati prodotti, in seguito ai numerosi esperimenti, e l’informazione in cui essi sono tradotti. Quindi la comunit`a scientifica ha una forte necessit`a di metodi computazionali per poter integrare e analizzate tali dati per riempire questo divario. La ricerca nel campo delle analisi multi-view, segue due diversi metodi di analisi integrative: uno usa le informazioni complementari di diverse misure per studiare fenotipi complessi su diversi campioni (multi-view learning); l’altro tende ad inferire conoscenza sul fenotipo di interesse di una entit`a confrontando gli esperimenti ad essi relativi con quelli di altre entit`a fenotipiche gi`a note in letteratura (meta-analisi). La meta-analisi pu`o essere pensata come uno studio comparativo dei risultati identificati in un particolare esperimento, rispetto a quelli di studi precedenti. A causa della sua natura, la meta-analisi solitamente coinvolge dati omogenei. D’altra parte, il multi-view learning `e un approccio piu` flessibile che considera la fusione di diverse sorgenti di dati per ottenere stime piu` stabili e affidabili. In base al tipo di dati e al livello di integrazione, nuove metodologie sono state sviluppate a partire da tecniche basate sulla teoria dei grafi, machine learning e statistica. In base alla natura dei dati e al problema statistico da risolvere, l’integrazione di dati eterogenei pu`o essere effettuata a diversi livelli: early, intermediate e late integration. Le tecniche di early integration consistono nella concatenazione dei dati delle diverse viste in un unico spazio delle feature. Le tecniche di intermediate integration consistono nella trasformazione di tutte le sorgenti dati in un unico spazio comune prima di combinarle. Nelle tecniche di late integration, ogni vista `e analizzata separatamente e i risultati sono poi combinati. Lo scopo di questa tesi `e duplice: il primo obbiettivo `e la definizione di una metodologia di integrazione dati per la sotto-tipizzazione dei pazienti (MVDA) e il secondo `e lo sviluppo di un tool per la caratterizzazione fenotipica dei nanomateriali (INSIdEnano). In questa tesi di dottorato presento le metodologie e i risultati della mia ricerca. MVDA `e una tecnica multi-view con lo scopo di scoprire nuove sotto tipologie di pazienti statisticamente rilevanti. Identificare sottotipi di pazienti per una malattia specifica `e un obbiettivo con alto rilievo nella pratica clinica, soprattutto per la diagnosi precoce delle malattie. Questo problema `e generalmente risolto usando dati di trascrittomica per identificare i gruppi di pazienti che condividono gli stessi pattern di alterazione genica. L’idea principale alla base di questo lavoro di ricerca `e quello di combinare piu` tipologie di dati omici per gli stessi pazienti per ottenere una migliore caratterizzazione del loro profilo. La metodologia proposta `e un approccio di tipo late integration basato sul clustering. Per ogni vista viene effettuato il clustering dei pazienti rappresentato sotto forma di matrici di membership. I risultati di tutte le viste vengono poi combinati tramite una tecnica di fattorizzazione di matrici per ottenere i metacluster finali multi-view. La fattibilit`a e le performance del nostro metodo sono stati valutati su sei dataset multi-view relativi al tumore al seno, glioblastoma, cancro alla prostata e alle ovarie. I dati omici usati per gli esperimenti sono relativi alla espressione dei geni, espressione dei mirna, RNASeq, miRNASeq, espressione delle proteine e della Copy Number Variation. In tutti i dataset sono state identificate sotto-tipologie di pazienti con rilevanza statistica, identificando nuovi sottogruppi precedentemente non noti in letteratura. Ulteriori esperimenti sono stati condotti utilizzando la conoscenza a priori relativa alle macro classi dei pazienti. Tale informazione `e stata considerata come una ulteriore vista nel processo di integrazione per ottenere una accuratezza piu` elevata nella classificazione dei pazienti. Il metodo proposto ha performance migliori degli algoritmi di clustering clussici su tutti i dataset. MVDA ha ottenuto risultati migliori in confronto a altri algoritmi di integrazione di tipo ealry e intermediate integration. Inoltre il metodo `e in grado di calcolare il contributo di ogni singola vista al risultato finale. I risultati mostrano, anche, che il metodo `e stabile in caso di perturbazioni del dataset effettuate rimuovendo un paziente alla volta (leave-one-out). Queste osservazioni suggeriscono che l’integrazione di informazioni a priori e feature genomiche, da utilizzare congiuntamente durante l’analisi, `e una strategia vincente nell’identificazione di sotto-tipologie di malattie. INSIdE nano (Integrated Network of Systems bIology Effects of nanomaterials) `e un tool innovativo per la contestualizzazione sistematica degli effetti delle nanoparticelle (ENMs) in contesti biomedici. Negli ultimi anni, le tecnologie omiche sono state ampiamente applicate per caratterizzare i nanomateriali a livello molecolare. E’ possibile contestualizzare l’effetto a livello molecolare di diversi tipi di perturbazioni confrontando i loro pattern di alterazione genica. Mentre tale approccio `e stato applicato con successo nel campo del drug repositioning, una contestualizzazione estensiva dell’effetto dei nanomateriali sulle cellule `e attualmente mancante. L’idea alla base del tool `e quello di usare strategie comparative di analisi per contestualizzare o posizionare i nanomateriali in confronto a fenotipi rilevanti che sono stati studiati in letteratura (come ad esempio malattie dell’uomo, trattamenti farmacologici o esposizioni a sostanze chimiche) confrontando i loro pattern di alterazione molecolare. Questo potrebbe incrementare la conoscenza dell’effetto molecolare dei nanomateriali e contribuire alla definizione di nuovi pathway tossicologici oppure identificare eventuali coinvolgimenti dei nanomateriali in eventi patologici o in nuove strategie terapeutiche. L’ipotesi alla base `e che l’identificazione di pattern di similarit`a tra insiemi di fenotipi potrebbe essere una indicazione di una associazione biologica che deve essere successivamente testata in ambito tossicologico o terapeutico. Basandosi sulla firma di espressione genica, associata ad ogni fenotipo, la similarit`a tra ogni coppia di perturbazioni `e stata valuta e usata per costruire una grande network di interazione tra fenotipi. Per assicurare l’utilizzo di INSIdE nano, `e stata sviluppata una infrastruttura computazionale robusta e scalabile, allo scopo di analizzare tale network. Inoltre `e stato realizzato un sito web che permettesse agli utenti di interrogare e visualizzare la network in modo semplice ed efficiente. In particolare, INSIdE nano `e stato analizzato cercando tutte le possibili clique di quattro elementi eterogenei (un nanomateriale, un farmaco, una malattia e una sostanza chimica). Una clique `e una sotto network completamente connessa, dove ogni elemento `e collegato con tutti gli altri. Di tutte le clique, sono state considerate come significative solo quelle per le quali le associazioni tra farmaco e malattia e farmaco e sostanze chimiche sono note. Le connessioni note tra farmaci e malattie si basano sul fatto che il farmaco `e prescritto per curare tale malattia. Le connessioni note tra malattia e sostanze chimiche si basano su evidenze presenti in letteratura del fatto che tali sostanze causano la malattia. Il focus `e stato posto sul possibile coinvolgimento dei nanomateriali con le malattie presenti in tali clique. La valutazione di INSIdE nano ha confermato che esso mette in evidenza connessioni note tra malattie e farmaci e tra malattie e sostanze chimiche. Inoltre la similarit`a tra le malattie calcolata in base ai geni `e conforme alle informazioni basate sulle loro informazioni cliniche. Allo stesso modo le similarit`a tra farmaci e sostanze chimiche rispecchiano le loro similarit`a basate sulla struttura chimica. Nell’insieme, i risultati suggeriscono che INSIdE nano pu`o essere usato per contestualizzare l’effetto molecolare dei nanomateriali e inferirne le connessioni rispetto a fenotipi precedentemente studiati in letteratura. Questo metodo permette di velocizzare il processo di valutazione della loro tossicit`a e apre nuove prospettive per il loro utilizzo nella biomedicina. [a cura dell'autore]
XV n.s.
Lu, Yingzhou. "Multi-omics Data Integration for Identifying Disease Specific Biological Pathways." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83467.
Повний текст джерелаMaster of Science
Zampieri, Guido. "Prioritisation of candidate disease genes via multi-omics data integration." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421826.
Повний текст джерелаLa scoperta dei geni legati alle malattie nell'uomo è una sfida pressante in biologia molecolare, in vista del pieno raggiungimento della medicina di precisione. Le tecnologie di nuova generazione forniscono una quantità di informazioni biologiche senza precedenti, ma allo stesso tempo rivelano numeri enormi di geni malattia candidati e pongono nuove sfide a molteplici livelli di analisi. L'integrazione di dati multi-omici è attualmente la strategia principale per prioritizzare geni malattia candidati. In particolare, i metodi basati su kernel sono una potente risorsa per l'integrazione della conoscenza biologica, tuttavia il loro utilizzo è spesso precluso dalla loro limitata scalabilità. In questa tesi, proponiamo un nuovo metodo kernel scalabile per la prioritizzazione di geni, che applica un nuovo approccio di multiple kernel learning basato su una prospettiva semi-supervisionata e sull'ottimizzazione della distribuzione dei margini in problemi binari. Il nostro metodo è ottimizzato per fare fronte a condizioni fortemente sbilanciate in cui si disponga di pochi geni malattia noti e siano richieste predizioni su larga scala. Significativamente, è capace di gestire sia un gran numero di candidati sia un numero arbitrario di sorgenti di informazione. Attraverso la simulazione di casi studio reali, mostriamo che il nostro metodo supera in prestazioni un'ampia gamma di metodi allo stato dell'arte ed è dotato di migliore scalabilità rispetto a metodi kernel esistenti per dati genomici. Applichiamo il metodo proposto per studiare il potenziale ruolo per la predizione di geni malattia dei riarrangiamenti metabolici causati da perturbazioni genetiche. A questo scopo, utilizziamo modelli del metabolismo basati su vincoli per generare informazione sui geni a scala genomica, che viene analizzata tramite apprendimento automatico. Inoltre, compariamo modelli basati su vincoli ed il nostro metodo basato su kernel come strategie di integrazione alternative per dati omici come profili trascrizionali. Valutazioni sperimentali su vari cancri dimostrano come i riarrangiamenti metabolici ricostruiti in silico possano essere utili per prioritizzare i geni associati, nonostante l'accuratezza dipenda fortemente dalla tipologia di cancro. Malgrado queste fluttuazioni, le predizioni basate su modelli metabolici sono largamente complentari a quelle basate su espressione genica o annotazioni di pathway, evidenziando il potenziale di questo approccio per identificare nuovi geni implicati nel cancro.
Xiao, Hui. "Network-based approaches for multi-omic data integration." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289716.
Повний текст джерелаJagtap, Surabhi. "Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST014.
Повний текст джерелаBiological systems are composed of interacting bio-molecules at different molecular levels. With the advent of high-throughput technologies, omics data at their respective molecular level can be easily obtained. These huge, complex multi-omics data can be useful to provide insights into the flow of information at multiple levels, unraveling the mechanisms underlying the biological condition of interest. Integration of different omics data types is often expected to elucidate potential causative changes that lead to specific phenotypes, or targeted treatments. With the recent advances in network science, we choose to handle this integration issue by representing omics data through networks. In this thesis, we have developed three models, namely BraneExp, BraneNet, and BraneMF, for learning node embeddings from multilayer biological networks generated with omics data. We aim to tackle various challenging problems arising in multi-omics data integration, developing expressive and scalable methods capable of leveraging rich structural semantics of realworld networks
DI, NANNI NOEMI. "A network diffusion method for the integration of multi-omics data with applications in precision medicine." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1315930.
Повний текст джерелаSchulte-Sasse, Roman [Verfasser]. "Integration of multi-omics data with graph convolutional networks to identify cancer-associated genes / Roman Schulte-Sasse." Berlin : Freie Universität Berlin, 2021. http://nbn-resolving.de/urn:nbn:de:kobv:188-refubium-31311-1.
Повний текст джерелаBenkirane, Hakim. "Deep learning methods for the integration of multi-omics and histopathology data for precision medicine in oncology." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASR022.
Повний текст джерелаPrecision medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle. The objective it to predict more accurately which treatment and prevention strategies for a particular disease will work in which groups of people. In oncology, precision medicine comes with a drastic increase in the data that is collected for each individual, characterized by a large diversity of data sources. Advanced cancer patients receiving cancer treatment, for instance, are often subject to a complete molecular profiling, on top of clinical profiling and pathology images. As a consequence, integration methods for multi-modal data (image, clinical, molecular) is a critical issue to allow the definition of individual predictive models. This thesis tackles the development of computational models and learning strategies adept at deciphering complex, high-dimensional interactions. A significant focus is also placed on the explainability of these AI-driven models, ensuring that predictions are understandable and clinically actionable
Bussola, Nicole. "AI for Omics and Imaging Models in Precision Medicine and Toxicology." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/348706.
Повний текст джерелаSamaras, Patroklos E. [Verfasser], Bernhard [Akademischer Betreuer] Küster, Bernhard [Gutachter] Küster, Martin [Gutachter] Eisenacher, and Julien [Gutachter] Gagneur. "Multi-omics data integration and data model optimization in ProteomicsDB / Patroklos E. Samaras ; Gutachter: Bernhard Küster, Martin Eisenacher, Julien Gagneur ; Betreuer: Bernhard Küster." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1223616886/34.
Повний текст джерелаBalázs, Kinga [Verfasser], Nina Henriette [Akademischer Betreuer] Uhlenhaut, Nina Henriette [Gutachter] Uhlenhaut, and Hans-Werner [Gutachter] Mewes. "Multi-omics data integration approaches to study glucocorticoid receptor function / Kinga Balázs ; Gutachter: Nina Henriette Uhlenhaut, Hans-Werner Mewes ; Betreuer: Nina Henriette Uhlenhaut." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1238781640/34.
Повний текст джерелаXia, Yao. "Artificial intelligence-assisted prediction, feature selection, and multi-omics integration in exploring the interaction between IgG N-glycome and transcriptome and constructing the ageing clock." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2023. https://ro.ecu.edu.au/theses/2646.
Повний текст джерелаGantzer, Justine. "Integrative multi-omics characterization of mesenchymal tumors." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ056.
Повний текст джерелаThis thesis work takes the form of three independent projects aimed at better characterizing three mesenchymal tumors through an integrative multi-omics approach.The thoracic undifferentiated SMARCA4-deficient tumors (SMARCA4-UT), initially classified as "sarcomas," appeared to respond to immune checkpoint inhibitors (ICIs) similarly to other SWI/SNF-deficient tumors, despite no characterization of their tumor microenvironment (TME) being done to understand this response. Through immunostaining and transcriptomic analysis, we highlighted a desert-like TME with limited ICI efficacy, linked to the tumor’s cell of origin. Perivascular epithelioid cell tumors (PEComas) form a heterogeneous group of tumors co-expressing melanocytic and smooth muscle markers, with two distinct molecular types identified. Our analysis demonstrated that there are additional rearrangements beyond those involving TFE3 and provided a prognostic transcriptomic classification of four PEComa subtypes, each enriched with a unique genomic profile and presenting different therapeutic vulnerabilities. Desmoid tumors (TDs) are benign, locally aggressive tumors with poorly understood heterogeneity in tumor evolution. Our analyses revealed that more than 50% of TDs had mutations in chromatin remodeling genes and that among the two identified transcriptomic subtypes, the immuno-myogenic subtype, with a transcriptomic program similar to muscles, activated immune pathways suggesting a potential therapeutic benefit from ICIs
Ali, Baber. "Prédiction et compréhension des interactions génotypes x environnements par des approches d'intégration multi-omique chez le maïs." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB060.
Повний текст джерелаMaize breeding programs heavily rely on multi-environmental trials (MET) to evaluate the phenotypic (P) performance of hybrids under diverse field conditions. Within these trials, genotype by environment (GxE) interactions has substantial effect on phenotypic variability, and can sometimes exceed the main genetic effect (G). Therefore, predicting and understanding GxE interactions is of utmost importance to ensure genetic improvement of maize.Classical genomic prediction models, even the ones accounting for GxE component separately from G, do not consider the complexity of maize genome and how genomic regions respond differently to environmental stimuli. By assuming an infinitisemal model, they act as black boxes relying on statistical rather than biological relationships. Researchers have suggested that genome functional annotations and multi-omics information have potential to better explain the genotype phenotype relationship. Studies have shown that prioritizing genomic markers, i.e., SNPs, based on a prior biological or functional information can help improve predictive abilities of models. Similar results have also been reported in the studies accounting for multi-omics information, such as transcripts, proteins, and metabolites, in genomic prediction. However, most of these studies are either performed for a single experiment or a set of experiments within a single location. Their potential in capturing GxE interactions for complex quantitative traits in a large MET setting needs further validation.Therefore, this thesis aims to (i) evaluate the potential of genomic functional annotations to improve maize predictions by prioritizing those genomic regions that respond to environmental stimuli for a given trait, (ii) investigate the potential of multi-omics data to account for GxE while improving prediction of complex traits, and (iii) identify genes that are found to be associated with productivity traits and respond to environmental conditions to offer insights into the biology beyond GxE interactions.Our study uses a set of 244 maize hybrids evaluated for productivity traits in field trials carried out across Europe and Chile under contrasted watering regimes. Environmental covariates related to key developmental stages of plants in field were also obtained. In addition, gene ontology (GO) functional annotations for maize genome was obtained from publicly available databases. The same genotypes were also evaluated for ecophysiological traits, and transcriptomic and proteomic profiles were measured for contrasting watering regimes in controlled conditions on a platform.In Chapter 1, we illustrated that when the right GO terms are considered, biologically relevant SNPs can account for variance separately from the rest of the SNPs, ultimately improving predictions of both field productivity and platform ecophysiological traits.In Chapter 2, we were able to show that the omics data could increase predictive ability in comparison to genomic selection, in particular for the traits phenotyped in the controlled experiment in which the omics were measured. We also integrated ECs and multi-omics information within the same model, that according to our knowledge this was the first example in literature.In Chapter 3, transcriptome wide association study (TWAS) showed that omics measured in controlled platform conditions can help dissect the genetic architecture of grain yield measured in field MET. We also found that some of the significantly associated transcripts have already been reported in the literature to be associated with response to stress. Importantly, we observed that TWAS complements GWAS as it can improve resolution and detection power of association analysis.Overall, this thesis indicates that functional annotations and multi-omics are useful in understanding and predicting GxE interactions
Ding, Hao. "Visualization and Integrative analysis of cancer multi-omics data." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1467843712.
Повний текст джерелаKim, Jieun. "Computational tools for the integrative analysis of muti-omics data to decipher trans-omics networks." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28524.
Повний текст джерелаLiu, Yunpeng Ph D. Massachusetts Institute of Technology. "Integrative multi-omics dissection of cancer cell states and susceptibility." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130818.
Повний текст джерелаCataloged from the official PDF of thesis. "February 2021."
Includes bibliographical references (pages 217-239).
Cancer cells are characterized by a broad spectrum of unique genetic, epigenetic and transcriptional states, which are often concomitant with high degrees of plasticity in cell identity. These cell states and the fluidity therein are a major source of resistance to both chemotherapy and targeted therapy. Combinatorial efforts in experimental assays and computational modeling are pivotal for understanding the origins of cancer cell plasticity and exposing cell state-specific vulnerabilities. In this thesis, I will first present my studies on two clinically challenging types of hematopoietic malignancies and discuss key genes that sustain cell identity and survival programs revealed through multi-omics approaches.
In the first study, a combination expression, chromatin binding and chromatin accessibility analyses revealed the plant homeodomain finger-like family protein PHF6's novel functions as a lineage identity regulator in a mouse model of BCR-ABL-driven B cell acute lymphoblastic leukemia. In the second case, single cell transcriptomic profiling, computational inference of cell cycle trajectories and unbiased functional genomics jointly identified RAD51B as a uniquely essential gene in near-haploid leukemia. Finally, to systematically model heterogeneous cell states and generate readily testable predictions of susceptibilities in cancer, I proposed a novel computational pipeline that integrates multiple data types to construct a quantitative model of transcription regulation, which can in turn be used to infer changes in gene expression in response to transcription factor perturbation.
The pipeline then uses these gene expression responses to perturbations to estimate changes in protein activity and finds a combination of protein activity score changes that best predicts changes cell fitness. Applying the pipeline to glioblastoma multiforme - a cancer type that lacks effective targeted therapy, I prioritized a small set of genes including MYBL2 as subtype-specific candidate targets. My thesis work demonstrates the power of integrative, multi-omics approaches for effective discovery of susceptibilities in cancer and highlights an emerging paradigm for understanding the information flow in the cellular circuitry.
by Yunpeng Liu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biology
Duperret, Léo. "Caractérisation des mécanismes moléculaires de la permissivité au Syndrome de Mortalité de l'Huître du Pacifique (POMS) sous influence de la température et du régime alimentaire." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0042.
Повний текст джерелаOver the past decades, food production systems have had to meet the growing demand for food driven by the exponential increase in the global human population. This demand has led to intensified agriculture, livestock farming, and fishing practices, often at the expense of natural resources and planetary health. In the marine environment, intensified fishing has resulted in the depletion of certain stocks and the implementation of fishing quotas. The decline in marine resources has prompted the development of aquaculture, a practice for farming blue resources. However, with overproduction and global environmental changes, we have witnessed an upsurge in epizootics since 1970, particularly among ectothermic organisms. The Pacific Oyster Mortality Syndrome (POMS) is a prime example, responsible for significant annual mortality episodes in juvenile oysters of the species Magallana gigas across major producing countries. Emerging in 2008 in France, this polymicrobial disease is influenced by several factors, including temperature (between 16°C and 24°C along the French coasts) and the availability of nutritional resources. Although extensive research has helped characterize its pathogenesis and identify the various factors influencing the development of the disease, the molecular mechanisms underlying variations in permissiveness according to these factors remain largely unknown. This thesis addresses this objective. Through a rigorous experimental design, a holistic approach, and an integrative comparative analysis at multiple scales under permissive and non-permissive conditions for the disease, we identified the molecular mechanisms underlying permissiveness related to temperature and nutritional resources. These findings enhance our understanding of the complexity of host-pathogen-environment interactions and will ultimately contribute to the development of predictive models for epidemiological risk
Noack, Stephan [Verfasser]. "Integrative Auswertung von Multi-Omics-Daten aus dem Zentralstoffwechsel von Corynebacterium glutamicum / Stephan Noack." Siegen : Universitätsbibliothek der Universität Siegen, 2011. http://d-nb.info/1017706166/34.
Повний текст джерелаZhou, Shanshan. "Integrating multi-omics to investigate the correlation between the quality and efficacy of ginseng." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/693.
Повний текст джерелаSchneider, Lara Kristina [Verfasser], and Hans-Peter [Akademischer Betreuer] Lenhof. "Multi-omics integrative analyses for decision support systems in personalized cancer treatment / Lara Kristina Schneider ; Betreuer: Hans-Peter Lenhof." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1213723973/34.
Повний текст джерелаWery, Méline. "Identification de signature causale pathologie par intégration de données multi-omiques." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S071.
Повний текст джерелаSystematic erythematosus lupus is an example of a complex, heterogeneous and multifactorial disease. The identification of signature that can explain the cause of a disease remains an important challenge for the stratification of patients. Classic statistical analysis can hardly be applied when population of interest are heterogeneous and they do not highlight the cause. This thesis presents two methods that answer those issues. First, a transomic model is described in order to structure all the omic data, using semantic Web (RDF). Its supplying is based on a patient-centric approach. SPARQL query interrogates this model and allow the identification of expression Individually-Consistent Trait Loci (eICTLs). It a reasoning association between a SNP and a gene whose the presence of the SNP impact the variation of its gene expression. Those elements provide a reduction of omics data dimension and show a more informative contribution than genomic data. This first method are omics data-driven. Then, the second method is based on the existing regulation dependancies in biological networks. By combining the dynamic of biological system with the formal concept analysis, the generated stable states are automatically classified. This classification enables the enrichment of biological signature, which caracterised a phenotype. Moreover, new hybrid phenotype is identified
Ronen, Jonathan. "Integrative analysis of data from multiple experiments." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21612.
Повний текст джерелаThe development of high throughput sequencing (HTS) was followed by a swarm of protocols utilizing HTS to measure different molecular aspects such as gene expression (transcriptome), DNA methylation (methylome) and more. This opened opportunities for developments of data analysis algorithms and procedures that consider data produced by different experiments. Considering data from seemingly unrelated experiments is particularly beneficial for Single cell RNA sequencing (scRNA-seq). scRNA-seq produces particularly noisy data, due to loss of nucleic acids when handling the small amounts in single cells, and various technical biases. To address these challenges, I developed a method called netSmooth, which de-noises and imputes scRNA-seq data by applying network diffusion over a gene network which encodes expectations of co-expression patterns. The gene network is constructed from other experimental data. Using a gene network constructed from protein-protein interactions, I show that netSmooth outperforms other state-of-the-art scRNA-seq imputation methods at the identification of blood cell types in hematopoiesis, as well as elucidation of time series data in an embryonic development dataset, and identification of tumor of origin for scRNA-seq of glioblastomas. netSmooth has a free parameter, the diffusion distance, which I show can be selected using data-driven metrics. Thus, netSmooth may be used even in cases when the diffusion distance cannot be optimized explicitly using ground-truth labels. Another task which requires in-tandem analysis of data from different experiments arises when different omics protocols are applied to the same biological samples. Analyzing such multiomics data in an integrated fashion, rather than each data type (RNA-seq, DNA-seq, etc.) on its own, is benefitial, as each omics experiment only elucidates part of an integrated cellular system. The simultaneous analysis may reveal a comprehensive view.
Teng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.
Повний текст джерелаPavel, Ana Brandusa. "Multi-omics data integration for the detection and characterization of smoking related lung diseases." Thesis, 2017. https://hdl.handle.net/2144/24073.
Повний текст джерела2019-07-31T00:00:00Z
Lovino, Marta. "Algorithms for complex systems in the life sciences: AI for gene fusion prioritization and multi-omics data integration." Doctoral thesis, 2021. https://hdl.handle.net/11583/2973149.
Повний текст джерелаPapież, Anna. "Integrative data analysis methods in multi-omics molecular biology studies for disease of affluence biomarker research." Rozprawa doktorska, 2019. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=59005.
Повний текст джерелаPapież, Anna. "Integrative data analysis methods in multi-omics molecular biology studies for disease of affluence biomarker research." Rozprawa doktorska, 2019. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=59005.
Повний текст джерелаAbd-Rabbo, Diala. "Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast." Thèse, 2017. http://hdl.handle.net/1866/19318.
Повний текст джерела