Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Multi-objective Design.

Статті в журналах з теми "Multi-objective Design"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Multi-objective Design".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Min, Xinyuan, Jaap Sok, Feije de Zwart, and Alfons Oude Lansink. "Multi-stakeholder multi-objective greenhouse design optimization." Agricultural Systems 215 (March 2024): 103855. http://dx.doi.org/10.1016/j.agsy.2024.103855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Freier, Lars, and Eric von Lieres. "Robust multi-objective process design." New Biotechnology 33 (July 2016): S27. http://dx.doi.org/10.1016/j.nbt.2016.06.822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sun, Qi, Tinghuan Chen, Siting Liu, Jianli Chen, Hao Yu, and Bei Yu. "Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design." ACM Transactions on Design Automation of Electronic Systems 27, no. 4 (July 31, 2022): 1–27. http://dx.doi.org/10.1145/3503540.

Повний текст джерела
Анотація:
High-level synthesis (HLS) tools have gained great attention in recent years because it emancipates engineers from the complicated and heavy hardware description language writing and facilitates the implementations of modern applications (e.g., deep learning models) on Field-programmable Gate Array (FPGA) , by using high-level languages and HLS directives. However, finding good HLS directives is challenging, due to the time-consuming design processes, the balances among different design objectives, and the diverse fidelities (accuracies of data) of the performance values between the consecutive FPGA design stages. To find good HLS directives, a novel automatic optimization algorithm is proposed to explore the Pareto designs of the multiple objectives while making full use of the data with different fidelities from different FPGA design stages. Firstly, a non-linear Gaussian process (GP) is proposed to model the relationships among the different FPGA design stages. Secondly, for the first time, the GP model is enhanced as correlated GP (CGP) by considering the correlations between the multiple design objectives, to find better Pareto designs. Furthermore, we extend our model to be a deep version deep CGP (DCGP) by using the deep neural network to improve the kernel functions in Gaussian process models, to improve the characterization capability of the models, and learn better feature representations. We test our design method on some public benchmarks (including general matrix multiplication and sparse matrix-vector multiplication) and deep learning-based object detection model iSmart2 on FPGA. Experimental results show that our methods outperform the baselines significantly and facilitate the deep learning designs on FPGA.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YAMASHINA, Hajime, Susumu OKUMURA, and Yoshimasa KONDO. "Parameter Design with Multi Objective Characteristics." Journal of the Japan Society for Precision Engineering 58, no. 3 (1992): 516–20. http://dx.doi.org/10.2493/jjspe.58.516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kor, Jean, Xiang Chen, Zhizhong Sun, and Henry Hu. "Casting Design Through Multi-Objective Optimization." IFAC Proceedings Volumes 44, no. 1 (January 2011): 11642–47. http://dx.doi.org/10.3182/20110828-6-it-1002.01726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Joseph, Shaine, Hyung W. Kang, and Uday K. Chakraborty. "Lens design as multi-objective optimisation." International Journal of Automation and Control 5, no. 3 (2011): 189. http://dx.doi.org/10.1504/ijaac.2011.042851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sanchis, J., M. Martinez, and X. Blasco. "Multi-objective engineering design using preferences." Engineering Optimization 40, no. 3 (March 2008): 253–69. http://dx.doi.org/10.1080/03052150701693057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eckert, Jony Javorski, Fabio Mazzariol Santiciolli, Ludmila C. A. Silva, and Franco Giuseppe Dedini. "Vehicle drivetrain design multi-objective optimization." Mechanism and Machine Theory 156 (February 2021): 104123. http://dx.doi.org/10.1016/j.mechmachtheory.2020.104123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pelinescu, Diana M., and Michael Yu Wang. "Multi-objective optimal fixture layout design." Robotics and Computer-Integrated Manufacturing 18, no. 5-6 (October 2002): 365–72. http://dx.doi.org/10.1016/s0736-5845(02)00027-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lim, Dudy, Yew-Soon Ong, Yaochu Jin, Bernhard Sendhoff, and Bu Sung Lee. "Inverse multi-objective robust evolutionary design." Genetic Programming and Evolvable Machines 7, no. 4 (September 16, 2006): 383–404. http://dx.doi.org/10.1007/s10710-006-9013-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Kiranoudis, C. T., Z. B. Maroulis, and D. Marinos-Kouris. "PRODUCT QUALITY MULTI-OBJECTIVE DRYER DESIGN." Drying Technology 17, no. 10 (November 1999): 2251–70. http://dx.doi.org/10.1080/07373939908917682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

C.Kavitha, C. Kavitha, and C. Vijayalakshmi C. Vijayalakshmi. "Design and Implementation of Fuzzy Multi Objective Optimization Model for Production Planning." Indian Journal of Applied Research 3, no. 12 (October 1, 2011): 372–75. http://dx.doi.org/10.15373/2249555x/dec2013/113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Deb, Kalyanmoy, and Sachin Jain. "Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms." Journal of Mechanical Design 125, no. 3 (September 1, 2003): 609–19. http://dx.doi.org/10.1115/1.1596242.

Повний текст джерела
Анотація:
Optimal design of a multi-speed gearbox involves different types of decision variables and objectives. Due to lack of efficient classical optimization techniques, such problems are usually decomposed into tractable subproblems and solved. Moreover, in most cases the explicit mathematical expressions of the problem formulation is exploited to arrive at the optimal solutions. In this paper, we demonstrate the use of a multi-objective evolutionary algorithm, which is capable of solving the original problem involving mixed discrete and real-valued parameters and more than one objectives, and is capable of finding multiple nondominated solutions in a single simulation run. On a number of instantiations of the gearbox design problem having different complexities, the efficacy of NSGA-II in handling different types of decision variables, constraints, and multiple objectives are demonstrated. A highlight of the suggested procedure is that a post-optimal investigation of the obtained solutions allows a designer to discover important design principles which are otherwise difficult to obtain using other means.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mohamed, Nejlaoui, Najlawi Bilel, and Ali Sulaiman Alsagri. "A multi-objective methodology for multi-criteria engineering design." Applied Soft Computing 91 (June 2020): 106204. http://dx.doi.org/10.1016/j.asoc.2020.106204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Frank, Christopher P., Renaud A. Marlier, Olivia J. Pinon-Fischer, and Dimitri N. Mavris. "Evolutionary multi-objective multi-architecture design space exploration methodology." Optimization and Engineering 19, no. 2 (January 22, 2018): 359–81. http://dx.doi.org/10.1007/s11081-018-9373-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Tawhid, Mohamed A., and Vimal Savsani. "Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems." Neural Computing and Applications 31, S2 (June 12, 2017): 915–29. http://dx.doi.org/10.1007/s00521-017-3049-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Patel, Prashant, Paras Shah, and Zissimos P. Mourelatos. "Piston Design Using Multi-Objective Reliability-Based Design Optimization." SAE International Journal of Materials and Manufacturing 3, no. 1 (April 12, 2010): 493–511. http://dx.doi.org/10.4271/2010-01-0907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Adámek, Mikuláš, and Rastislav Toman. "RANGE EXTENDER ICE MULTI-PARAMETRIC MULTI-OBJECTIVE OPTIMIZATION." MECCA Journal of Middle European Construction and Design of Cars 18, no. 1 (November 10, 2021): 10. http://dx.doi.org/10.14311/mecdc.2021.01.02.

Повний текст джерела
Анотація:
Range Extended Electric Vehicles (REEV) are still one of the suitable concepts for modern sustainable low emission vehicles. REEV is equipped with a small and lightweight unit, comprised usually of an internal combustion engine with an electric generator, and has thus the technical potential to overcome the main limitations of a pure electric vehicle – range anxiety, overall driving range, heating, and air-conditioning demands – using smaller battery: saving money, and raw materials. Even though several REx ICE concepts were designed in past, most of the available studies lack more complex design and optimization approach, not exploiting the advantageous single point operation of these engines. Resulting engine designs are usually rather conservative, not optimized for the best efficiency. This paper presents a multi-parametric and multi-objective optimization approach, that is applied on a REx ICE. Our optimization toolchain combines a parametric GT-Suite ICE simulation model, modeFRONTIER optimization software with various optimization strategies, and a parametric CAD model, that first provides some simulation model inputs, and second also serves for the final designs’ feasibility check. The chosen ICE concept is a 90 degrees V-twin engine, four-stroke, spark-ignition, naturally aspirated, port injected, OHV engine. The optimization goal is to find the thermodynamic optima for three different design scenarios of our concept – three different engine displacements – addressing the compactness requirement of a REx ICE. The optimization results show great fuel efficiency potential by applying our optimization methodology, following the general trends in increasing ICE efficiency, and power for a naturally aspirated concept.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Martz, M., and W. L. Neu. "Multi-Objective Optimization of an Autonomous Underwater Vehicle." Marine Technology Society Journal 43, no. 2 (May 1, 2009): 48–60. http://dx.doi.org/10.4031/mtsj.43.2.6.

Повний текст джерела
Анотація:
AbstractThe design of complex systems involves a number of choices, the implications of which are interrelated. If these choices are made sequentially, each choice may limit the options available in subsequent choices. Early choices may unknowingly limit the effectiveness of a final design in this way. Only a formal process that considers all possible choices (and combinations of choices) can insure that the best option has been selected. Complex design problems may easily present a number of choices to evaluate that is prohibitive. Modern optimization algorithms attempt to navigate a multidimensional design space in search of an optimal combination of design variables. A design optimization process for an autonomous underwater vehicle is developed using a multiple objective genetic optimization algorithm that searches the design space, evaluating designs based on three measures of performance: cost, effectiveness, and risk. A synthesis model evaluates the characteristics of a design having any chosen combination of design variable values. The effectiveness determined by the synthesis model is based on nine attributes identified in the U.S. Navy’s Unmanned Undersea Vehicle Master Plan and four performance-based attributes calculated by the synthesis model. The analytical hierarchy process is used to synthesize these attributes into a single measure of effectiveness. The genetic algorithm generates a set of Pareto optimal, feasible designs from which a decision maker(s) can choose designs for further analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Sutagundar, M., B. G. Sheeparamatti, and D. S. Jangamshetti. "Multi-objective Design Optimization of Microdisk Resonator." Nanoscience & Nanotechnology-Asia 10, no. 4 (August 26, 2020): 478–85. http://dx.doi.org/10.2174/2210681209666190912152649.

Повний текст джерела
Анотація:
Objective: This paper presents a multi-objective design optimization of MEMS disk resonator using two techniques. Methods: Determining the optimized dimensions of disk resonator for a particular resonance frequency so as to achieve higher quality factor and lower motional resistance is attempted. One technique used is constraint-based multi-objective optimization using the interior-point algorithm. The second technique is based on multi-objective genetic algorithm. Results: The algorithms are implemented using MATLAB. The two techniques of optimization are compared. Conclusion: The developed optimization methods can provide faster design optimization compared to full-wave simulators resulting in significant reduction of design time.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Devi, R. Vasundhara, S. Siva Sathya, Nilabh Kumar, and Mohane Selvaraj Coumar. "Multi-objective Monkey Algorithm for Drug Design." International Journal of Intelligent Systems and Applications 11, no. 3 (March 8, 2019): 31–41. http://dx.doi.org/10.5815/ijisa.2019.03.04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Barone, Salvatore, Marcello Traiola, Mario Barbareschi, and Alberto Bosio. "Multi-Objective Application-Driven Approximate Design Method." IEEE Access 9 (2021): 86975–93. http://dx.doi.org/10.1109/access.2021.3087858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pereira, Filipe, Patrick M. Reed,, and Daniel Selva. "Multi-Objective Design of a Lunar GNSS." NAVIGATION: Journal of the Institute of Navigation 69, no. 1 (2022): navi.504. http://dx.doi.org/10.33012/navi.504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zheng, Shan Suo, Zhi Qiang Li, Yi Hu, Qing Lin Tao, and Wei Wang. "Multi-Objective Optimization Design of Hybrid Structure." Advanced Materials Research 243-249 (May 2011): 20–25. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.20.

Повний текст джерела
Анотація:
The primary goal of failure modes-based optimization design which is to study the performance of structure without shocking absorption device is to transform the non-ideal failure modes of structure into the ideal failure modes, and then a small probability of the structure damage can be obtained. Although the study of this field is significant, no paper has so far attempted to study. Taking the cost of the structure into consideration, this paper aims at the failure modes-based optimization design. Therefore, an optimal approach based on failure modes with the ability to limit the cost is proposed. The procedure to obtain the failure modes-based optimization includes two phases, the concrete optimization and the shaped steel optimization. At last a reinforced concrete frame-shear wall structure is cited to verify the method developed. It is concluded that the method can supply an effective way to reduce both the damage and the cost of steel reinforced concrete framework-core tube structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Brauers, Willem Karel M., Edmundas Kazimieras Zavadskas, Friedel Peldschus, and Zenonas Turskis. "MULTI‐OBJECTIVE DECISION‐MAKING FOR ROAD DESIGN." TRANSPORT 23, no. 3 (September 30, 2008): 183–93. http://dx.doi.org/10.3846/1648-4142.2008.23.183-193.

Повний текст джерела
Анотація:
Multi‐objective analysis is a popular tool to solve many economic, managerial and construction problems. The objective of this research is to develop and implement a methodology for multi‐objective optimization of multi‐alternative decisions in road construction. After a rough overview of the articles dealing with the multi‐objective decision and assessment of road design alternatives described by discrete values, Multi‐Objective Optimization on the basis of the Ratio Analysis (MOORA) method was selected. This method focuses on a matrix of alternative responses on the objectives. A case study demonstrates the concept of multi‐objective optimization of road design alternatives and the best road design alternative is determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dimopoulos, C. "Multi-objective optimization of manufacturing cell design." International Journal of Production Research 44, no. 22 (November 15, 2006): 4855–75. http://dx.doi.org/10.1080/00207540600620773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Obayashi, Shigeru, Shin-Kyu Jeong, Koji Shimoyama, Kazuhisa Chiba, and Hiroyuki Morino. "Multi-Objective Design Exploration and its Applications." International Journal of Aeronautical and Space Sciences 11, no. 4 (December 15, 2010): 247–65. http://dx.doi.org/10.5139/ijass.2010.11.4.247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

ölvander, Johan. "Robustness considerations in multi-objective optimal design." Journal of Engineering Design 16, no. 5 (October 2005): 511–23. http://dx.doi.org/10.1080/09544820500287300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

YOKONO, Yasuyuki. "Multi-objective Optimization for Power Unit Design." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 249–50. http://dx.doi.org/10.1299/jsmecmd.2004.17.249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Alaimo, G., F. Auricchio, M. Conti, and M. Zingales. "Multi-objective optimization of nitinol stent design." Medical Engineering & Physics 47 (September 2017): 13–24. http://dx.doi.org/10.1016/j.medengphy.2017.06.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Papanikolaou, Apostolos, George Zaraphonitis, Evangelos Boulougouris, Uwe Langbecker, Sven Matho, and Pierre Sames. "Multi-objective optimization of oil tanker design." Journal of Marine Science and Technology 15, no. 4 (July 22, 2010): 359–73. http://dx.doi.org/10.1007/s00773-010-0097-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

ISHIKAWA, Haruo, and Yoon-Eui NAHM. "3102 Set-Based Multi-Objective Design Optimization." Proceedings of Design & Systems Conference 2005.15 (2005): 425–28. http://dx.doi.org/10.1299/jsmedsd.2005.15.425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Lormeau, Claude, Mikołaj Rybiński, and Jörg Stelling. "Multi-objective design of synthetic biological circuits." IFAC-PapersOnLine 50, no. 1 (July 2017): 9871–76. http://dx.doi.org/10.1016/j.ifacol.2017.08.1601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Cobos Sanchez, Clemente, Mario Fernandez Pantoja, Michael Poole, and Amelia Rubio Bretones. "Gradient-Coil Design: A Multi-Objective Problem." IEEE Transactions on Magnetics 48, no. 6 (June 2012): 1967–75. http://dx.doi.org/10.1109/tmag.2011.2179943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Rachlin, J., C. Ding, C. Cantor, and S. Kasif. "MuPlex: multi-objective multiplex PCR assay design." Nucleic Acids Research 33, Web Server (July 1, 2005): W544—W547. http://dx.doi.org/10.1093/nar/gki377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sanchis, Javier, Miguel A. Martínez, Xavier Blasco, and Gilberto Reynoso-Meza. "Modelling preferences in multi-objective engineering design." Engineering Applications of Artificial Intelligence 23, no. 8 (December 2010): 1255–64. http://dx.doi.org/10.1016/j.engappai.2010.07.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Nicolaou, Christos A., and Nathan Brown. "Multi-objective optimization methods in drug design." Drug Discovery Today: Technologies 10, no. 3 (September 2013): e427-e435. http://dx.doi.org/10.1016/j.ddtec.2013.02.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Goteng, G., A. Tiwari, and R. Roy. "Grid services for multi-objective design optimisation." CIRP Journal of Manufacturing Science and Technology 3, no. 4 (January 2010): 249–61. http://dx.doi.org/10.1016/j.cirpj.2011.01.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ochoa, Gabriela, Lee A. Christie, Alexander E. Brownlee, and Andrew Hoyle. "Multi-objective evolutionary design of antibiotic treatments." Artificial Intelligence in Medicine 102 (January 2020): 101759. http://dx.doi.org/10.1016/j.artmed.2019.101759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Luukkonen, Sohvi, Helle W. van den Maagdenberg, Michael T. M. Emmerich, and Gerard J. P. van Westen. "Artificial intelligence in multi-objective drug design." Current Opinion in Structural Biology 79 (April 2023): 102537. http://dx.doi.org/10.1016/j.sbi.2023.102537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, Bodong. "Multi-objective design and optimization of wings." Theoretical and Natural Science 9, no. 1 (November 13, 2023): 243–47. http://dx.doi.org/10.54254/2753-8818/9/20240766.

Повний текст джерела
Анотація:
Nowadays, with the fast development of technology, aircrafts have been successful advanced. As we all know, wings are one of the most significant parts of the aircrafts, therefore, multi-objective design and optimization of wings has become a critical issue among many researchers. This paper mainly introduces several approaches to improve the wing in different conditions, including optimization design of civil airplanes, design and optimization of aircraft wing structure at low Reynolds numbers, Wing Design and Aerodynamic Characteristics of Biomimetic Flapping Wing Micro Air Vehicles and so on, the purpose of this article is to give a brief introduction to these relatively new research methods and make the public understand more about this field. The primary approaches of this article are literature analysis and review. This paper finds that algorithm and artificial intelligence are fundamental to improving wings, and all the design needs to reduce the amount of energy as much as possible, which is also the most important requirement.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Miandoabchi, Elnaz, Farzaneh Daneshzand, W. Y. Szeto, and Reza Zanjirani Farahani. "Multi-objective discrete urban road network design." Computers & Operations Research 40, no. 10 (October 2013): 2429–49. http://dx.doi.org/10.1016/j.cor.2013.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kuang, Shanlong, and Adam Chrzanowski. "Multi-objective optimization design of geodetic networks." manuscripta geodaetica 17, no. 4 (August 1992): 233–44. http://dx.doi.org/10.1007/bf03655487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Liu, Haichao, Xiangjie Jin, and Fagui Zhang. "Multi-objective robust design of vehicle structure based on multi-objective particle swarm optimization." Journal of Intelligent & Fuzzy Systems 39, no. 6 (December 4, 2020): 9063–71. http://dx.doi.org/10.3233/jifs-189305.

Повний текст джерела
Анотація:
With the continuous spread of COVID-19 epidemic, the strict control of personnel makes it a problem to optimize the design of vehicle parameters after field measurement. The energy absorption characteristics and deformation mode of the front structure of the vehicle determine the acceleration or force response of the vehicle body during the impact, which plays an important role in occupant protection. The traditional multi-objective optimization method is to transform multi-objective problems into single objective optimization problems through weighted combination, objective planning, efficiency coefficient and other methods. This method requires a strong prior knowledge. The purpose of this paper is to combine the experimental design with the Multi-objective Particle Swarm Optimization (MPSO) method to achieve the optimization of the crash worthiness of automobile structure. This method can effectively overcome the defect of low precision caused by the conventional response surface method in the whole design space. In this paper, the multi-objective particle swarm optimization method is applied to the research of Crash worthiness optimization of automobile structure, which expands the application field of the multi-objective particle swarm optimization method, and also has a very big role in the optimization of other complex systems. It can be seen from the experiment that the speed of multi-objective particle swarm optimization is much faster than that of other methods. Only 100 iterations can get the relative better results. The case study on the front structure of a car shows that the method has a good result. It is of great significance to apply the method to the optimization design of the crash worthiness of the car structure to improve the crash safety of the car under the influence of COVID-19 epidemic.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

MIYASHITA, Tomoyuki, and Hiroshi YAMAKAWA. "3402 A Study on Approximate Multi-Objective Optimization in Multi-Objective Design Considering Accuracy." Proceedings of Design & Systems Conference 2001.11 (2001): 331–34. http://dx.doi.org/10.1299/jsmedsd.2001.11.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gautier, Quentin, Alric Althoff, Christopher L. Crutchfield, and Ryan Kastner. "Sherlock: A Multi-Objective Design Space Exploration Framework." ACM Transactions on Design Automation of Electronic Systems 27, no. 4 (July 31, 2022): 1–20. http://dx.doi.org/10.1145/3511472.

Повний текст джерела
Анотація:
Design space exploration (DSE) provides intelligent methods to tune the large number of optimization parameters present in modern FPGA high-level synthesis tools. High-level synthesis parameter tuning is a time-consuming process due to lengthy hardware compilation times—synthesizing an FPGA design can take tens of hours. DSE helps find an optimal solution faster than brute-force methods without relying on designer intuition to achieve high-quality results. Sherlock is a DSE framework that can handle multiple conflicting optimization objectives and aggressively focuses on finding Pareto-optimal solutions. Sherlock integrates a model selection process to choose the regression model that helps reach the optimal solution faster. Sherlock designs a strategy based around the multi-armed bandit problem, opting to balance exploration and exploitation based on the learned and expected results. Sherlock can decrease the importance of models that do not provide correct estimates, reaching the optimal design faster. Sherlock is capable of tailoring its choice of regression models to the problem at hand, leading to a model that best reflects the application design space. We have tested the framework on a large dataset of FPGA design problems and found that Sherlock converges toward the set of optimal designs faster than similar frameworks.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Jiangnan, and Mehrdad Zangeneh. "Multi-Point, Multi-Objective Optimisation of Centrifugal Fans by 3D Inverse Design Method." International Journal of Turbomachinery, Propulsion and Power 8, no. 1 (March 2, 2023): 8. http://dx.doi.org/10.3390/ijtpp8010008.

Повний текст джерела
Анотація:
In this paper, we present the design and optimization of a centrifugal fan with requirements of maximizing the total-to-static pressure rise and total-to-static efficiency at two operating points and the maximum torque provided by the motor power using a 3D inverse design method, a DOE (design of experiment) study, an RSM (response surface model) and a MOGA (multi-objective genetic algorithm). The fan geometry is parametrized using 13 design parameters, and 120 different designs are generated. The fan performances of all the designs at two operating conditions are evaluated through steady-state CFD simulations. The resulting design matrix is used to create an RSM based on the Kriging method and MOGA is used to search the design space using the RSM and find the optimal design.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Cameron, L., J. Early, R. McRoberts, and M. Price. "Constrained multi-objective aerofoil design using a multi-level optimisation strategy." Aeronautical Journal 119, no. 1217 (July 2015): 833–54. http://dx.doi.org/10.1017/s0001924000010940.

Повний текст джерела
Анотація:
AbstractA novel approach for the multi-objective design optimisation of aerofoil profiles is presented. The proposed method aims to exploit the relative strengths of global and local optimisation algorithms, whilst using surrogate models to limit the number of computationally expensive CFD simulations required. The local search stage utilises a re-parameterisation scheme that increases the flexibility of the geometry description by iteratively increasing the number of design variables, enabling superior designs to be generated with minimal user intervention. Capability of the algorithm is demonstrated via the conceptual design of aerofoil sections for use on a lightweight laminar flow business jet. The design case is formulated to account for take-off performance while reducing sensitivity to leading edge contamination. The algorithm successfully manipulates boundary layer transition location to provide a potential set of aerofoils that represent the trade-offs between drag at cruise and climb conditions in the presence of a challenging constraint set. Variations in the underlying flow physics between Pareto-optimal aerofoils are examined to aid understanding of the mechanisms that drive the trade-offs in objective functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bortolini, Marco, Maurizio Faccio, Mauro Gamberi, and Francesco Pilati. "Multi-objective design of multi-modal fresh food distribution networks." International Journal of Logistics Systems and Management 24, no. 2 (2016): 155. http://dx.doi.org/10.1504/ijlsm.2016.076470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Priyadarshi, Pankaj, Mofeez Alam, and Kamal Saroha. "Multi-disciplinary multi-objective design optimization of sounding rocket fins." International Journal of Advances in Engineering Sciences and Applied Mathematics 6, no. 3-4 (December 2014): 166–82. http://dx.doi.org/10.1007/s12572-015-0121-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії