Добірка наукової літератури з теми "Multi-Mode non-Linear Schrödinger equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multi-Mode non-Linear Schrödinger equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multi-Mode non-Linear Schrödinger equation"
BOGOLUBOV, N. N., M. Yu. RASULOVA, and I. A. TISHABOEV. "QUANTUM DYNAMICS OF TWO-LEVEL ATOMS INTERACTING WITH AN ELECTROMAGNETIC FIELD." International Journal of Modern Physics B 28, no. 08 (February 24, 2014): 1450060. http://dx.doi.org/10.1142/s021797921450060x.
Повний текст джерелаMisra, Shikha, Sanjay K. Mishra, and P. Brijesh. "Coaxial propagation of Laguerre–Gaussian (LG) and Gaussian beams in a plasma." Laser and Particle Beams 33, no. 1 (March 2015): 123–33. http://dx.doi.org/10.1017/s0263034615000142.
Повний текст джерелаSakhabutdinov, Airat Zh, Vladimir I. Anfinogentov, Oleg G. Morozov, Vladimir A. Burdin, Anton V. Bourdine, Artem A. Kuznetsov, Dmitry V. Ivanov, Vladimir A. Ivanov, Maria I. Ryabova, and Vladimir V. Ovchinnikov. "Numerical Method for Coupled Nonlinear Schrödinger Equations in Few-Mode Fiber." Fibers 9, no. 1 (January 2, 2021): 1. http://dx.doi.org/10.3390/fib9010001.
Повний текст джерелаZhu, Junyan, Jiang Cao, Chen Song, Bo Li, and Zhengsheng Han. "Numerical investigation on the convergence of self-consistent Schrödinger-Poisson equations in semiconductor device transport simulation." Nanotechnology 35, no. 31 (May 17, 2024): 315001. http://dx.doi.org/10.1088/1361-6528/ad4558.
Повний текст джерелаDabas, Bhawana, Jivesh Kaushal, Monika Rajput, and R. K. Sinha. "Study of Self Phase Modulation in Chalcogenide Glass Photonic Crystal Fiber." Applied Mechanics and Materials 110-116 (October 2011): 53–56. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.53.
Повний текст джерелаNiedda, Jacopo, Luca Leuzzi, and Giacomo Gradenigo. "Intensity pseudo-localized phase in the glassy random laser." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 5 (May 1, 2023): 053302. http://dx.doi.org/10.1088/1742-5468/acd2c4.
Повний текст джерелаJahan, Sharmin, Rubaiya Khondoker Shikha, Abdul Mannan, and A. A. Mamun. "Modulational Instability of Ion-Acoustic Waves in Pair-Ion Plasma." Plasma 5, no. 1 (December 29, 2021): 1–11. http://dx.doi.org/10.3390/plasma5010001.
Повний текст джерелаOdegov, N. A., and I. S. Baleyev. "A NUMERICAL-ANALYTICAL METHOD FOR THE SYNTHESIS OF OPTIMAL IRREGULAR DWDM FREQUENCY PLANS." Proceedings of the O.S. Popov ОNAT 1, no. 2 (December 31, 2020): 70–81. http://dx.doi.org/10.33243/2518-7139-2020-1-2-70-81.
Повний текст джерелаREZNIK, G. M., V. ZEITLIN, and M. BEN JELLOUL. "Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model." Journal of Fluid Mechanics 445 (October 16, 2001): 93–120. http://dx.doi.org/10.1017/s002211200100550x.
Повний текст джерелаMuhammad, Zahid, Ubaid Ullah Khalil, Anees Khan, Tanweer Ahmed, Waqas Khan, and Samra Naz. "Design Optimization of Fiber Laser for Generation of Femtosecond Optical Pulses." Scholars Journal of Physics, Mathematics and Statistics 11, no. 08 (August 30, 2024): 89–100. http://dx.doi.org/10.36347/sjpms.2024.v11i08.002.
Повний текст джерелаДисертації з теми "Multi-Mode non-Linear Schrödinger equation"
Nguyen, Tien Vinh. "Construction of dynamics with strongly interacting for non-linear dispersive PDE (Partial differential equation)." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX024/document.
Повний текст джерелаThis thesis deals with long time dynamics of soliton solutions for nonlinear dispersive partial differential equation (PDE). Through typical examples of such equations, the nonlinear Schrödinger equation (NLS), the generalized Korteweg-de Vries equation (gKdV) and the coupled system of Schrödinger, we study the behavior of solutions, when time goes to infinity, towards sums of solitons (multi-solitons). First, we show that in the symmetric setting, with strong interactions, the behavior of logarithmic separation in time between solitons is universal in both subcritical and supercritical case. Next, adapting previous techniques to (gKdV) equation, we prove a similar result of existence of multi-solitons with logarithmic relative distance; for (gKdV), the solitons are repulsive in the subcritical case and attractive in the supercritical case. Finally, we identify a new logarithmic regime where the solitons are non-symmetric for the non-integrable coupled system of Schrödinger; such solution does not exist in the integrable case for the system and for (NLS)
Gaudillat, Valentine. "Étude du mélange à quatre ondes sensible à la phase dans les fibres faiblement multimodes." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS028.
Повний текст джерелаIn recent years, the demand for bandwidth in telecommunications has significantly increased. To maintain a considerable lead, it is essential to improve existing networks and develop more efficient new infrastructures. Consequently, the networks of the future could be composed of few-mode fibers to increase the number of independent channels within the same fiber. It would then be necessary transferring optical functions, already demonstrated in current networks such as frequency conversion or phase regeneration. This thesis studies both numerically and experimentally phase-sensitive and phase-insensitive four-wave mixing in few-mode fibers. The simulations presented in this thesis are based on the multimode nonlinear Schrödinger equation implemented by a split-step Fourier method. The simulations have shown that intra- or inter-modal phase regeneration could be possible. Experimentally, the fiber used did not allow efficient implementation of four-wave mixing to perform this optical function. However, for the first time to our knowledge, we have experimentally demonstrated phase-sensitive four-wave mixing in the LP01 and LP11 modes of a few-mode fiber
Sun, Ruoci. "Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy Long time behavior of the NLS-Szegö equation Traveling waves of the quintic focusing NLS-Szegö equation Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS111.
Повний текст джерелаWe are interested in three non linear dispersive Hamiltonian equations: the defocusing cubic Schrödinger equation filtered by the Szegö projector on the torus that cancels every negative Fourier modes, leading to the cubic NLS--Szegö equation on the torus; the focusing quintic Schrödinger equation, which is filtered by the Szegö projector on the line, leading to the quintic NLS--Szegö equation on the line and the Benjamin--Ono (BO) equation on the line. Similarly to the other two models, the BO equation on the line can be written as a quadratic Schrödinger-type equation that is filtered by the Szegö projector on the line. These three models allow us to study their qualitative properties of some traveling waves, the phenomenon of the growth of Sobolev norms, the phenomenon of non linear scattering and some properties about the complete integrability of Hamiltonian dynamical systems. The goal of this thesis is to investigate the influence of the Szegö projector on some one-dimensional Schrödinger-type equations and to adapt the tools of the Hardy space on the torus and on the line. We also use the Birkhoff normal form transform, the concentration--compactness argument, refined as the profile decomposition theorem, and the inverse spectral transform in order to solve these problems. In the third model, the integrability theory allows to establish the connection with some algebraic and geometric aspects
Книги з теми "Multi-Mode non-Linear Schrödinger equation"
Levin, Frank S. Quantum Boxes, Stringed Instruments. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808275.003.0008.
Повний текст джерелаHoring, Norman J. Morgenstern. Superfluidity and Superconductivity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0013.
Повний текст джерелаТези доповідей конференцій з теми "Multi-Mode non-Linear Schrödinger equation"
Paré, C., M. Florjanczyk, and P. A. Bélanger. "Variational model of soliton interaction in two-mode fibers." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thy20.
Повний текст джерелаKaplan, A. E. "Bistable Optical Solitons." In Optical Bistability. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/obi.1988.wb.3.
Повний текст джерелаHoang, Van-Hung, and Uwe Thumm. "Strong-field-driven dissociation dynamics in CO2+." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jtu5a.79.
Повний текст джерелаDe Rossi, Alfredo, Claudio Conti, and Stefano Trillo. "Stability criterion and multistability of Kerr-like gap solitons." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.ntha.5.
Повний текст джерелаYim, Solomon C., Alfred R. Osborne, and Ali Mohtat. "Nonlinear Ocean Wave Models and Laboratory Simulation of High Seastates and Rogue Waves." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62706.
Повний текст джерелаPetela, G., and K. K. Botros. "Magnetic Bearing Control of Flexible Shaft Vibrations Based on Multiaccess Velocity-Displacement Feedback." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-294.
Повний текст джерелаXu, Chao, Pinaki Pal, Xiao Ren, Sibendu Som, Magnus Sjöberg, Noah Van Dam, Yunchao Wu, Tianfeng Lu, and Matthew McNenly. "Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine." In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7265.
Повний текст джерелаDall'Aqua, Marcelo J., Emilio J. R. Coutinho, Eduardo Gildin, Zhenyu Guo, Hardik Zalavadia, and Sathish Sankaran. "Guided Deep Learning Manifold Linearization of Porous Media Flow Equations." In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212204-ms.
Повний текст джерела