Дисертації з теми "MULTI- DRUG RESISTANCE (MDR)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "MULTI- DRUG RESISTANCE (MDR)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sheth, Disha B. "Multielectrode platform for measuring oxygenation status in multicellular tumor spheroids." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301516012.
Повний текст джерелаFirfirey, Nousheena. "Occupational adaptation : the experiences of adult patients with MDR- TB who undergo long- term hospitalisation." University of the Western Cape, 2011. http://hdl.handle.net/11394/5300.
Повний текст джерелаTB is a multi- faceted public health problem spurred on by the biological progression of the disease as well as the social issues associated with it. The treatment of TB is however primarily driven by the medical model where the focus is on the disease and not on a holistic view of the patient. Occupational therapy is a profession concerned with the use of occupation in the promotion of health and well being through the facilitation of the process of occupational adaptation. There is however a paucity of literature pertaining to the role that occupational therapy could play within the TB context. The aim of this study was to explore how adults with MDR- TB who undergo long-term hospitalisation at a hospital in the Western Cape experience occupational adaptation. The objectives of the study were to explore how the participants perceive their occupational identity, to explore the meaning and purpose the participants assign to their occupational engagement and to explore the how the participants perceive their occupational competence. The interpretive research paradigm employing a phenomenological qualitative research approach was utilized in this study. Purposive sampling was used to select four participants based on specific selection criteria. The data gathering methods utilized included diaries, semistructured interviews, participant observation and a focus group. Photographs taken by the researcher for the purpose of participant observation were used to elicit a rich, in depth response from the participants during the focus group discussion. All data was analysed through thematic content analysis. The study findings highlighted that the participants viewed themselves as occupational beings and that they valued the role that occupational engagement played in facilitating their occupational competence and ultimately their ability to adapt to long- term hospitalisation. The environmental demands and constraints that they experienced however infringed their engagement in meaningful occupation and hampered their ability to achieve occupational competence. It was recommended that the hospital adopt an integrative intervention approach to the management of MDR- TB patients that include principles of psychosocial rehabilitation and occupational enrichment to address occupational risk factors and institutionalisation.
Alame, Ghina. "Étude de la réversion du phénotype de Multi Drug Resistance (MDR) par de nouveaux dérivés stéroïdiens, in vitro sur des lignées cellulaires humaines et murines résistantes et in vivo par xénogreffes." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00877481.
Повний текст джерелаMorrison, Scott Macdonald. "Elucidation of the structure activity relationship of the multi drug resistance (Mdr) transport protein (NorA) of Escherichia coli and the putative protein (HP1181) of Helicobacter pylori." Thesis, University of Leeds, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270864.
Повний текст джерелаAguilar, Mónica Alejandra Pavez. "Análise molecular da expressão do fenótipo multi-droga resistente (MDR) em enterobactérias isoladas de amostras clínicas após exposição in vitro ao Imipenem." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/9/9136/tde-22062015-153149/.
Повний текст джерелаAfter emergence and broad dissemination of extended spectrum β-lactamases into the Enterobacteriaceae family, the carbapenemic antibiotics (imipenem, meropenem and ertapenem) have been considered the chosen therapy in the treatment of nosocomial infections by the stability that these antibiotics show to these enzymes. The disadvantage of carbapenems is theirs capacity to induce resistance against β-lactamics and to other chemically unrelated antibiotics. The imipenem has been shown to induce chromosomal cephalosporinases (AmpC) and it was also related, in vivo, with the selection of intrinsic mechanism leading to multi-drug resistance profile (MDR). This profile is usually associated with membrane impermeability due to reduced outer membrane porin synthesis with an incremented activity of efflux pumps, which results in a reduced concentration of antibiotics inside the bacteria. This study aimed to evaluate the establishment of the MDR profile in Enterobacteriaceae from clinical isolates by exposure to different concentrations of imipenem in vitro. The selection of the study group was performed by determination of antibiotic susceptibility profile,molecular typing and hydrolysis assay of imipenem. In the selected isolates submitted to induction, in an initial step (baseline), was performed the outer membrane porin analysis by SDS-PAGE and the gene-specific amplification of B-lactamase enzymes by PCR. The study of the establishment of MDR was performed by progressive passages with subclinical concentrations of imipenem, followed each one by the evaluation of phenotypic profile (MIC, accumulation antibiotic in celland SDS-PAGE) and gene expression analysisof genes related to membrane permeability (ompC, ompF and acrA) and regulatory genes(MarA and ompR). After induction with imipenem, 77 % of the isolates increased the MIC for the carbapenems, changing the resistance profile at the baseline. In a lesser percentage, the resistance profile to other β-lactams-unrelated antibiotics was also affected. Loss of porin was observed only for an isolated, however a significantly decreased Omp36 mRNA expression was observed from the start of induction. The expression of the efflux pump AcrAB ,was also affected by the imipenem induction, significantly increasing the AcrA gene expression, whereas the studied regulatory genes,MarA and OmpR,were induced by the imipenem. It was also possible to observe an association between the expression of the regulator MarA and the expression of AcrA, nevertheless no association was observed between this regulator and OMPs . OmpR induction was associated with an increased Omp35mRNA expression, however only a trend for the repression of Omp36was observed. The study of the response of these regulatory genes and genetic determinants of resistance, in response to the imipenem exposure in vitro, allowed to report the molecular behavior of the bacteria in an adaptive response in the initial stage of the establishment of a MDR phenotype. The use of clinical isolates with diverse resistance determinants allowed observing the variability in adaptive responses in enterobacteria, which is important to understand the adaptive mechanisms of bacteria to this antibiotic, the involvement in the emergence of the MDR profile and its contribution to the treatment failure.
Liu, Miaomiao. "Actinomycetes Sourced From Unique Environments as a Promising Source of New TB-Active Natural Products." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366523.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
AMBIKA, KM. "ROLE OF LACTOSMART AS A NOVEL THERAPEUTIC AGENT IN ANTIMICROBIAL DEFENSE." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18433.
Повний текст джерелаFirfirey, Nousheena. "The evaluation of the integrated client-centred intervention programme (ICIP) for clients with MDR-TB at DP Marais Hospital in the Western Cape." University of Western Cape, 2020. http://hdl.handle.net/11394/7687.
Повний текст джерелаAlthough TB is a curable communicable disease, poor adherence to TB treatment is a major barrier to TB control in South Africa as it increases the risks of morbidity, mortality and drug resistance at individual and community level. As a result, multi-drug-resistant TB (MDR-TB) has become a serious public health issue. Underpinning this study was the assumption that a client-centred approach to treatment of MDR-TB clients, with a hospital programme which adopts an integrated multidisciplinary approach that is client-centred and is not purely biomedically driven, would improve treatment outcomes of MDR-TB clients.
Greeff, Wildine Marion. "Ototoxicity Monitoring using Automated Extended High-Frequency Audiometry and the Sensitive Range of Ototoxicity in Patients with MDR-TB." Master's thesis, Faculty of Health Sciences, 2021. http://hdl.handle.net/11427/32696.
Повний текст джерелаVallie, Razia. "Assessing and comparing the effectiveness of treatment for multidrug resistant tuberculosis between specialized TB hospital in-patient and general outpatient clinic settings within the Western Cape Province, South Africa." University of the Western Cape, 2016. http://hdl.handle.net/11394/5600.
Повний текст джерелаBackground: Multidrug resistant tuberculosis (MDR TB) is a growing threat globally. The large increase in the incidence and prevalence of MDR TB in South Africa in recent years has impacted on the way in which MDR TB is managed within the health services. It became logistically difficult to manage MDR TB by treating all patients as in-patients in a specialized tuberculosis (TB) hospital. The clinics, which are run by nurses and/or general medical officers, are then required to manage this more complex form of TB, with limited resources, less experience and assumingly with less MDR TB knowledge. Of particular concern is that shifting of the patient management from specialized TB hospitals to Primary Health Care clinics which might worsen the already poor MDR TB treatment outcomes. There has been minimal assessment of the management of MDR TB at clinic level and hence the comparison of treatment outcomes for those patients initiated on treatment in clinics compared to in-patients in specialized TB hospitals is urgently needed. Aim: To compare the treatment outcomes and the effectiveness of medication regimens provided to MDR TB patients initiated on treatment in specialized TB hospitals as inpatients, to that of MDR TB patients initiated on treatment as outpatients at community clinics within the Western Cape Province, South Africa. Methodology Study Design: A retrospective cohort study was undertaken, as the length of treatment for a MDR TB patient can be for 24 months or longer and this study was based on treatment outcome data. Study Population and sample: The study population was uncomplicated MDR TB patients initiated on treatment in hospitals and clinics from January 2010 to December 2012. The sample comprised of 568 participants that were laboratory confirmed to have MDR TB and had the outcomes of their treatment recorded in an electronic database or a paper register. Data Collection: The researcher collected MDR TB information from standardized MDR TB registers as well as an electronic MDR TB database. Analysis: Data was analyzed comparing the exposed (clinic initiated) and unexposed (hospital initiated) cohorts incidence of 4 key treatment outcomes, namely: successfully treated, failed treatment, died and defaulted treatment. Bivariate analysis (relative and absolute) was done to determine the cumulative incidence ratio and cumulative incidence difference and multivariate logistic regression analysis for the adjusted odds ratio to control for confounders and effect modifiers. Ethics: Permission to conduct this research was obtained from the relevant authorities. The confidentiality of the participants as per the Department of Health policy and in adherence to general ethical guidelines was strictly maintained. The study proposal received ethical clearance and approval from the University of the Western Cape Research Committee. Results: All participants within this study received the appropriate treatment as per the MDR TB guidelines. The incidence rate for the main outcomes of this study indicated that successfully treated for the clinic initiated participants was 41% and 31% for the hospital initiated participants. ‘Defaulted’ treatment was 39% and 41%, ‘failed’ treatment 7% and 13% and ‘died’ was 14% and 16%, respectively. The clinic initiated participants appeared to have better treatment outcomes on bivariate analysis, however on multivariate analysis, there was no difference in the treatment outcomes of the clinic initiated participants compared to the hospital initiated participants, and therefore the clinic initiated treatment is seen as effective. The time to treatment initiation for clinic and hospital initiated participants is excessively long for both cohorts, with a median of 29 days, and 37 days respectively. The key findings of note in the multivariate analysis is that the Human Immunodeficiency Virus positive (HIV+) participants provided with antiretrovirals therapy (ART) were, based on adjusted cumulative incidence ratios, 6.6 times more likely to have a successfully treated outcome (95% CI 1.48-29.84), and were 0.2 times less likely to die (95% CI 0.08-0.53). Having a previous cured history of TB and no previous history of TB were 2.9 times more likely to have a successfully treated outcome (95% CI 1.48-5.56) and were 0.1 times (0.04-0.38) less likely to fail treatment. An interesting finding was that participants living in the rural districts were 2.6 times more likely to die. Conclusion: Clinic initiated treatment for uncomplicated MDR TB is as effective as hospital initiated treatment. Also, those provided with ART and those without previous TB or who had a previous bout of TB cured, had better outcomes. Main Recommendations: The Western Cape health department should continue with the decentralization of MDR TB services to the clinics and could safely consider expanding the decentralization to include uncomplicated Preextensively drug-resistant TB and Extensively drug-resistant TB patients. Offering ART to HIV+ patients should be mandatory. The delays in the time to treatment initiation of MDR TB need to be further investigated.
Jikijela, Olwethu. "Clinical characteristics and treatment outcomes of multi-drug resistant tuberculosis patients attending a hospital in Buffalo City Metropolitan Municipality, Eastern Cape." University of the Western Cape, 2018. http://hdl.handle.net/11394/6423.
Повний текст джерелаThe presence of highly effective medicines has made very little impact in reducing deaths as a result of tuberculosis (TB), a curable condition but when managed inappropriately, may result in Drug Resistant TB. TB accounts for about one in four deaths that occur in HIV positive people and HIV has been found to be a risk factor for complex unfavorable outcomes in MDR TB patients and a very strong predictor for death and default. The relationship between diabetes and TB has also been explored, with some authors identifying diabetes as a risk factor for TB, and with related poor clinical outcomes in both conditions when they co-exist. Exploring the clinical characteristics and treatment outcomes of MDR TB patients in the presence of these risk factors could present an opportunity to provide better care through increased case-detection activities, improved clinical management and better access to care for all these conditions. The aim of the study was to describe the clinical characteristics and treatment outcomes of MDR TB patients initiated on treatment at Nkqubela and Fort Grey Hospitals.
Shah, Monic. "Antimicrobial Nanoparticles: A Green and Novel Approach for Enhancing Bactericidal Efficacy of Commercial Antibiotics." TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1389.
Повний текст джерелаHalley, Patrick D. "DNA Origami as a Drug Delivery Vehicle for in vitro and in vivo Applications." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480632777328142.
Повний текст джерелаGiyose, Patela. "Strategies used to implement the national guidelines on preventing and early management of multi-drug resistant tuberculosis (MDR-TB) at the buffalo city municipality clinics in East London Eastern Cape province." Thesis, University of Fort Hare, 2013. http://hdl.handle.net/10353/1297.
Повний текст джерелаWilburn, Kaylee Marie. "Isolation and Characterization of Broad Host Range Phage that infect P. aeruginosa Pathogens." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1594224687661359.
Повний текст джерелаHoffman, Mary M. "Mechanism of MDR protein mediated multidrug resistance /." Access full-text from WCMC, 1997. http://proquest.umi.com/pqdweb?did=733008491&sid=6&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Повний текст джерелаDandachi, Iman. "Multi drug resistant organisms in Lebanese livestock." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0286/document.
Повний текст джерелаNowadays, the epidemiology of multi-drug resistance has changed and is no more confined to the hospital settings. Food producing animals are increasingly regarded as potent reservoirs of multi-drug resistant organisms i.e. beta lactamase producers and colistin-resistant Gram-negative bacilli. The emergence of multi-drug resistance in animals is thought to be mainly driven by the overuse of antibiotics as growth promoters and prophylaxis. The dissemination of resistant organisms in animals is sparked by the concern of being transferred to humans where they can be candidates for infections with limited therapeutic options. The zoonotic transmission of resistant organisms from animals to humans occurs mainly via direct/indirect contact but also via environmental routes. In Lebanon, several studies were conducted in hospitals and showed a high prevalence of multi-drug resistance; unlikely, these studies are scarce in animals. The aim of this thesis research was thus to describe the epidemiology of multi-drug resistant organisms in Lebanese Livestock Multi-locus sequence typing and whole genome sequencing were used to describe the prevalence of multi-drug resistant organisms and the corresponding mechanisms of resistance in the isolated strains from chicken, pigs, farmers and environment. Chicken and swine farms showed to be potent reservoirs of ESBL and mcr-1 genes in Lebanon. The dissemination of multi-drug resistance appears to be multi-clonal and related to the spread of plasmid carrying resistance genes. Colistin use in veterinary medicine in Lebanon should be banned
Taylor, LaShan Denise. "Antibiotic Resistance: Multi-Drug Profiles and Genetic Determinants." [Johnson City, Tenn. : East Tennessee State University], 2001. http://etd-submit.etsu.edu/etd/theses/available/etd-1210101-134219/unrestricted/taylorl121101a.pdf.
Повний текст джерелаWoodahl, Erica Lynn. "Genetic variation in the multidrug resistance gene (MDRI) : impact on drug delivery and disposition /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7950.
Повний текст джерелаStoffels, Karolien. "Contribution to the research on drug resistant Mycobacterium tuberculosis." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209194.
Повний текст джерелаFirst of all, a profound analysis of the MDR-TB situation in Belgium was conducted. It is the first retrospective population-based survey of MDR-TB in Belgium, covering a 15-year period (1994-2008). It comprises 174 patients representing more than 80% of the culture positive MDR-TB patients reported to the Belgian register, thus this study is considered of national relevance. It includes bacteriological and molecular data on the isolates as well as clinical aspects of the patients and treatment results. Considering only the patient’s first MDR-TB isolate, an increase over time was observed in the number of isolates resistant to a second-line drug as well as the total number of drugs each isolate was resistant to. XDR-TB was detected since 2002 and panresistant TB (resistant to every available antituberculosis drug) since 2009. Overall, a successful treatment outcome was obtained for 67.8% of the MDR-TB cases. Drug susceptibility testing (DST) of Mycobacterium tuberculosis to first line drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) in liquid culture medium has a turn around time of at least two weeks, after identification of the positive culture (obtained after 2 to 4 weeks) from the patient’s clinical isolate. In order to provide the clinician with valuable information about the isolated mycobacteria leading to patient adapted therapy before bacteriological DST results are available, resistance is predicted by detection of mutations in certain genes of the mycobacteria. It is common practice for rifampicin (rpoB gene) and isoniazid (katG gene and/or inhA promoter region). In this MDR-TB collection, rifampicin resistant related mutations were found in 97.1% (168/173) of the clinical isolates and isoniazid resistant related mutations in 94.1% (160/170). The pncA, embB and gyrA genes have been sequenced to identify possible mutations because of their possible involvement with resistance to pyrazinamide, ethambutol and the fluoroquinolones respectively. However, little is known about the resistance prediction value of the mutations in these genes.
The study is also the first study on the molecular epidemiology of MDR-TB in the country. DNA fingerprinting showed a large diversity of strains (67% of the patients were infected by a strain with a unique pattern) and further epidemiological examination revealed limited local transmission of MDR-TB in Belgium.
The second part investigated the pncA gene and its association with pyrazinamide resistance in MDR-TB isolates from Belgium and in vitro cultured spontaneous mutants. The genetic analysis showed that 98.3% (59/60) of the Belgian clinical MDR pyrazinamide resistant (PZAR) isolates present a mutation in the pncA gene. We found 1.7% (1/60) of the PZAR MDR-isolates encoding wild type pncA and flank. A total (PZAR and PZAS) of 41 different amino acid changes, 3 protein truncations and 5 frameshifts were observed including eight novel mutations: 8Asp>Ala, 13Phe>Leu, 64Tyr>Ser, 107Glu>stop, 143Ala>Pro, 172Leu>Arg and frameshifts starting in codon 55 and 82. Analysis of all observed mutations (i.e. in clinical isolates as well as spontaneous mutants) revealed that they are not always associated with drug resistance and that they are not scattered randomly throughout the gene, but occur rather at preferential sites such as in codons with amino acids associated with either iron or substrate binding and catalytic active sites. The frequency of in vitro mutagenesis to pyrazinamide at pH 6.0 was determined and found to be relatively high at 10-5 CFU/ml.
Finally, the in vitro activity of tobramycin and clarithromycin (with unclear efficacy against M. tuberculosis) was evaluated on 25 M. tuberculosis clinical isolates with various resistance profiles. The effect of the drugs administered together was examined for possible synergistic effect. The median minimum inhibitory concentration (MIC) of 8 µg/ml obtained for both drugs in this study is rather high but are beyond the concentrations obtained in lung tissues. This suggests that both drugs should be investigated further as potential adjuncts to the treatment of resistant TB when other alternatives have failed; in particularly through new drug delivery systems such as the Dry Power Inhaler which allows local drug deposition with high drug concentrations in the lungs but low toxicity due to limited systemic absorption. In addition, for 36% of the tested isolates a decrease of the MIC of clarithromycin by a single or twofold dilution was observed in the presence of a subinhibitory concentration of tobramycin and no antagonistic effect was seen for the remaining isolates.
This research illustrates different (laboratory) aspects in the fight against drug resistant TB, all using the Belgian TB collection: characterisation of the Belgian MDR-TB situation on bacteriological, molecular and epidemiological level; profound analysis of genomic mutations and their possible association with drug resistance; and investigation of synergistic activity of drugs with low efficacy against M. tuberculosis.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Siu, Kit-hang, and 蕭傑恆. "Molecular characterization of multi-drug resistance mechanisms in mycobacterium tuberculosis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B46076219.
Повний текст джерелаJoseph, Renu. "Evolution of multiple antimicrobial drug resistance conservation of genes encoding streptomycin, sulfonamide and tetracycline resistance among Escherichia coli with increasing multi-drug resistance /." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/R_Joseph_111707.pdf.
Повний текст джерелаSonawane, Amit. "Evaluation of novel efflux transport inhibitor for the improvement of drug delivery through epithelial cell monolayer." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14424.
Повний текст джерелаThonghin, Nopnithi. "Structural studies of the multi-drug resistance protein P-glycoprotein (ABCB1)." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/structural-studies-of-the-multidrug-resistance-protein-pglycoprotein-abcb1(9f3d4a87-4d43-4984-9e41-3db5fc2be66a).html.
Повний текст джерелаFleeman, Renee. "Discovering Antibacterial and Anti-Resistance Agents Targeting Multi-Drug Resistant ESKAPE Pathogens." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6839.
Повний текст джерелаGoodfellow, Hugh Robin. "The effect of phosphorylation on the function of P-glycoprotein." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308620.
Повний текст джерелаAl-Khateeb, Mohammed Jihad M. Jalal. "Investigation into the epidemiology of multi-drug resistance plasmids of hospital-associated coliform bacteria." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243028.
Повний текст джерелаJenkins, Caroline. "Investigation into the mechanism of Int6-induced multi-drug resistance in fission yeast." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414148.
Повний текст джерелаMontesanti, Annalisa. "Characterization of human gene products homologous to fission yeast multi-drug resistance determinants." Thesis, Open University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343745.
Повний текст джерелаDemirel, Kars Meltem. "Molecular Mechanisms Of Vincristine And Paclitaxel Resistance In Mcf-7 Cell Line." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12610241/index.pdf.
Повний текст джерелаJönsson, Videsäter Kerstin. "Expression of multidrug resistance genes and proteins and effect of selenite in anthracycline-resistant human tumor cell lines /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-889-0/.
Повний текст джерелаD'Cunha, Ronilda Raymond. "Treatment strategies to reverse efflux transporter-mediated resistance to Tyrosine kinase inhibitors." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6563.
Повний текст джерелаNguyen, Quang Huy. "Genetic determinants and evolution of drug resistance in Mycobacterium tuberculosis in Vietnam : toward new diagnostic tools." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT081/document.
Повний текст джерелаTuberculosis (TB) is one of the deadliest infectious diseases worldwide, mainly caused by Mycobacterium tuberculosis. Multidrug resistant (MDR) and extensively drug resistant (XDR) TB are currently main challenges for TB control. In high MDR-TB burden countries like Vietnam, one of the main factors of drug resistant strain spread is the insufficient capacity of drug resistance detection. Besides, still little is known in these countries about the resistance to second line and pyrazinamide drugs (key drugs in the MDR-TB treatment) and the genetic determinants linked to these resistances. In this context, this work aimed to acquire knowledge on drug resistance in Vietnam and to understand how M. tuberculosis evolved from sensitive to highly drug resistance form by molecular analysis.260 clinical isolates collected in Vietnam between 2005 and 2009 were included. Various techniques and analyses were used: drug susceptibility testing (development of a test with a reduced turn-around time), spoligotyping and 24-MIRU-VNTR typing and gene sequencing. The data were analyzed by statistical and phylogenetic analyses.First, this work was focused on highly drug resistant M. tuberculosis clinical isolates and pyrazinamide resistance. A high proportion of quadruple first-line drug resistant isolates (resistant to isoniazid, rifampicin, streptomycin and ethambutol) have been characterized as pre-XDR and XDR isolates, belonging especially to Beijing family. The molecular analysis revealed also high proportion of drug resistant isolates carrying highly confident pyrazinamide resistance-associated mutations, particularly in MDR and quadruple resistant isolates and in Beijing family.Second, the genetic and phylogenetic analyses showed high diversity of mutation patterns within each family and each MIRU-VNTR cluster suggesting various evolutionary trajectories towards first and second-line drug resistance. The predominance of specific mutations and combinations of mutations associated with high level of resistance and low fitness cost suggests a cumulative effect of mutations and a role for epistasis in multiple-drug resistance acquisition. In addition, high frequency of fitness-compensatory mutations associated with rifampicin resistant mutations was detected in highly drug resistant isolates. These processes may drive the evolution of drug resistance in this sample and lead to a successful spread of highly drug resistant strains. It is worth noting that Beijing family was specifically linked to high-level drug resistance and low fitness cost mutations and to compensatory mutations.In conclusion, this work provides knowledge on the resistance to the first and second-line anti-TB drugs in clinical M. tuberculosis samples collected in Vietnam between 2005 and 2009. These data predict an evolution towards a more problematic situation in terms of drug resistance. First, because the Beijing family, which is currently invading Vietnam, is associated with highly drug resistance, mutations linked to high-level drug resistance and low fitness cost and compensatory mutations. Second, the high risk of pyrazinamide resistance in our sample challenges the efficacy and the use of this drug in MDR-TB treatment. Third, our data suggest an evolution of M. tuberculosis towards a higher potential of drug resistance because of a probable cumulative effect of drug resistant mutations and epistatic interactions. Since the samples under study were collected between 2005-2009, the next step is to test our hypotheses on a recent sampling. Finally, this study together with published data allowed making, for the first time, an inventory of the drug resistance associated mutations in M. tuberculosis isolates from Vietnam
Barbier, Maxime. "Histoire évolutive et propagation de la tuberculose à échelle planétaire : vers une approche intégrée combinant la génomique des populations et le typage multi-locus." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP051/document.
Повний текст джерелаAccording to a 2015 WHO report, tuberculosis remains one of the top 10 causes of death worldwide. Despite considerable efforts by the United Nations to eradicate the disease by 2030, a global TB epidemic still persists. Its causative agent, the bacterium Mycobacterium tuberculosis, an obligate pathogen, has been plaguing humanity since it originated, and has coevolved with its main host, Homo sapiens, over thousands of years. Contemporary tuberculosis strains exhibit a structured phylogeographic pattern, carrying the genetic print of their geographic origin. The Koch bacillus infects and kills in large numbers, in poor and developing countries, where fragile health care systems, combined with high HIV prevalence, facilitate epidemic spread. In western countries, the major current threats are the multiplication and propagation of antibiotic resistant strains (MDR/XDR) coming predominantly from former Soviet republics. In this thesis, I unravel the evolutionary history, propagation, and acquisition of drug resistance-conferring mutations in different settings, by implementing multiple genetic and genomic data sets. First, focusing on Central Asia, using whole genome sequencing and Bayesian statistics, I assess the effects of a treatment campaign on the development of MDR strains and highlight key mutations in successful strains. More importantly, the success of DOTs campaigns was compromised by the genetic make-up of these outbreak clades (pre-treatment low frequency resistance SNPs). Special attention was also given to a particular outbreak of MDR strains, i.e. the Russian W148 clone. I present its westward spatial and temporal propagation at a continental scale during the last century, and underline the key contribution of compensatory mutations in its epidemic success. However, tuberculosis does not only infect humans, but also has experienced successive mammalian host jumps. To decipher the adaptive constraints accompanying such secondary events, a systemic gene screen with selection signature-detecting algorithms was implemented to identify putative targets during diversifying selection. Finally, novel mathematical tools and indices that reflect the epidemicity of a strain were developed, jumping from a population-driven approach to a strain specific one, with broader epidemiological applications. This allows us to correlate strain fitness with patient, lineage, and socio-economic information
Hayes, Cindy. "Prevalence and resistance gene mutations of multi-drug resistant and extensively drug resistant mycobacterium tuberculosis in the Eastern Cape." Thesis, Nelson Mandela Metropolitan University, 2014. http://hdl.handle.net/10948/d1020374.
Повний текст джерелаWhiteley, Rosalind. "Effect of multiple antibiotic treatments on the evolution of antibiotic resistance in Pseudomonas aeruginosa." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:ee7c9dd7-bdcf-481b-b16c-9bb7b99f5328.
Повний текст джерелаTärnberg, Maria. "Extended-spectrum beta-lactamase producing Enterobacteriaceae : aspects on detection, epidemiology and multi-drug resistance." Doctoral thesis, Linköpings universitet, Klinisk mikrobiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76134.
Повний текст джерелаBlott, Emma-Jane. "Organisation of the nucleotide-binding domains of the multi-drug resistance transporter, P-glycoprotein." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298753.
Повний текст джерелаLau, Alan. "Molecular cloning of human T-cell leukaemia virus type I (HTLV-I) proteins and the role of HTLV-I infection in multiple drug resistance (MDR)." Thesis, University of Leicester, 1997. http://hdl.handle.net/2381/29746.
Повний текст джерелаHeinrich, Anne-Kathrin [Verfasser]. "Overcoming drug resistance by stimulus-sensitive drug delivery systems : a preclinical characterization of polymer-drug conjugates for the treatment of multi-drug resistant cancer / Anne-Kathrin Heinrich." Halle, 2017. http://d-nb.info/1144955262/34.
Повний текст джерелаTurner, Patricia Kellie. "The role of multi-drug resistance associated protein 4 and P-glycoprotein in resistance of neuroblastoma to topotecan and irinotecan." View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-018-Turner-index.html.
Повний текст джерелаTitle from title page screen (viewed on June 20, 2008 ). Research advisor: Clinton Stewart, Pharm.D. Document formatted into pages (xvi, 129 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 112-129).
Beniamin, Armanos. "Establishment of an Expression and Purification System for Plasmodium falciparum Multi Drug Resistance (pfmdr) Transporter." Thesis, University of Skövde, School of Life Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-969.
Повний текст джерелаMalaria is a life threatening parasite disease caused and transmitted by infected female anopheles mosquito. However, the parasite, Plasmodium falciparum, has become resistant to most anti malarial drugs, such as chloroquine, which contributes to fever and anaemia because of its ability to digest the haemoglobin in the red blood cells. The aims of this project were to establish whether “Bac to Bac” Baculoviral Expression System is suitable for expression of pfmdr 1 gene and for purification of the pgh 1 protein. The pfmdr 1 gene encodes an ABC transporter protein, pgh 1, fixed in the cell membrane of the Plasmodium falciparuum gut, which assist in elimination of drug compounds. Furthermore, “Bac to Bac” Baculoviral Expression System uses vectors with histidine tags to clone the pfmdr 1 gene and subsequently transform these into DH10Bac cells to produce the recombinant bacmid DNA. Since pfmdr 1 gene is an AT-rich sequence, PCR was optimized, by lowering the annealing and extension temperature to 47Co and 66Co respectively. The results show that “Bac to Bac” Baculoviral Expression System can be used to express the pfmdr 1 gene, though further experiments has to be performed.
Taylor, Jenny Carmeron. "Molecular interactions of P-glycoprotein." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363732.
Повний текст джерелаPhee, Lynette. "Unorthodox antimicrobial combination therapies for the treatment of multi-drug resistant Gram-negative infections." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/44695.
Повний текст джерелаMahfouz, Norhan, Serena Caucci, Eric Achatz, Torsten Semmler, Sebastian Guenther, Thomas U. Berendonk, and Michael Schroeder. "High genomic diversity of multi-drug resistant wastewater Escherichia coli." Nature Publishing Group, 2018. https://tud.qucosa.de/id/qucosa%3A32482.
Повний текст джерелаAl-Akra, Lina. "The Effect of The Tumor Microenvironment on Multi-Drug Resistance and the Assessment of Agents that Overcome this Effect." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27974.
Повний текст джерелаLeangapichart, Thongpan. "Phenotypic and genomic analysis of multi-drug resistant bacteria in travelers." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0183.
Повний текст джерелаAntibiotic resistance in bacteria is increasing and become a worldwide problem. Newresistance bacteria or mechanisms are emerging and spreading rapidly. Recently, thetransmission of antibiotic-resistant (AR) bacteria among humans, animals, and the variousenvironments are vastly recognized. With the growth of international travels over the pastdecades, this provides opportunities for AR bacteria to be spread rapidly from one geographiclocation to another. During trips, travelers changed diets, lifestyles, and their environmentsresulting in the alteration of AR patterns of bacteria residing in the gut. Thus, internationaltravelers are one of the most important modes for the acquisition and spread of AR genes.The largest annual mass gathering, the Hajj (pilgrimage to Mecca) is well known as a sourcefor infectious diseases transmission such as influenza, meningococcal outbreaks ortuberculosis. Thus, travelers, especially pilgrims, are one of the most significant sources forspreading AR bacteria. However, studies of the transmission and acquisition of AR genesduring Hajj in pilgrims are scarce. Therefore, this research thesis was carried out with threemain objectives to better understanding the prevalence of AR genes and bacteria during Hajj:(i) epidemiological surveillance of AR genes in pilgrims before and after Hajj, (ii) risk factorsanalysis concerning AR genes acquisition in pilgrims, (iii) molecular epidemiological studiesof AR bacteria in pilgrims, including patients, animals, and environment with the use ofmulti-locus sequence typing and whole genome sequencing
Gkikopoulou, Effrosyni. "Voies de signalisation cobalamine-dépendantes de l'expression du gène MDR-1 : Une cible pharmacologique nouvelle pour la chimiothérapie ?" Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0305/document.
Повний текст джерелаA key factor of chemioresistance is an increased expression of MDR-1 gene, partly controlled by cellular methylation reactions. Until now, the physiology of these reactions is not clearly known. The main intracellular metabolic pathway, generating methyl donors, is the methionine cycle, the activity of which is strongly depending on B-group vitamins (B12, B9). Thus, MDR-1 gene expression may be controlled by the activity of the methionine cycle and consequently presence of these vitamins. The aim of this study is to determine if, and to elucidate how, the methionine cycle influences the MDR-1 gene expression. Chromatography, pharmacotoxicology, cell culture techniques, gene and protein expression studies have been used on the human hepatocarcinoma cell line HepG2. We showed that cobalamin-induced MDR-1 gene repression was associated with phospholipase D activation, Akt phosphorylation, and Cox-2 co-repression in a complex and intricated manner. We may suggest that targeting these pathways could potentiate chimotherapy. This work shoiuld allow 1) a better understanding of mechanisms explaining why some anticancer agents may become inactive, 2) to optimize utilisation of these agents in relationship with MDR-1 gene expression and the B vitamin status, 3) to evaluate impacts of nutritionnal factors (cobalamine) in MDR-1 gene expression and 4) probably developp possible ways to improve chemotherapy
Mabhula, Amanda N. "Investigating permeation of anti-mycobacterial agents in Mycobacterium tuberculosis and M. tuberculosis-infected macrophages in vitro as a model for early stage tuberculosis drug discovery." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33768.
Повний текст джерелаPrinsloo, Andrea. "Susceptibility and synergism profiles of multi-drug resistant pseudomonas aeruginusa in an intensive care environment." Diss., University of Pretoria, 2003. http://hdl.handle.net/2263/28026.
Повний текст джерела