Дисертації з теми "Multi-dimensional graph signal processing"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Multi-dimensional graph signal processing.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-25 дисертацій для дослідження на тему "Multi-dimensional graph signal processing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

GRASSI, FRANCESCO. "Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710580.

Повний текст джерела
Анотація:
The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Larkin, Kieran Gerard. "Topics in Multi dimensional Signal Demodulation." Thesis, The University of Sydney, 2000. http://hdl.handle.net/2123/367.

Повний текст джерела
Анотація:
Problems in the demodulation of one, two, and three-dimensional signals are investigated. In one-dimensional linear systems the analytic signal and the Hilbert transform are central to the understanding of both modulation and demodulation. However, it is shown that an efficient nonlinear algorithm exists which is not explicable purely in terms of an approximation to the Hilbert transform. The algorithm is applied to the problem of finding the envelope peak of a white light interferogram. The accuracy of peak location is then shown to compare favourably with conventional, but less efficient, techniques. In two dimensions (2-D) the intensity of a wavefield yields to a phase demodulation technique equivalent to direct phase retrieval. The special symmetry of a Helmholtz wavefield allows a unique inversion of an autocorrelation. More generally, a 2-D (non-Helmholtz) fringe pattern can be demodulated by an isotropic 2-D extension of the Hilbert transform that uses a spiral phase signum function. The range of validity of the new transform is established using the asymptotic method of stationary phase. Simulations of the algorithm confirm that deviations from the ideal occur where the fringe pattern curvature is larger than the fringe frequency. A new self-calibrating algorithm for arbitrary sequences of phase-shifted interferograms is developed using the aforementioned spiral phase transform. The algorithm is shown to work even with discontinuous fringe patterns, which are known to seriously hamper other methods. Initial simulations of the algorithm indicate an accuracy of 5 milliradians is achievable. Previously undocumented connections between the demodulation techniques are uncovered and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Larkin, Kieran Gerard. "Topics in Multi dimensional Signal Demodulation." University of Sydney. Physics, 2001. http://hdl.handle.net/2123/367.

Повний текст джерела
Анотація:
Problems in the demodulation of one, two, and three-dimensional signals are investigated. In one-dimensional linear systems the analytic signal and the Hilbert transform are central to the understanding of both modulation and demodulation. However, it is shown that an efficient nonlinear algorithm exists which is not explicable purely in terms of an approximation to the Hilbert transform. The algorithm is applied to the problem of finding the envelope peak of a white light interferogram. The accuracy of peak location is then shown to compare favourably with conventional, but less efficient, techniques. In two dimensions (2-D) the intensity of a wavefield yields to a phase demodulation technique equivalent to direct phase retrieval. The special symmetry of a Helmholtz wavefield allows a unique inversion of an autocorrelation. More generally, a 2-D (non-Helmholtz) fringe pattern can be demodulated by an isotropic 2-D extension of the Hilbert transform that uses a spiral phase signum function. The range of validity of the new transform is established using the asymptotic method of stationary phase. Simulations of the algorithm confirm that deviations from the ideal occur where the fringe pattern curvature is larger than the fringe frequency. A new self-calibrating algorithm for arbitrary sequences of phase-shifted interferograms is developed using the aforementioned spiral phase transform. The algorithm is shown to work even with discontinuous fringe patterns, which are known to seriously hamper other methods. Initial simulations of the algorithm indicate an accuracy of 5 milliradians is achievable. Previously undocumented connections between the demodulation techniques are uncovered and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Larkin, Kieran Gerard. "Topics in multi-dimensional signal demodulation." Connect to full text, 2000. http://hdl.handle.net/2123/367.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Sydney, 2000.
Title from title screen (viewed Apr. 23, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Physics, Faculty of Science. Includes bibliography. Also available in print form.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Costa, João Paulo Carvalho Lustosa da. "Parameter estimation techniques for multi-dimensional array signal processing." Aachen Shaker, 2010. http://d-nb.info/1000960765/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Randeny, Tharindu D. "Multi-Dimensional Digital Signal Processing in Radar Signature Extraction." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1451944778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abewardana, Wijenayake Chamith K. "Multi-dimensional Signal Processing And Circuits For Advanced Electronically Scanned Antenna Arrays." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415358304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gianto, Gianto. "Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD026/document.

Повний текст джерела
Анотація:
L'utilisation de franges d'interférence en lumière blanche comme une sonde optique en microscopie interférométrique est d'une importance croissante dans la caractérisation des matériaux, la métrologie de surface et de l'imagerie médicale. L'Interférométrie en lumière blanche est une technique basée sur la détection de l'enveloppe de franges d'interférence. Il a été démontré antérieurement, la capacité des approches 2D à rivaliser avec certaines méthodes classiques utilisées dans le domaine de l'interférométrie, en termes de robustesse et de temps de calcul. En outre, alors que la plupart des méthodes tiennent compte seulement des données 1 D, il semblerait avantageux de prendre en compte le voisinage spatial utilisant des approches multidimensionnelles (2D/3D), y compris le paramètre de temps afin d'améliorer les mesures. Le but de ce projet de thèse est de développer de nouvelles approches n-D qui sont appropriées pour une meilleure caractérisation des surfaces plus complexes et des couches transparentes
The use of white light interference fringes as an optical probe in microscopy is of growing importance in materials characterization, surface metrology and medical imaging. Coherence Scanning Interferometry (CSI, also known as White Light Scanning Interferometry, WSLI) is well known for surface roughness and topology measurement [1]. Full-Field Optical Coherence Tomography (FF-OCT) is the version used for the tomographic analysis of complex transparent layers. Both techniques generally make use of some sort of fringe scanning along the optical axis and the acquisition of a stack of xyz images. Image processing is then used to identify the fringe envelopes along z at each pixel in order to measure the positions of either a single surface or of multiple scattering objects within a layer.In CSI, the measurement of surface shape generally requires peak or phase extraction of the mono dimensional fringe signal. Most of the methods are based on an AM-FM signal model, which represents the variation in light intensity measured along the optical axis of an interference microscope [2]. We have demonstrated earlier [3, 4] the ability of 2D approaches to compete with some classical methods used in the field of interferometry, in terms of robustness and computing time. In addition, whereas most methods only take into account the 1D data, it would seem advantageous to take into account the spatial neighborhood using multidimensional approaches (2D, 3D, 4D), including the time parameter in order to improve the measurements.The purpose of this PhD project is to develop new n-D approaches that are suitable for improved characterization of more complex surfaces and transparent layers. In addition, we will enrich the field of study by means of heterogeneous image processing from multiple sensor sources (heterogeneous data fusion). Applications considered will be in the fields of materials metrology, biomaterials and medical imaging
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carvalho, Lustosa da Costa Joao P. [Verfasser]. "Parameter Estimation Techniques for Multi-Dimensional Array Signal Processing / Joao P Carvalho Lustosa da Costa." Aachen : Shaker, 2010. http://d-nb.info/112254653X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vorhies, John T. "Low-complexity Algorithms for Light Field Image Processing." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590771210097321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Steinwandt, Jens Verfasser], Martin [Akademischer Betreuer] [Haardt, Marius [Gutachter] Pesavento, and Sergiy A. [Gutachter] Vorobyov. "Advanced array signal processing algorithms for multi-dimensional parameter estimation / Jens Steinwandt ; Gutachter: Marius Pesavento, Sergiy A. Vorobyov ; Betreuer: Martin Haardt." Ilmenau : TU Ilmenau, 2019. http://d-nb.info/1177298449/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cheema, Sher Ali Verfasser], Martin [Akademischer Betreuer] [Haardt, Mario [Gutachter] Huemer, and Eduard Axel [Gutachter] Jorswieck. "Advanced signal processing concepts for multi-dimensional communication systems / Sher Ali Cheema ; Gutachter: Mario Huemer, Eduard Axel Jorswieck ; Betreuer: Martin Haardt." Ilmenau : TU Ilmenau, 2018. http://d-nb.info/1178128989/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cheng, Yao [Verfasser], Martin [Akademischer Betreuer] Haardt, Ruyet Didier [Gutachter] Le, and Ana Isabel [Gutachter] Pérez-Neira. "Advanced multi-dimensional signal processing for wireless systems / Yao Cheng ; Gutachter: Didier Le Ruyet, Ana Isabel Pérez-Neira ; Betreuer: Martin Haardt." Ilmenau : TU Ilmenau, 2016. http://d-nb.info/1178170934/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Steinwandt, Jens [Verfasser], Martin [Akademischer Betreuer] Haardt, Marius [Gutachter] Pesavento, and Sergiy A. [Gutachter] Vorobyov. "Advanced array signal processing algorithms for multi-dimensional parameter estimation / Jens Steinwandt ; Gutachter: Marius Pesavento, Sergiy A. Vorobyov ; Betreuer: Martin Haardt." Ilmenau : TU Ilmenau, 2019. http://d-nb.info/1177298449/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Pulipati, Sravan Kumar. "Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1499440141479455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zaylaa, Amira. "Analyse et extraction de paramètres de complexité de signaux biomédicaux." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR3315/document.

Повний текст джерела
Анотація:
L'analyse de séries temporelles biomédicales chaotiques tirées de systèmes dynamiques non-linéaires est toujours un challenge difficile à relever puisque dans certains cas bien spécifiques les techniques existantes basées sur les multi-fractales, les entropies et les graphes de récurrence échouent. Pour contourner les limitations des invariants précédents, de nouveaux descripteurs peuvent être proposés. Dans ce travail de recherche nos contributions ont porté à la fois sur l’amélioration d’indicateurs multifractaux (basés sur une fonction de structure) et entropiques (approchées) mais aussi sur des indicateurs de récurrences (non biaisés). Ces différents indicateurs ont été développés avec pour objectif majeur d’améliorer la discrimination entre des signaux de complexité différente ou d’améliorer la détection de transitions ou de changements de régime du système étudié. Ces changements agissant directement sur l’irrégularité du signal, des mouvements browniens fractionnaires et des signaux tirés du système du Lorenz ont été testés. Ces nouveaux descripteurs ont aussi été validés pour discriminer des fœtus en souffrance de fœtus sains durant le troisième trimestre de grossesse. Des mesures statistiques telles que l’erreur relative, l’écart type, la spécificité, la sensibilité ou la précision ont été utilisées pour évaluer les performances de la détection ou de la classification. Le fort potentiel de ces nouveaux invariants nous laisse penser qu’ils pourraient constituer une forte valeur ajoutée dans l’aide au diagnostic s’ils étaient implémentés dans des logiciels de post-traitement ou dans des dispositifs biomédicaux. Enfin, bien que ces différentes méthodes aient été validées exclusivement sur des signaux fœtaux, une future étude incluant des signaux tirés d’autres systèmes dynamiques nonlinéaires sera réalisée pour confirmer leurs bonnes performances
The analysis of biomedical time series derived from nonlinear dynamic systems is challenging due to the chaotic nature of these time series. Only few classical parameters can be detected by clinicians to opt the state of patients and fetuses. Though there exist valuable complexity invariants such as multi-fractal parameters, entropies and recurrence plot, they were unsatisfactory in certain cases. To overcome this limitation, we propose in this dissertation new entropy invariants, we contributed to multi-fractal analysis and we developed signal-based (unbiased) recurrence plots based on the dynamic transitions of time series. Principally, we aim to improve the discrimination between healthy and distressed biomedical systems, particularly fetuses by processing the time series using our techniques. These techniques were either validated on Lorenz system, logistic maps or fractional Brownian motions modeling chaotic and random time series. Then the techniques were applied to real fetus heart rate signals recorded in the third trimester of pregnancy. Statistical measures comprising the relative errors, standard deviation, sensitivity, specificity, precision or accuracy were employed to evaluate the performance of detection. Elevated discernment outcomes were realized by the high-order entropy invariants. Multi-fractal analysis using a structure function enhances the detection of medical fetal states. Unbiased cross-determinism invariant amended the discrimination process. The significance of our techniques lies behind their post-processing codes which could build up cutting-edge portable machines offering advanced discrimination and detection of Intrauterine Growth Restriction prior to fetal death. This work was devoted to Fetal Heart Rates but time series generated by alternative nonlinear dynamic systems should be further considered
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Xu, Yanli. "Une mesure de non-stationnarité générale : Application en traitement d'images et du signaux biomédicaux." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0090/document.

Повний текст джерела
Анотація:
La variation des intensités est souvent exploitée comme une propriété importante du signal ou de l’image par les algorithmes de traitement. La grandeur permettant de représenter et de quantifier cette variation d’intensité est appelée une « mesure de changement », qui est couramment employée dans les méthodes de détection de ruptures d’un signal, dans la détection des contours d’une image, dans les modèles de segmentation basés sur les contours, et dans des méthodes de lissage d’images avec préservation de discontinuités. Dans le traitement des images et signaux biomédicaux, les mesures de changement existantes fournissent des résultats peu précis lorsque le signal ou l’image présentent un fort niveau de bruit ou un fort caractère aléatoire, ce qui conduit à des artefacts indésirables dans le résultat des méthodes basées sur la mesure de changement. D’autre part, de nouvelles techniques d'imagerie médicale produisent de nouveaux types de données dites à valeurs multiples, qui nécessitent le développement de mesures de changement adaptées. Mesurer le changement dans des données de tenseur pose alors de nouveaux problèmes. Dans ce contexte, une mesure de changement, appelée « mesure de non-stationnarité (NSM) », est améliorée et étendue pour permettre de mesurer la non-stationnarité de signaux multidimensionnels quelconques (scalaire, vectoriel, tensoriel) par rapport à un paramètre statistique, et en fait ainsi une mesure générique et robuste. Une méthode de détection de changements basée sur la NSM et une méthode de détection de contours basée sur la NSM sont respectivement proposées et appliquées aux signaux ECG et EEG, ainsi qu’a des images cardiaques pondérées en diffusion (DW). Les résultats expérimentaux montrent que les méthodes de détection basées sur la NSM permettent de fournir la position précise des points de changement et des contours des structures tout en réduisant efficacement les fausses détections. Un modèle de contour actif géométrique basé sur la NSM (NSM-GAC) est proposé et appliqué pour segmenter des images échographiques de la carotide. Les résultats de segmentation montrent que le modèle NSM-GAC permet d’obtenir de meilleurs résultats comparativement aux outils existants avec moins d'itérations et de temps de calcul, et de réduire les faux contours et les ponts. Enfin, et plus important encore, une nouvelle approche de lissage préservant les caractéristiques locales, appelée filtrage adaptatif de non-stationnarité (NAF), est proposée et appliquée pour améliorer les images DW cardiaques. Les résultats expérimentaux montrent que la méthode proposée peut atteindre un meilleur compromis entre le lissage des régions homogènes et la préservation des caractéristiques désirées telles que les bords ou frontières, ce qui conduit à des champs de tenseurs plus homogènes et par conséquent à des fibres cardiaques reconstruites plus cohérentes
The intensity variation is often used in signal or image processing algorithms after being quantified by a measurement method. The method for measuring and quantifying the intensity variation is called a « change measure », which is commonly used in methods for signal change detection, image edge detection, edge-based segmentation models, feature-preserving smoothing, etc. In these methods, the « change measure » plays such an important role that their performances are greatly affected by the result of the measurement of changes. The existing « change measures » may provide inaccurate information on changes, while processing biomedical images or signals, due to the high noise level or the strong randomness of the signals. This leads to various undesirable phenomena in the results of such methods. On the other hand, new medical imaging techniques bring out new data types and require new change measures. How to robustly measure changes in theos tensor-valued data becomes a new problem in image and signal processing. In this context, a « change measure », called the Non-Stationarity Measure (NSM), is improved and extended to become a general and robust « change measure » able to quantify changes existing in multidimensional data of different types, regarding different statistical parameters. A NSM-based change detection method and a NSM-based edge detection method are proposed and respectively applied to detect changes in ECG and EEG signals, and to detect edges in the cardiac diffusion weighted (DW) images. Experimental results show that the NSM-based detection methods can provide more accurate positions of change points and edges and can effectively reduce false detections. A NSM-based geometric active contour (NSM-GAC) model is proposed and applied to segment the ultrasound images of the carotid. Experimental results show that the NSM-GAC model provides better segmentation results with less iterations that comparative methods and can reduce false contours and leakages. Last and more important, a new feature-preserving smoothing approach called « Nonstationarity adaptive filtering (NAF) » is proposed and applied to enhance human cardiac DW images. Experimental results show that the proposed method achieves a better compromise between the smoothness of the homogeneous regions and the preservation of desirable features such as boundaries, thus leading to homogeneously consistent tensor fields and consequently a more reconstruction of the coherent fibers
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Teng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.

Повний текст джерела
Анотація:
S tím, jak se neustále vyvíjejí nové technologie pro energeticky náročná průmyslová odvětví, stávající zařízení postupně zaostávají v efektivitě a produktivitě. Tvrdá konkurence na trhu a legislativa v oblasti životního prostředí nutí tato tradiční zařízení k ukončení provozu a k odstavení. Zlepšování procesu a projekty modernizace jsou zásadní v udržování provozních výkonů těchto zařízení. Současné přístupy pro zlepšování procesů jsou hlavně: integrace procesů, optimalizace procesů a intenzifikace procesů. Obecně se v těchto oblastech využívá matematické optimalizace, zkušeností řešitele a provozní heuristiky. Tyto přístupy slouží jako základ pro zlepšování procesů. Avšak, jejich výkon lze dále zlepšit pomocí moderní výpočtové inteligence. Účelem této práce je tudíž aplikace pokročilých technik umělé inteligence a strojového učení za účelem zlepšování procesů v energeticky náročných průmyslových procesech. V této práci je využit přístup, který řeší tento problém simulací průmyslových systémů a přispívá následujícím: (i)Aplikace techniky strojového učení, která zahrnuje jednorázové učení a neuro-evoluci pro modelování a optimalizaci jednotlivých jednotek na základě dat. (ii) Aplikace redukce dimenze (např. Analýza hlavních komponent, autoendkodér) pro vícekriteriální optimalizaci procesu s více jednotkami. (iii) Návrh nového nástroje pro analýzu problematických částí systému za účelem jejich odstranění (bottleneck tree analysis – BOTA). Bylo také navrženo rozšíření nástroje, které umožňuje řešit vícerozměrné problémy pomocí přístupu založeného na datech. (iv) Prokázání účinnosti simulací Monte-Carlo, neuronové sítě a rozhodovacích stromů pro rozhodování při integraci nové technologie procesu do stávajících procesů. (v) Porovnání techniky HTM (Hierarchical Temporal Memory) a duální optimalizace s několika prediktivními nástroji pro podporu managementu provozu v reálném čase. (vi) Implementace umělé neuronové sítě v rámci rozhraní pro konvenční procesní graf (P-graf). (vii) Zdůraznění budoucnosti umělé inteligence a procesního inženýrství v biosystémech prostřednictvím komerčně založeného paradigmatu multi-omics.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Vlok, Jacobus David. "Sparse graph codes on a multi-dimensional WCDMA platform." Diss., 2007. http://upetd.up.ac.za/thesis/available/etd-07042007-155428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Edussooriya, Chamira Udaya Shantha. "Low-Complexity Multi-Dimensional Filters for Plenoptic Signal Processing." Thesis, 2015. http://hdl.handle.net/1828/6894.

Повний текст джерела
Анотація:
Five-dimensional (5-D) light field video (LFV) (also known as plenoptic video) is a more powerful form of representing information of dynamic scenes compared to conventional three-dimensional (3-D) video. In this dissertation, the spectra of moving objects in LFVs are analyzed, and it is shown that such moving objects can be enhanced based on their depth and velocity by employing 5-D digital filters, what is defined as depth-velocity filters. In particular, the spectral region of support (ROS) of a Lambertian object moving with constant velocity and at constant depth is shown to be a skewed 3-D hyperfan in the 5-D frequency domain. Furthermore, it is shown that the spectral ROS of a Lambertian object moving at non-constant depth can be approximated as a sequence of ROSs, each of which is a skewed 3-D hyperfan, in the 5-D continuous frequency domain. Based on the spectral analysis, a novel 5-D finite-extent impulse response (FIR) depth-velocity filter and a novel ultra-low complexity 5-D infinite-extent impulse response (IIR) depth-velocity filter are proposed for enhancing objects moving with constant velocity and at constant depth in LFVs. Furthermore, a novel ultra-low complexity 5-D IIR adaptive depth-velocity filter is proposed for enhancing objects moving at non-constant depth in LFVs. Also, an ultra-low complexity 3-D linear-phase IIR velocity filter that can be incorporated to design 5-D IIR depth-velocity filters is proposed. To the best of the author’s knowledge, the proposed 5-D FIR and IIR depth-velocity filters and the proposed 5-D IIR adaptive depth-velocity filter are the first such 5-D filters applied for enhancing moving objects in LFVs based on their depth and velocity. Numerically generated LFVs and LFVs of real scenes, generated by means of a commercially available Lytro light field (LF) camera, are used to test the effectiveness of the proposed 5-D depth-velocity filters. Numerical simulation results indicate that the proposed 5-D depth-velocity filters outperform the 3-D velocity filters and the four-dimensional (4-D) depth filters in enhancing moving objects in LFVs. More importantly, the proposed 5-D depth-velocity filters are capable of exposing heavily occluded parts of a scene and of attenuating noise significantly. Considering the ultra-low complexity, the proposed 5-D IIR depth-velocity filter and the proposed 5-D IIR adaptive depth-velocity filter have significant potentials to be employed in real-time applications.
Graduate
0544
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Chang, Yu-Chu, and 張佑竹. "Vector Quantization and its Application to multi-dimensional Digital Signal Processing." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/46496766224358760087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Srinivasan, Sabeshan. "Object tracking in distributed video networks using multi-dimensional signatures /." 2006. http://www.library.umaine.edu/theses/pdf/SrinivasanSX2006.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Su, Hung, and 蘇弘. "Multi-dimensional Histogram-based Watermarking Scheme for Resisting Geometric and Signal Processing Attacks." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/22594619266851566270.

Повний текст джерела
Анотація:
碩士
國立中山大學
資訊工程學系研究所
92
Many digital watermarking schemes have been proposed for copyright protection recently due to the rapid growth of multimedia data distribution. Robustness is one of the crucial important issues in watermarking. But, most of traditional digital watermarking schemes is normally not to resist both geometric distortion and signal processing attacks well. There are two different types of solutions to resisting geometrical attacks: nonblind and blind methods. With the noblind approach, due to availability of the original image, the problem can be resolved with a good solution by elective search between the geometrically attacked and unattacked image. The blind solution, which does not use the original image in watermark extraction, is obviously more challenging. In this research, we propose a blind watermarking scheme which based on histogram property. So that, we propose a novel scheme to define the lattice structure of color space of host image for embedding watermark data. We utilize the histograms of various properties that calculated from the host image, and partition each histogram space into several divisions with dynamic interval. The number of pixels of each division is equal. And then we embed watermark data by modifying distribution of each division. The experimented results present the algorithm is robust to resist common geometric attacks and high quality JPEG compression at the same time.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sevcenco, Ioana Speranta. "Multi-dimensional digital signal integration with applications in image, video and light field processing." Thesis, 2018. https://dspace.library.uvic.ca//handle/1828/9915.

Повний текст джерела
Анотація:
Multi-dimensional digital signals have become an intertwined part of day to day life, from digital images and videos used to capture and share life experiences, to more powerful scene representations such as light field images, which open the gate to previously challenging tasks, such as post capture refocusing or eliminating visible occlusions from a scene. This dissertation delves into the world of multi-dimensional signal processing and introduces a tool of particular use for gradient based solutions of well-known signal processing problems. Specifically, a technique to reconstruct a signal from a given gradient data set is developed in the case of two dimensional (2-D), three dimensional (3-D) and four dimensional (4-D) digital signals. The reconstruction technique is multiresolution in nature, and begins by using the given gradient to generate a multi-dimensional Haar wavelet decomposition of the signals of interest, and then reconstructs the signal by Haar wavelet synthesis, performed on successive resolution levels. The challenges in developing this technique are non-trivial and are brought about by the applications at hand. For example, in video content replacement, the gradient data from which a video sequence needs to be reconstructed is a combination of gradient values that belong to different video sequences. In most cases, such operations disrupt the conservative nature of the gradient data set. The effects of the non-conservative nature of the newly generated gradient data set are attenuated by using an iterative Poisson solver at each resolution level during the reconstruction. A second and more important challenge is brought about by the increase in signal dimensionality. In a previous approach, an intermediate extended signal with symmetric region of support is obtained, and the signal of interest is extracted from it. This approach is reasonable in 2-D, but becomes less appealing as the signal dimensionality increases. To avoid generating data that is then discarded, a new approach is proposed, in which signal extension is no longer performed. Instead, different procedures are suggested to generate a non-symmetric Haar wavelet decomposition of the signals of interest. In the case of 2-D and 3-D signals, ways to obtain this decomposition exactly from the given gradient data and the average value of the signal are proposed. In addition, ways to approximate a subset of decomposition coefficients are introduced and the visual consequences of such approximations are studied in the special case of 2-D digital images. Several ways to approximate the same subset of decomposition coefficients are developed in the special case of 4-D light field images. Experiments run on various 2-D, 3-D and 4-D test signals are included to provide an insight on the performance of the reconstruction technique. The value of the multi-dimensional reconstruction technique is then demonstrated by including it in a number of signal processing applications. First, an efficient algorithm is developed with the purpose of combining information from the gradient of a set of 2-D images with different regions in focus or different exposure times, with the purpose of generating an all-in-focus image or revealing details that were lost due to improper exposure setting. Moving on to 3-D signal processing applications, two video editing problems are studied and gradient based solutions are presented. In the first one, the objective is to seamlessly place content from one video sequence in another, while in the second one, to combine elements from two video sequences and generate a transparency effect. Lastly, a gradient based technique for editing 4-D scene representations (light fields) is presented, as well as a technique to combine information from two light fields with the purpose of generating a light field with more details of the imaged scene. All these applications show that the developed technique is a reliable tool for gradient domain based solutions of signal processing problems.
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Amini, Ladan. "Développement de Graphe de Connectivité Différentiel pour Caractérisation des Régions Cérébrales Impliquées dans l'Epilepsie." Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00559915.

Повний текст джерела
Анотація:
Les patients pharmaco-résistants sont des candidats pour la chirurgie de l'épilepsie. Le but de cette chirurgie est d'enlever les zones à l'origine de la crise (SOZ) sans créer de nouveaux déficits neurologiques. Pour localiser les SOZs, une des meilleures approches consiste à analyser des électroencéphalogrammes intracérébraux (iEEG). Toutefois, l'enregistrement des crises, qui sont des événements rares et critiques, est compliqué contrairement à l'enregistrement de décharges épileptiques intercritiques (IED), qui sont généralement très fréquentes et anodines. La prévision des SOZs, par estimation des régions à l'origine des IEDs, est donc une alternative très intéressante, et la question de savoir si l'estimation des régions IED peut être utile pour prédire les SOZs, a été au coeur de plusieurs études. Malgré des résultats intéressants, la question reste ouverte, notamment en raison du manque de fiabilité des résultats fournis par ces méthodes. L'objectif de cette thèse est de proposer une méthode robuste d'estimation des régions à l'origine des IEDs (notées LIED) par analyse d'enregistrements intracérébraux iEEG. Le point essentiel de cette nouvelle méthode repose sur la détermination d'un graphe de connectivité différentiel (DCG), qui ne conserve que les noeuds (électrodes) associées aux signaux iEEG qui changent de façon significative selon la présence ou l'absence d'IEDs. En fait, on construit plusieurs DCGs, chacun étant caractéristique d'une échelle obtenue après transformée en ondelettes. La fiabilitié statistiques des DCGs est obtenue à l'aide des tests de permutation. L'étape suivante consiste à mesurer les quantités d'information émise par chaque noeud, et d'associer à chaque connexion (arête) du graphe une orientation qui indique le transfert d'information du noeud source vers le noeud cible. Pour celà, nous avons introduit une nouvelle mesure nommée Local Information (LI), que nous avons comparée à des mesures classiques de graphes, et qui permet de définir de façon robuste les noeuds sources pour les graphes de chaque échelle. Les LIEDs sont finalement estimées selon une méthode d'optimisation multi-objectifs (de type Pareto, peu utilisée dans la communauté signal-image) construite à partir des valeurs des LI des DCG dans les différentes bandes de fréquences. La méthode proposée a été validée sur cinq patients épileptiques, qui ont subi une chirurgie d'exérèse et sont déclarés guéris. L'estimation des régions LIED a été comparée avec les SOZs détectées visuellement par l'épileptologue et celles détectées automatiquement par une méthode utilisant une stimulation destinée à provoquer des crises. La comparaison révèle des résultats congruents entre les SOZs et les régions LIED estimées. Ainsi, cette approche fournit des LIED qui devraient être des indications précieuses pour l'évaluation préopératoire en chirugie de l'épilepsie.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії