Добірка наукової літератури з теми "MS-IT-SOFC"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MS-IT-SOFC".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "MS-IT-SOFC"

1

Dotelli, G., R. Pelosato, L. Zampori, and I. Natali Sora. "LA-ICP-MS and EDS characterization of electrode/electrolyte interfaces in IT-SOFC materials." Applied Physics A 111, no. 3 (October 13, 2012): 887–96. http://dx.doi.org/10.1007/s00339-012-7309-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Arabaci, Aliye, and Nuri Solak. "High Temperature - FTIR Characterization of Gadolinia Doped Ceria." Advances in Science and Technology 72 (October 2010): 249–54. http://dx.doi.org/10.4028/www.scientific.net/ast.72.249.

Повний текст джерела
Анотація:
Doped ceria-based (DC) materials have recently been considered as the most promising solid electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Doped ceria is usually prepared via thermal decomposition of its water soluble salts, especially, acetates and nitrates. The properties of the obtained final product directly influenced by the starting material and the decomposition products. Therefore, it is crucial to understand the decomposition steps and intermediate products. Number of experimental work have been reported using various <em>in-situ</em> and <em>ex-situ</em> techniques such as thermogravimetry with mass spectrometry (TG/DTA-MS), X-ray diffraction with differential scanning calorimeter (XRD-DSC). However, the available literature data is limited and not reasonably in agreement with each other. High Temperature FT-IR spectroscopy, TG/DTA-MS, XRD, techniques were used and results are compared with literature. A good agreement between the thermal analyses and HT-FTIR results were obtained. Possible decomposition mechanism is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Belakry, S., A. Rolle, E. Capoen, R. N. Vannier, and D. Fasquelle. "Characterization of Stainless-Steel Grids Dedicated to Cost-Effective Metal-Supported IT-SOFC." ECS Journal of Solid State Science and Technology 11, no. 2 (February 1, 2022): 023014. http://dx.doi.org/10.1149/2162-8777/ac557c.

Повний текст джерела
Анотація:
Metal-Supported Solid Oxide Fuel Cells (MS-SOFCs) have gained significant interest due to their potential advantages (low-cost, tolerance to redox and thermal cycling, robust and manufacturing) over conventional fuel cells. This work focuses on studying corrosion and electrical conductivity of porous metallic supports (stainless steel 316L and FeCrAl alloy) under different temperatures and atmospheres considering physical, chemical and electrical characterizations. Within the studied operating temperature range (500 °C–700 °C), the FeCrAl support resists to corrosion under air and H2. At temperatures higher than 700 °C it forms a layer of alumina. The FeCrAl resistivity generally remains stable under H2 and slowly increases under air. In contrast, the 316L support is only stable at 500 °C under air and at 500 °C and 600 °C under H2. Above these temperatures, the 316L support shows severe corrosion. The resistivity is stable up to 600 °C, increases strongly for the support under air and slightly for the support under H2 with the temperature increase.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sadykov, Vladislav A., Natalia V. Mezentseva, Rimma V. Bunina, Galina M. Alikina, Anton I. Lukashevich, Vladimir I. Zaikovskii, Oleg F. Bobrenok, John Irvine, Oleksandr D. Vasylyev, and Alevtina L. Smirnova. "Design of Anode Materials for IT SOFC: Effect of Complex Oxide Promoters and Pt Group Metals on Activity and Stability in Methane Steam Reforming of Ni/YSZ (ScSZ) Cermets." Journal of Fuel Cell Science and Technology 7, no. 1 (October 6, 2009). http://dx.doi.org/10.1115/1.3117255.

Повний текст джерела
Анотація:
Ni/YSZ or Ni/ScCeSZ cermets were promoted by up to 10 wt % of fluoritelike (Pr–Ce–Zr–О, La–Ce–Zr–О, and Ce–Zr–О) or perovskitelike (La–Pr–Mn–Cr–O) oxides and small (up to 1.4 wt %) amounts of Pt group metals (Pd, Pt, or Ru). Reactivity of samples, their lattice oxygen mobility, and their ability to activate methane were characterized by temperature-programed reduction by CH4. The catalytic properties of these samples in methane steam reforming were studied at 500–850°C and short contact times (10 ms) in feeds with 8 mol % of CH4 and steam/methane ratio of 1:3. Oxide promoters ensure stable performance of cermets in stoichiometric feeds at T>650°C by suppressing carbon deposition. Copromotion with precious metals enhances performance in the intermediate temperature (450–600°C) range due to more efficient activation of methane. Factors determining specificity of these cermet materials’ performance (chemical composition, microstructure, oxygen mobility in oxides, interaction between components, and reaction media effect) are considered. The most promising systems for practical application are Pt/Pr–Ce–Zr–O/Ni/YSZ and Ru/La–Pr–Mn–Cr–O/Ni/YSZ cermets demonstrating a high performance in the intermediate temperature range under broad variation in steam/CH4 ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "MS-IT-SOFC"

1

Belakry, Sarra. "Développement d’électrodes Innovantes pour piles à combustible réalisés sur support métallique poreux." Thesis, Littoral, 2022. http://www.theses.fr/2022DUNK0614.

Повний текст джерела
Анотація:
Les piles à combustible à oxyde solide à support métallique (MS-SOFC) connaissent un grand intérêt en raison de leurs avantages potentiels (faible coût, tolérance aux cycles redox et thermiques, etc.) par rapport aux piles à combustible SOFC conventionnelles. Cette thèse a pour objectif de développer une pile à combustible à oxyde solide fonctionnant aux températures intermédiaires (500 - 750°C) sur un support métallique poreux (MS-IT-SOFC). Deux supports métalliques poreux, sous forme de fibres compactées en acier 316L et FeCrAl, fournis par une entreprise locale TIBTECH, ont été étudiés afin d’évaluer leur stabilité physique, chimique et électrique et valider leur utilisation comme support pour IT-SOFC. Cette étude a permis de sélectionner le FeCrAl comme support métallique pour IT-SOFC. La réduction de la température de fonctionnement passe en partie par la diminution de la résistance de polarisation de la cathode. Cet objectif peut être atteint soit par le développement de nouveaux matériaux plus performants, soit par l’amélioration de la microstructure ou de la surface/interface entre l’électrolyte et la cathode. Cette thèse développe la dernière approche en améliorant la surface/interface entre le CGO et le LSCF. Pour cela, trois architectures de cathode ont été élaborées et caractérisées par spectroscopie d’impédance : cathode classique (LSCF poreux et épais), cathode avec un film mince LSCF à l’interface cathode-électrolyte, et cathode avec squelette CGO imprégné de LSCF. L’influence des deux dernières architectures reste remarquable dans la mesure où leur ASR est proche de 0,1 Ω.cm2 à 600°C et 0,02 Ω.cm2 à 750°C. La cellule complète MS-IT-SOFC avec une cathode simple et un électrolyte CGO a fourni 421 et 523 mW/cm2 à 700 et 750°C, respectivement. L’objectif d’une cellule à support métallique pouvant fournir 0,5 W/cm2 est donc atteint. En revanche, l’utilisation de l’électrolyte CGOCB/YSZ/CGOCB donne les densités de puissance plus faible à 154 et 219 mW/cm2 à 700 et 750°C, respectivement. Cette baisse de performance est attribuée à l’utilisation de l’oxyde YSZ qui introduit plus de pertes aux températures intermédiaires. Cependant, l’intégration d’une cathode avec squelette CGO imprégné de LSCF a permis d’augmenter ces valeurs à 242 et 342 mW/cm2, démontrant ainsi tout l’intérêt de ce type de cathode. L’ensemble de ces travaux a permis de valider notre architecture SOFC à support métallique poreux FeCrAl, et a permis de définir des orientations importantes dans le choix de l’électrolyte (matériau, épaisseur) et des électrodes
Metal Supported Solid Oxide Fuel Cells (MS-SOFCs) have gained significant interest due to their potential advantages (low-cost, tolerance to redox and thermal cycling and so on) over conventional fuel cells. The main objective of this thesis was to develop an intermediate temperature (500-750°C) Solid Oxide Fuel Cell on a porous metal support (MS-IT-SOFC). Two porous metallic supports in the form of compacted fibers (316L steel and FeCrAl, supplied by the local company TIBTECH, were studied in order to evaluate their physical, chemical and electrical stability and to validate their use as support for IT-SOFCs. This study leads to the selection of FeCrAl as a metallic support for IT-SOFC. The decrease of the operating temperature is partly achieved by reducing the cathode polarization resistance. This objective can be achieved either by developing new and better performing materials, or by improving the microstructure or the electrolyte/cathode or surface/interface of known materials. This thesis develops the latter approach, by improving the surface/interface of GDC/LSCF. For this purpose, three cathode architectures have been developed and characterized by impedance spectroscopy: conventional cathode (porous and thick LSCF), cathode with a thin LSCF film at the cathode-electrolyte interface, and cathode with GDC backbone infiltrated by LSCF. The influence of the last two architectures remains remarkable as their ASR is close to 0.1 Ω.cm2 at 600°C and 0.02 Ω.cm2 at 750°C. The complete MS-IT-SOFC cell with a simple cathode and GDC electrolyte has provided 421 and 523 mW/cm2 at 700 and 750°C, respectively. Thus, the goal of a metal-supported cell that can deliver 0.5 W/cm2 is achieved. On the other hand, the use of CGOCB/YSZ/CGOCB electrolyte decreased the power densities to 154 and 219 mW/cm2 at 700 and 750°C, respectively. This decrease in performance is attributed to the use of YSZ oxide, which introduces more losses at intermediate temperatures. However, the integration of a cathode with a CGO backbone impregnated with LSCF allowed to increase these values to 242 and 342 mW/cm2, demonstrating the interest of this type of cathode. All these works allowed to validate our SOFC architecture with a porous FeCrAl metal support, and to define important orientations in the choice of the electrolyte (material, thickness) and the electrodes
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "MS-IT-SOFC"

1

Tucker, David, Valentina Zaccaria, and Nor Farida Harun. "Real-Time Model of a Fuel Manifold in a Solid Oxide Fuel Cell Stack for Fuel Flexibility Studies." In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59429.

Повний текст джерела
Анотація:
Solid Oxide Fuel Cells (SOFCs) are considered fairly flexible in terms of employed fuel since the high operating temperature allows direct internal conversion of hydrocarbons to hydrogen. When fed with coal-derived syngas, significant fluctuations in the fuel composition are expected; hence, the study of the fuel cell response to sudden composition changes is a problem of interest. The fuel manifold is an essential component of a fuel cell system, since every change in the fuel upstream is delayed through the manifold before impacting the fuel cell performance. An accurate model of the manifold is extremely important to determine how the fuel cell can handle fuel composition variations. In this work, a real-time model of a fuel manifold for a SOFC stack was developed. The model included a fuel valve, a pipe, and a distribution system of the fuel in the channels, and it was incorporated in a previously developed real-time, distributed model of a SOFC. Darcy equation for pressure losses and ideal gas law for the fuel properties were employed, ensuring the required computational time of 30 ms could be met. A parametric analysis was performed varying the geometry and the fuel conditions (composition, mass flow rate, temperature, and pressure) in order to ensure the validity of the assumptions in the operative range of interest. The residence time in the manifold volume was evaluated with the model, and a composition change was applied to the inlet fuel in order to analyze the time delay. These aspects appeared to be very critical in a view of real-time control of the fuel cell dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії