Статті в журналах з теми "Mount Isa Province"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Mount Isa Province.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-16 статей у журналах для дослідження на тему "Mount Isa Province".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Simpson, Janelle, and Graham Heinson. "Tectonic framework of the southern Mount Isa Province." ASEG Extended Abstracts 2018, no. 1 (December 2018): 1–4. http://dx.doi.org/10.1071/aseg2018abm3_3g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Williams, P. J. "Metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province; preface." Economic Geology 93, no. 8 (December 1, 1998): 1119–0. http://dx.doi.org/10.2113/gsecongeo.93.8.1119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williams, Patrick J. "An introduction to the metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province." Economic Geology 93, no. 8 (December 1, 1998): 1120–31. http://dx.doi.org/10.2113/gsecongeo.93.8.1120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Beard, Charles D., Nicholas Arndt, Richard Lynch, and Jamin Cristall. "Cover Mapping with Passive Seismics at the Boulia Prospect, Mount Isa Province, Queensland, Australia." First Break 40, no. 6 (June 1, 2022): 89–96. http://dx.doi.org/10.3997/1365-2397.fb2022052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walter, M. R., I. N. Krylov, and M. D. Muir. "Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia." Alcheringa: An Australasian Journal of Palaeontology 12, no. 2 (January 1988): 79–106. http://dx.doi.org/10.1080/03115518808618998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wecker, H. R. B., V. Ziolkowski, and G. D. Powis. "NEW GAS DISCOVERIES IN THE NORTHERN COOPER BASIN." APPEA Journal 36, no. 1 (1996): 104. http://dx.doi.org/10.1071/aj95006.

Повний текст джерела
Анотація:
Over the last two decades, minimal gas exploration was undertaken in the northeastern Cooper Basin. It was viewed the area held negligible gas potential due to the perceived absence of conventional anticlinal traps and the marginal reservoir quality of the Permian sandstones.With the award of permit ATP 549P to Mount Isa Mines Limited in mid-1993, available seismic and well data were reviewed to highlight potential fault-controlled traps in the region and to define areas likely to contain more favourable reservoir sandstones. A vibroseis seismic survey provided the initial prospects and leads inventory upon which the 1994 drilling program was based. Four prospects were tested resulting in three gas discoveries.Based on these encouraging results, an additional phase of seismic acquisition was completed to increase the prospect inventory. Thereafter, a five well program was undertaken. Whilst the two appraisal wells were successful, three wildcat wells failed due to ineffective trapping.A completion and testing program has been initiated to further evaluate the field discoveries.From an exploration viewpoint, the recognition of a consistently productive sandstone in the basal Toolachee Formation within a broad fairway across the eastern ATP 549P permit block was a significant result which has important implications for future activities. Within the fairway, gas flows varying from 0.4 MMcfd up to 6.0 MMcfd were measured on openhole tests. In addition, substantial gas volumes in low permeability sandstones within the Patchawarra Formation have been defined.These discoveries, coupled with the number of prospects and leads and the proposed gas pipeline to Mount Isa and to southeast Queensland markets, provide strong impetus to the continued evaluation of this northern extension of the Cooper Basin gas province.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rieger, Philip, Joseph M. Magnall, Sarah A. Gleeson, Richard Lilly, Alexander Rocholl, and Christof Kusebauch. "Sulfur Isotope Constraints on the Conditions of Pyrite Formation in the Paleoproterozoic Urquhart Shale Formation and George Fisher Zn-Pb-Ag Deposit, Northern Australia." Economic Geology 115, no. 5 (August 1, 2020): 1003–20. http://dx.doi.org/10.5382/econgeo.4726.

Повний текст джерела
Анотація:
Abstract The Carpentaria province (McArthur basin and Mount Isa inlier) in northern Australia is one of the most important districts for clastic-dominated (CD-type) massive sulfide deposits. The George Fisher Zn-Pb-Ag deposit, located in this province, is hosted by the carbonaceous Urquhart Shale Formation (ca. 1654 Ma) in a region that has an active history of metamorphism and tectonism. In this study, paragenetically constrained pyrite in samples from the George Fisher deposit and unmineralized Urquhart Shale have been analyzed in situ using secondary ion mass spectrometry (SIMS) of sulfur isotopes (δ34S values). Samples were taken from four drill cores through the main orebodies at George Fisher and one drill core through correlative, unmineralized Urquhart Shale (Shovel Flats area). Five generations of pyrite were identified at George Fisher and record a protracted history of sulfate reduction under diagenetic and subsequent hydrothermal conditions: (1) fine-grained, subhedral-spheroidal pyrite (Py-0), (2) coarse-grained, anhedral pyrite (Py-1) associated with ore-stage 1 sphalerite and galena, (3) coarse-grained, euhedral pyrite (Py-2) associated with ore-stage 2 sphalerite, galena, and pyrrhotite, (4) massive subhedral to euhedral pyrite (Py-3) associated with ore-stage 3 chalcopyrite, pyrrhotite, galena, and sphalerite, and (5) coarse-grained euhedral pyrite (Py-euh), which occurs only in unmineralized rocks. In the unmineralized Shovel Flats drill core, only Py-0 and Py-euh are present. Whereas pre-ore pyrite (Py-0) preserves negative δ34S values (–8.1 to 11.8‰), the ore-stage pyrites (Py-1, Py-2, and Py-3) have higher δ34S values (7.8–33.3, 1.9–12.7, and 23.4–28.2‰, respectively). The highest δ34S values (7.2–33.9‰) are preserved in Py-euh. In combination with petrographic observations, the δ34S values of pyrite provide evidence of three different processes responsible for the reduction of sulfate at George Fisher. Reduced sulfur in fine-grained pyrite (Py-0) formed via microbial sulfate reduction (MSR) under open-system conditions prior to the first generation of hydrothermal pyrite (Py-1) in ore-stage 1, which most likely formed via thermochemical sulfate reduction (TSR). During deformation, previously formed sulfide phases were then recycled and replaced during a second hydrothermal event (ore-stage 2), resulting in intermediate sulfur isotope values. Another syndeformational hydrothermal Cu event, involving a sulfate-bearing fluid, formed ore-stage 3 via TSR. This study demonstrates that the fine-grained pyrite formed pre-ore under conditions open to sulfate and outlines the role of multiple stages of sulfide formation in producing high-grade Zn-Pb-Ag orebodies in the Mount Isa inlier.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Page, R. W., C. H. H. Conor, B. P. J. Stevens, G. M. Gibson, W. V. Preiss, and P. N. Southgate. "Correlation of Olary and Broken Hill Domains, Curnamona Province: Possible Relationship to Mount Isa and Other North Australian Pb-Zn-Ag-Bearing Successions." Economic Geology 100, no. 4 (June 1, 2005): 663–76. http://dx.doi.org/10.2113/100.4.663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gibson, G. M., A. J. Meixner, I. W. Withnall, R. J. Korsch, L. J. Hutton, L. E. A. Jones, J. Holzschuh, R. D. Costelloe, P. A. Henson, and E. Saygin. "Basin architecture and evolution in the Mount Isa mineral province, northern Australia: Constraints from deep seismic reflection profiling and implications for ore genesis." Ore Geology Reviews 76 (July 2016): 414–41. http://dx.doi.org/10.1016/j.oregeorev.2015.07.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Korsch, Russell, Heike Struckmeyer, Alison Kirkby, Laurie Hutton, Lidena Carr, Kinta Hoffmann, Richard Chopping, et al. "Energy potential of the Millungera Basin: a newly discovered basin in north Queensland." APPEA Journal 51, no. 1 (2011): 295. http://dx.doi.org/10.1071/aj10020.

Повний текст джерела
Анотація:
Deep seismic reflection surveys in north Queensland that were collected in 2006 and 2007 discovered a previously unknown sedimentary basin, now named the Millungera Basin, which is completely covered by a thin succession of sediments of the Jurassic–Cretaceous, Eromanga-Carpentaria Basin. Interpretation of regional aeromagnetic data suggests that the basin could have areal dimensions of up to 280 km by 95 km. Apart from regional geophysical data, virtually no confirmed geological information exists on the basin. To complement the seismic data, new magnetotelluric data have been acquired on several lines across the basin. An angular unconformity between the Eromanga and Millungera basins indicates that the upper part of the Millungera Basin was eroded prior to deposition of the Eromanga-Carpentaria Basin. Both the western and eastern margins of the Millungera Basin are truncated by thrust faults, with well-developed hangingwall anticlines occurring above the thrusts at the eastern margin. The basin thickens slightly to the east, to a maximum preserved subsurface depth of ˜3,370 m. Using sequence stratigraphic principles, three discrete sequences have been mapped. The geometry of the stratigraphic sequences, the post-depositional thrust margins, and the erosional unconformity at the top of the succession all indicate that the original succession across much of the basin was thicker–by up to at least 1,500 m–than preserved today. The age of the Millungera Basin is unknown, but petroleum systems modelling has been carried out using two scenarios, that is, that the sediment fill is equivalent in age to (1) the Neoproterozoic-Devonian Georgina Basin, or (2) the Permian–Triassic Lovelle Depression of the Galilee Basin. Using the Georgina Basin analogue, potential Cambrian source rocks are likely to be mature over most of the Millungera Basin, with significant generation and expulsion of hydrocarbons occurring in two phases, in response to Ordovician and Cretaceous sediment loading. For the Galilee Basin analogue, potential Permian source rocks are likely to be oil mature in the central Millungera Basin, but immature on the basin margins. Significant oil generation and expulsion probably occurred during the Triassic, in response to late Permian to Early Triassic sediment loading. Based on the seismic and potential field data, several granites are interpreted to occur immediately below the Millungera Basin, raising the possibility of hot rock geothermal plays. Depending on its composition, the Millungera Basin could provide a thermal blanket to trap any heat which is generated. 3D inversion of potential field data suggests that the inferred granites range from being magnetic to nonmagnetic, and felsic (less dense) to more mafic. They may be part of the Williams Supersuite, which is enriched in uranium, thorium and potassium, and exposed just to the west, in the Mount Isa Province. 3D gravity modelling suggests that the inferred granites have a possible maximum thickness of up to 5.5 km. Therefore, if granites with the composition of the Williams Supersuite occur beneath the Millungera Basin, in the volumes indicated by gravity inversions, then, based on the forward temperature modelling, there is a good probability that the basin is prospective for geothermal energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sutarja, I. N., M. D. W. Ardana, and S. P. Gustave. "Disaster risk reduction of mount agung cold lava flood at the Bali cultural centre in Klungkung Regency." IOP Conference Series: Earth and Environmental Science 989, no. 1 (February 1, 2022): 012012. http://dx.doi.org/10.1088/1755-1315/989/1/012012.

Повний текст джерела
Анотація:
Abstract The Bali Province Government plans the development of Bali Cultural Centre as a comprehensive cultural information centre to support the development of Culture-oriented Bali Tourism. The Bali Cultural Centre site is situated in an area of post-mining remnants in Klungkung Regency. The sites located at coordinates 8°32‘41.35” - 8°34‘30.94” South Latitude and 115°24‘54.92” - 115°26‘6.99” East Longitude. This site is also portion of estuary area of the Unda River which has a high potential for the danger of cold lava flood from the Mount Agung eruption. The structure to manage cold lava floods at the Unda River estuary is being conducted. The construction is divided into two locations which design to satisfactory a 50-year design flood with discharge of 1436.11 m3 per second. The first location is at upstream (north side of Prof. Ida Bagus Mantra Street) using a single rectangular cross section. The second location is at downstream (south area of Prof. Ida Bagus Mantra Street) using a combine double rectangular cross section. These two types of cross sections are designed to accommodate the capacity of water discharge under normal conditions and still able to drain water discharge in the 50-year return period. The presence of this channel allows the cold lava flood flow directly towards the sea-shore and so as to reduce the risk. It is possible that the sediments settle at the base of the channel, therefore, channel shape normalization and periodic dredging for maintenance are essential.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Amin, Questan, Hemn Zhahir, and Ahmed Shaker. "Variation of egg proteins between bird varieties by using SDS-PAGE." Al-Anbar Journal of Veterinary Sciences 12, no. 1 (June 20, 2019): 68–73. http://dx.doi.org/10.37940/ajvs.2019.12.1.8.

Повний текст джерела
Анотація:
Proteins are essential constituents of all organisms; both egg white proteins and egg yolk are source of protein. The aim of this study was conducted to perform preliminary studies to analyses and compare egg white proteins and yolk proteins from different avian species (guineafowl, dwarf hens, local hen, Shami, turkey, duck, geese, partridge and quail) via or with SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis ). 18 Fresh eggs of different poultry species (guineafowl, dwarf hens, local hen, Shami, turkey, duck, geese, partridge and quail) were collected from various farms in the Sulaimani province. Data on egg proteins were analyzed using Statistical Xlstate used for dendrogram construction and PCA. The main egg white proteins were Ovomicin, Ovotransferrin, Ovalbumin, Flavoprotein, α- chymotrypsinogen, and Trypsin inhibitor. The main lipoproteins were Apovitellenin VI, Apovitellenin Vb, Apovitellenin V, Apovitellenin IIIa, Apovitellenin III, Apovitellin 7, B-Livetin, Apovitellenin IIa, Apovitellenin II, and Apovitellenin I. All these lipoproteins were observed in the nine birds species. The egg white proteins and yolk lipoproteins for nine species were examined. It can be concluded the large differences were found in a mount of egg white proteins and yolk lipoproteins of the nine species of birds.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Widodo, Edi, and H. Hastuti. "Local Wisdom in Responding to Disaster of Merapi Eruption: Case Study of Wonolelo Village." Geosfera Indonesia 4, no. 3 (November 25, 2019): 264. http://dx.doi.org/10.19184/geosi.v4i3.14066.

Повний текст джерела
Анотація:
The people who live in the Merapi area have been going on for years. Merapi is the most active volcano in Central Java that can threaten the community, but the community still exists today, of course, having local wisdom in responding to the eruption of Merapi. This study aims to determine the local wisdom of Wonolelo Village before, during, and after the Merapi eruption. In addition, to find out the historical relationship of the Merapi eruption to local wisdom and the challenges faced by Wonolelo Village in maintaining the sustainability of local wisdom. This research was used as a descriptive qualitative method. The method of collecting data is done through observation, in-depth interviews, and documentation. Data sources of this study are community leaders, spiritual leaders, and people who are more than 70 years old. Analysis of the data used is sourced triangulation based on the Miles & Huberman model. The results showed that local wisdom in responding to the Merapi eruption in Wonolelo Village still exists today. Local wisdom is divided into three segments, namely before, during, and after the eruption of Merapi. Local wisdom before the Merapi eruption is a notification that Merapi eruption activity will occur. Local wisdom in Wonolelo Village has challenges in the form of modernization and not running the local wisdom relay to young people. Keywords: Disaster, Local wisdom, Merapi volcano. References Andreastuti, S.D., Newhall, C., Dwiyanto, J. (2006). Menelusuri Kebenaran Letusan Gunung Merapi 1006. Jurnal Geologi Indonesia, Vol. 1, No. 4, Hal. 201-207. Andreastuti, S., Paripurno, E., Gunawan, H., Budianto, A., Syahbana, D., & Pallister, J. (2019). Character of community response to volcanic crises at sinabung and kelud volcanoes. Journal of Volcanology and Geothermal Research, 382, 298-310. doi:10.1016/j.jvolgeores.2017.01.022 Atmojo, S. E., Rusilowati, A., Dwiningrum, S. I. A., & Skotnicka, M. (2018). The reconstruction of disaster knowledge through thematic learning of science, environment, technology, and society integrated with local wisdom. Jurnal Pendidikan IPA Indonesia, 7(2), 204-213. doi:10.15294/jpii.v7i2.14273 Bencana, B. N. P. (2010). Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 17 Tahun 2010 Tentang Pedoman Umum Penyelenggaraan Rehabilitasi dan Rekonstruksi Pasca Bencana. Jakarta: BNPB. Bencana, B. P. B. (2010). Badan Nasional Penanggulangan Daerah. Magelang: BPBD. Geologi, BPPTK (2018). Badan Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi. Jakarta: BPPTKG Geologi, BPPTK (2019). Badan Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi. Jakarta: BPPTKG Bardintzeff, J.M. (1984). Merapi volcano (java, Indonesia) and merapi type nuee ardente. Bull volcanol, Vol. 47, No. 3, Hal. 432-446. Boyolali, B. P. S. K. (2018). Kabupaten Boyolali dalam Angka. Boyolali : Badan Pusat Statistik Cahyadi, A. (2013). Pengelolaan lingkungan zamrud khatulistiwa. Yogyakarta: Pintal. Cho, S.E., Won, S., & Kim, S. (2016). Living in harmony with disaster: exploring volcanic hazard vulnerability in Indonesia. Sustainability, Vol. 8, Hlm. 1-13. Daly, P. (2015). Embedded wisdom or rooted problems? aid workers' perspectives on local social and political infrastructure in post-tsunami aceh. Disasters, 39(2), 232-257. doi:10.1111/disa.12105 Dibyosaputro, S., Hadmoko, D.S., Cahyadi, A., & Nugraha, H. (2016). Gunung merapi: kebencanaan dan pengurangan risikonya. Yogyakarta: Badan Penerbit Fakultas Geografi (BPFG) Universitas Gadjah Mada. Fatkhan, M. (2006). Kearifan lingkungan masyarakat lereng gunung merapi. Aplikasia, Jurnal Aplikasi Ilmu-ilmu Agama, Vol. 7, No. 2, Desember, Hal. 107-121. Gertisser, R., Charbonnier, S.J., Keller, J., & Quidelleur, X. (2012). The geological evolution of Merapi vulcano, Central Java, Indonesia. Bull Volcanol, Vol. 74. Hal. 1213-1233. Haba, J. (2008). Bencana alam dalam perspektif lokal dan perspektif kristiani. LIPI, Vol. 34, No. 1, Hal. 25-49. Hardoyo, S.R., Marfai, M.A., Ni’mah, N.M., Mukti, R.Y., Zahro, Q., & Halim, A. (2011). Strategi adaptasi masyarakat terhadap bencana banjir rob di pekalongan. Yogyakarta: Magister Perencanaan Pengelolaan Pesisir dan Daerah Aliran Sungai, Cahaya Press. Ikeda, S., & Nagasaka, T. (2011). An emergent framework of disaster risk governance towards innovating coping capability for reducing disaster risks in local communities. International Journal of Disaster Risk Science, 2(2) doi:10.1007/s13753-011-0006-7 Inaotombi, S., & Mahanta, P. C. (2019). Pathways of socio-ecological resilience to climate change for fisheries through indigenous knowledge. Human and Ecological Risk Assessment, 25(8), 2032-2044. doi:10.1080/10807039.2018.1482197 Klaten, B. P. S. K. (2018). Kabupaten Klaten dalam Angka. Klaten : Badan Pusat Statistik Kusumasari, B., & Alam, Q. (2012). Local wisdom-based disaster recovery model in indonesia. Disaster Prevention and Management: An International Journal, 21(3), 351-369. doi:10.1108/09653561211234525 Lestari, P., Kusumayudha, S. B., Paripurno, E. T., & Jayadianti, H. (2016). Environmental communication model for disaster mitigation of mount sinabung eruption karo regency of north sumatra. Information (Japan), 19(9B), 4265-4270. Magelang, B. P. S. K. (2018). Kabupaten Magelang dalam Angka. Boyolali : Badan Pusat Statistik Marfai, M.A. (2011). Jakarta flood hazard and community participation on disaster preparedness. Prosiding dalam seminar Community preparedness and disaster management, center for religious and cross-cultural studies, UGMI, no. 2/2011 (december), Hlm, 209-221. Marfai, M.A., & Hizbaron, D.R. (2011). Community’s adaptive capacity due to coastal flooding in semarang coastal city, Indonesia. International Journal of Seria Geografie, Annals of the Univeristy of Oradea. E-ISSN 2065-1619. Year XX. Mulyaningsih, S., Sampurno, Zaim, Y., Puradimaja, D.J., Bronto, S., & Siregar, D.A. (2006). Perkembangan geologi pada kuwarter awal sampai masa sejarah di dataran yogyakarta. Jurnal Geologi Indonesia, Vol. 1, No. 2, Juni, Hal. 103-113. Permana, S. A., Setyowati, D. L., Slamet, A., & Juhadi. (2017). Society management in manage economic after merapi disaster. International Journal of Applied Business and Economic Research, 15(7), 1-10 Preece, K., Gertisser, R., Barclay, J., Berlo, K., Herd, R.A., & Facility, E.I.M. (2014). Pre and syneruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of merapi volcano, indonesia. Contrib Mineral Petrol, Vol. 168: No. 1061, Hal. 1-25, DOI 10.1007/s00410-014-1061-z. Ridwan, N.A. (2007). Landasan keilmuan kearifan lokal. Jurnal study islam dan budaya, Vol. 5, No. 1. Hlm. 27-38. Rokib, M. (2013). Teologi Bencana: Studi Santri Tanggap Bencana. Yogyakarta: Buku Pintal. Sawangan, B. P. S. K. (2018). Kecamatan Sawangan dalam Angka. Sawangan : Badan Pusat Statistik Setiawan, B., Innatesari, D. K., Sabtiawan, W. B., & Sudarmin, S. (2017). The development of local wisdom-based natural science module to improve science literation of students. Jurnal Pendidikan IPA Indonesia, 6(1), 49-54. doi:10.15294/jpii.v6i1.9595 Sibarani, R. (2013). Pembentukan karakter berbasis kearifan lokal. Online, http://www.museum.pusaka.nias.org/2013/02/pembentukan-karakter-berbasis-kearifan.html. Diunduh tanggal 10 october 2019. Sleman, B. P. S. K. (2018). Kabupaten Sleman dalam Angka. Sleman : Badan Pusat Statistik Syahputra, H. (2019). Indigenous knowledge representation in mitigation process: A study of communities’ understandings of natural disasters in aceh province, indonesia. Collection and Curation, 38(4), 94-102. doi:10.1108/CC-11-2017-0046 Voight, B., Constantine, E.K., Siswowidjoyo, S., & Torley, R. (2000). Historical eruptions of merapi vulcano, Central Java, Indonesia, 1768-1998. Journal of Volcanology and Geothermal Research, Vol. 100, Hal. 69–138. Wilson, T.; Kaye, G., Stewart, C. and Cole, J. (2007). Impacts of the 2006 eruption of merapi volcano, Indonesia, on agriculture and infrastructure. GNS Science Report, 2007/07 Hal. 1-69. Copyright (c) 2019 Geosfera Indonesia Journal and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Huston, David L., David C. Champion, Karol Czarnota, Jingming Duan, Matthew Hutchens, Suzanne Paradis, Mark Hoggard, et al. "Zinc on the edge—isotopic and geophysical evidence that cratonic edges control world-class shale-hosted zinc-lead deposits." Mineralium Deposita, December 3, 2022. http://dx.doi.org/10.1007/s00126-022-01153-9.

Повний текст джерела
Анотація:
Abstract The North Australian Zinc Belt is the largest zinc-lead province in the world, containing three of the ten largest known individual deposits (HYC, Hilton-George Fisher, and Mount Isa). The Northern Cordillera in North America is the second largest zinc-lead province, containing a further two of the world’s top ten deposits (Red Dog and Howards Pass). Despite this world-class endowment, exploration in both mineral provinces during the past 2 decades has not been particularly successful, yielding only two significant discoveries (Teena, Australia, and Boundary, Canada). One of the most important aspects of exploration is to choose mineral provinces and districts within geological belts that have the greatest potential for discovery. Here, we present results from these two zinc belts that highlight previously unused datasets for area selection and targeting. Lead isotope mapping using analyses of mineralized material has identified gradients in μ (238U/204Pb) that coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the lithosphere-asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. Furthermore, gradients in upward-continued gravity anomalies and a step in Moho depth correspond to a pre-existing major crustal boundary in both zinc belts. A spatial association of deposits with a linear mid- to lower-crustal resistivity anomaly from magnetotelluric data is also observed in the North Australian Zinc Belt. The change from thicker to thinner lithosphere is interpreted to localize prospective basins for zinc-lead mineralization and to control the gradient in lead isotope and geophysical data. These data, when combined with data indicative of paleoenvironment and changes in plate motion at the time of mineralization, provide new exploration criteria that can be used to identify prospective mineralized basins and define the most favorable parts of these basins.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Davidson, G. J., and G. H. Dixon. "Two sulphur isotope provinces deduced from ores in the Mount Isa Eastern Succession, Australia." Mineralium Deposita 27, no. 1 (January 1992). http://dx.doi.org/10.1007/bf00196078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Anenburg, Michael, John A. Mavrogenes, and Vickie C. Bennett. "The Fluorapatite P–REE–Th Vein Deposit at Nolans Bore: Genesis by Carbonatite Metasomatism." Journal of Petrology 61, no. 1 (January 2020). http://dx.doi.org/10.1093/petrology/egaa003.

Повний текст джерела
Анотація:
Abstract Nolans Bore is a rare earth element (REE) ore deposit in the Reynolds Range, Aileron Province, Northern Territory, Australia. It consists primarily of fluorapatite and alteration products thereof, surrounded by a diopside-dominated selvage. Previously considered to form via hydrothermal fluids, we now suggest that the deposit formed by a metasomatic reaction between a mantle-derived carbonatite and granulite-facies felsic host rocks, after peak metamorphism. REE patterns of fluorapatite are strongly light REE (LREE) enriched, convex with maxima at Ce to Nd, and contain a weak negative Eu anomaly. Textural and geochemical properties of the fluorapatite are consistent with its formation from a carbonatite liquid. Sinusoidal REE patterns in diopside along with strong Yb–Lu enrichment relative to coexisting titanite are suggestive of derivation from a Ca-rich carbonatite. Likewise, hyalophane present in the selvages forms by reaction of a BaCO3 component in the carbonatite with K-feldspar in the silicate host rocks. The overall morphology of Nolans Bore is consistent with carbonatite–silicate reaction experiments, with the carbonatite itself migrating elsewhere owing to the open-system nature of Nolans Bore. Ekanite veins in massive fluorapatite zones and allanite–epidote crusts on fluorapatite in contact with the diopside selvages formed by hydrothermal fluids exsolved from the carbonatite. Minor interstitial calcite was not igneous but was the last mineral to crystallize from the carbonatite-exsolved fluid. Y/Ho ratios qualitatively trace the transition from mantle-dominated igneous minerals to later low-temperature hydrothermal minerals. Rb–Sr and Sm–Nd analyses of unaltered minerals (fluorapatite, allanite, calcite) show that the carbonatite had homogeneous initial 87Sr/86Sr ≈ 0·7054 and εNd ≈ –4 at 1525 Ma, the best age estimate of the mineralization. Fluorapatite–allanite Sm–Nd dating results in an age of 1446 ± 140 Ma, consistent with forming soon after the end of the Chewings Orogeny. Neodymium depleted mantle model ages are older than 2 Ga, indicating the presence of recycled crustal material within the source. We suggest that the carbonatite was sourced from a mantle enriched by subduction of LREE-rich oceanic crustal rocks, marine sediments, and phosphorites, potentially from the south, or the Mount Isa area to the east. Nolans Bore represents the root zone of a now-eroded carbonatite. Other Nolans-type deposits (Hoidas Lake, Canada and Kasipatnam, India) are similarly hosted within siliceous granulite-facies rocks in regions with a long tectonic history, suggesting common processes that led to the formation of all three deposits. The REE-rich compositions of the mid-crustal Nolans Bore fluorapatite are the cumulates hypothesized to cause REE depletion in some unmineralized carbonatites. The rocks at Nolans Bore demonstrate that carbonatites, previously thought to be mostly unreactive, can undergo modification and modify the composition of the silicate rocks which they encounter, forming an ‘antiskarn’. At igneous temperatures, the resulting mineral assemblage (other than fluorapatite) consists of diopside and titanite, both of which are common in granulite-facies rocks. Therefore, carbonatite metasomatism can remain unnoticed if the resulting assemblage does not contain distinctively carbonatitic minerals.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії