Зміст
Добірка наукової літератури з теми "Moteur à détonation rotative"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Moteur à détonation rotative".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Moteur à détonation rotative"
Nyamba, Isaïe, Alexis M. W. Nembot, Charles B. Sombié, Hermine Zimé Diawara, Josias B. G. Yaméogo, and Anna Lechanteur. "Utilisation du polyéthylène glycol 8000 comme plastifiant pour le développement de dispersions solides à base d’acide ellagique et d’Eudragit® EPO par extrusion à chaud." Journal Africain de Technologie Pharmaceutique et Biopharmacie (JATPB) 2, no. 3 (December 20, 2023). http://dx.doi.org/10.57220/jatpb.v2i3.122.
Повний текст джерелаДисертації з теми "Moteur à détonation rotative"
Gaillard, Thomas. "Étude numérique du fonctionnement d’un moteur à détonation rotative." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC011/document.
Повний текст джерелаThis thesis pertains to the domain of numerical simulation for propulsion applications. The rotating detonation engine (RDE) appears to be a good candidate to replace our current means of propulsion thanks to the increase of the thermodynamic efficiency. To preserve the advantage given by the detonation mode, the injector must provide the best possible mixing of the propellants together with acceptable total pressure losses. This numerical study deals with developing and optimizing an injector adapted to the operation of a RDE. Injection of gaseous H2 and O2 at stoichiometric ratio is considered to be suitable for rocket propulsion application. The first goal is to propose an efficient injector design so that the mixing between the propellants is maximized. The second goal is to perform simulations of the mixing process in the chamber by LES (Large Eddy Simulation) computations. The third goal consists in computing the propagation of a rotating detonation (RD) fed by different injectors in premixed and separate regimes. This study allows the comparison of two injection elements. The first one uses the principle of semi-impinging jets of H2 and O2. The second one represents an improved configuration. RD simulations with both injectors provide similar results when premixed injection is considered. The part of the injected mixture that burns by deflagration is 30% and the detonation velocity remains close the theoretical CJ velocity. In the regime of separate injection of H2 and O2, the improved injector enables to keep a high mixing efficiency in the chamber whereas the semi-impingement injector produces a strong stratification of the propellants in the chamber. As a consequence, the detonation velocity is close to the CJ velocity with the improved injector and limited to 80% of the CJ velocity with the semi-impingement injector
Strempfl, Patrick. "LES des moteurs à détonation rotative : sensibilité et physique." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP073.
Повний текст джерелаTo increase the efficiency of thermal engines, new pressure-gain combustion systems are the subject of extensive studies over the last years. Rotating Detonation Engines (RDE) constitute an example of such systems, where a self-sustained detonation continuously consumes fuel in a typically annular combustion chamber. Experimental investigation of these engines is extremely difficult, hence numerical methods are used to further explore the processes governing these types of engines. A powerful tool to analyse the flow in Rotating Detonation Engines are Large Eddy Simulations (LES), but literature has shown that their implementation is not straightforward. Various groups use simplifications (e.g. perfect premixing, geometrical 2D representations of the chamber) and numerical high-fidelity analysis comparing mixing assumptions, numerical schemes or chemical schemes in full scale configurations are not commonly found in literature.This thesis investigates strategies for 3D LES of a full RDE tested at TU Berlin and the influence of various modelling parameters on the simulation results. This is done by first deriving a reliable 1-step chemical scheme for the correct prediction of detonation and deflagration properties. Second a reliable initialization procedure is developed and two postprocessing indices for evaluating the mixture quality (I_mix) and the detonation efficiency (I_det) are introduced to further quantify the results of the simulations.Results confirm that mixing plays a significant role in the performance of RDEs and must be accurately reproduced in LES the capture the essential features of RDEs. The manuscript also highlights the impact that the chemical and numerical schemes can have on the detonation dynamics inside RDEs. Finally, the simulations show the importance of deflagration in the overall RDE combustor, implying that chemistry models need to account for deflagration properties as well as for detonation to capture the efficiency of RDEs and reveal that all cases lose a high amount of fuel to non-detonative combustion.Based on the sensitivity study, a numerical master setup is designed and simulations are performed. The results are validated by comparing the experimental detonation wave speed and estimated pressure gain. The LES overpredicts the experimental detonation wave speed by 21%. The LES also confirms the absence of pressure gain in the TUB configuration.This thesis shows that LES can be used to understand the dynamics and stabilization mechanisms as well as overall performance of RDE systems. However, it also highlights the current limitations of the method and the many areas where the LES community has to shift the focus on for predictive LES of RDEs
Canteins, Gabriel. "Etude de la détonation continue rotative - Application à la propulsion." Phd thesis, Université de Poitiers, 2006. http://tel.archives-ouvertes.fr/tel-00124803.
Повний текст джерелаLes observations expérimentales montrent l'existence d'un régime de fronts réactifs continus. Les études paramétriques sur le fonctionnement et la géométrie du moteur mettent en évidence la constance de ce régime de fronts. Leur nombre, constant en phase stationnaire, est généralement compris entre 1 et 8 selon les conditions d'essai, leur célérité évolue peu entre 1000 et 1300 m/s et le rapport de pression à travers les fronts est proche de 2 ou 3. Les caractéristiques de ce régime (pression, célérité) sont nettement inférieures aux propriétés des détonations Chapman – Jouguet principalement car le brassage du mélange frais avec les gaz brûlés dégrade ses propriétés réactives. La faisabilité du moteur à détonation continue a été démontrée mais ses performances devront faire l'objet d'autres études pour en préciser l'intérêt en propulsion.
Daniau, Emeric. "Contribution à l'étude des performances d'un moteur à détonation pulsée." Poitiers, 2001. http://www.theses.fr/2001POIT2335.
Повний текст джерелаEude, Yohann. "Développement d'un outil de simulation numérique des écoulements réactifs sur maillage auto-adaptatif et son application à un moteur à détonation continue." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00702569.
Повний текст джерелаHansmetzger, Sylvain. "Etude des modes de rotation continue d'une détonation dans une chambre annulaire de section constante ou croissante." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0002/document.
Повний текст джерелаOur study aims at improving the understanding of how a detonation may continuously rotate. It is focused on rotation modes in an annular chamber with constant or linearly increasing normal section. The functioning principle is based on the continuous injection of fresh reactive gases so as to regenerate a reactive layer ahead of the detonation front and maintain sufficient conditions for detonation propagation. The main incentive of the work is the development of propulsive devices that use detonation as the combustion mode (Rotating Detonation Engine, RDE). We have designed and built an experimental test bench of which the main part is an annular chamber with inner diameter 50 mm length 90 mm, and thickness 5 or 10 mm. The chamber can be equipped with cylindrical or conical kernels with lengths ranging between 12 mm and 90 mm and, for the conical kernels, with the apex half-angles ranging between 0± and 14.6±. The fuel is ethylene and the oxidizer is a mixture of oxygen and nitrogen, and they are injected separately in the chamber. We have considered several nitrogen concentrations so as to vary the reactive mixture detonability. The characterizations of the detonation regimes, velocities and pressures are based upon the analyses of signals from pressure transducers and of direct light visualizations from high-speed cameras. Our experimental results detail the ignition phase, the combustion modes and their stability. We have carried out experiments with several detonabilities, mass-flow rates and kernel geometries. Our main finding is that modifying the kernel geometry, specifically decreasing the kernel length and increasing its conicity (the apex half-angle) significantly improve detonation velocities and pressures, unlike the first two parameters that have much lesser influences, in our conditions. We have conducted a numerical analysis that suggests that dilution and heating of the fresh gases by detonation products explain the measured deficits of pressure and velocity. We have presented a calculation of thermodynamic efficiency which, contrary to former modeling includes a more realistic structure of rotating detonation.We have proposed a calculation of detonation-front height for the rotation modes and the chamber geometries in this work. Our study thus demonstrates the interest in further research work on inner geometry of rotating-detonation chambers and on phenomena that may be responsible for efficiency losses