Добірка наукової літератури з теми "MONTE-CARLO TRACK STRUCTURE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MONTE-CARLO TRACK STRUCTURE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MONTE-CARLO TRACK STRUCTURE"
Toburen, Larry H. "Challenges in Monte Carlo track structure modelling." International Journal of Radiation Biology 88, no. 1-2 (May 19, 2011): 2–9. http://dx.doi.org/10.3109/09553002.2011.574781.
Повний текст джерелаDouglass, Michael, Scott Penfold, and Eva Bezak. "Preliminary Investigation of Microdosimetric Track Structure Physics Models in Geant4-DNA and RITRACKS." Computational and Mathematical Methods in Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/968429.
Повний текст джерелаEndo, S., E. Yoshida, H. Nikjoo, S. Uehara, M. Hoshi, M. Ishikawa, and K. Shizuma. "A Monte Carlo track structure code for low energy protons." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 194, no. 2 (August 2002): 123–31. http://dx.doi.org/10.1016/s0168-583x(02)00497-4.
Повний текст джерелаPater, Piotr, Jan Seuntjens, Issam El Naqa, and Mario A. Bernal. "On the consistency of Monte Carlo track structure DNA damage simulations." Medical Physics 41, no. 12 (November 18, 2014): 121708. http://dx.doi.org/10.1118/1.4901555.
Повний текст джерелаDíaz-Díaz, Jorge A., Eugenio Torres-García, Rigoberto Oros-Pantoja, Liliana Aranda Lara, and Patricia Vieyra-Reyes. "New track-structure Monte Carlo code for 4D ionizing photon transport." Radiation Effects and Defects in Solids 173, no. 7-8 (June 28, 2018): 567–77. http://dx.doi.org/10.1080/10420150.2018.1484744.
Повний текст джерелаPasciak, A. S., and J. R. Ford. "High-speed evaluation of track-structure Monte Carlo electron transport simulations." Physics in Medicine and Biology 53, no. 19 (September 9, 2008): 5539–53. http://dx.doi.org/10.1088/0031-9155/53/19/018.
Повний текст джерелаEmfietzoglou, D., A. Akkerman, and J. Barak. "New Monte Carlo calculations of charged particle track-structure in silicon." IEEE Transactions on Nuclear Science 51, no. 5 (October 2004): 2872–79. http://dx.doi.org/10.1109/tns.2004.835061.
Повний текст джерелаNikjoo, H., P. O'Neill, M. Terrissol, and D. T. Goodhead. "Quantitative modelling of DNA damage using Monte Carlo track structure method." Radiation and Environmental Biophysics 38, no. 1 (May 12, 1999): 31–38. http://dx.doi.org/10.1007/s004110050135.
Повний текст джерелаSattinger, D., and Y. S. Horowitz. "Track structure calculations in LiF:Mg,Ti: A Monte Carlo study of the ‘track escape’ parameter." Radiation Measurements 43, no. 2-6 (February 2008): 185–89. http://dx.doi.org/10.1016/j.radmeas.2007.12.024.
Повний текст джерелаUehara, Shuzo, and Hooshang Nikjoo. "Monte Carlo Track Structure Code for Low-Energy Alpha-Particles in Water." Journal of Physical Chemistry B 106, no. 42 (October 2002): 11051–63. http://dx.doi.org/10.1021/jp014004h.
Повний текст джерелаДисертації з теми "MONTE-CARLO TRACK STRUCTURE"
Coghill, Matthew Taylor. "Radiobiological modeling using track structure analysis." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44731.
Повний текст джерелаLiamsuwan, Thiansin. "Development of Monte Carlo track structure simulations for protons and carbon ions in water." Doctoral thesis, Stockholms universitet, Fysikum, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-81461.
Повний текст джерелаAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Submitted.
Lee, Brian. "A Monte Carlo investigation of radiation damage to chromatin fibers and production of DNA double strand breaks using Geant4-DNA code." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53106.
Повний текст джерелаPasciak, Alexander Samuel. "The development of a high speed solution for the evaluation of track structure Monte Carlo electron transport problems using field programmable gate arrays." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2558.
Повний текст джерелаDos, Santos Morgane. "Modélisation de la topologie des dépôts d’énergie créés par un rayonnement ionisant à l’échelle nanométrique dans les noyaux cellulaires et relation avec les événements précoces radio-induits." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14865/document.
Повний текст джерелаIonizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionising radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nanometric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity.In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell nuclei morphology or also chromatin condensation. The results presented in this work have allowed the quantification of the influence of these different parameters in the number and complexity of directs DNA damages which can then contribute to the late effects on cell fate
Bäckström, Gloria. "Protons, other Light Ions, and 60Co Photons : Study of Energy Deposit Clustering via Track Structure Simulations." Doctoral thesis, Uppsala universitet, Avdelningen för sjukhusfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206385.
Повний текст джерелаVillegas, Navarro Fernanda. "Micro/nanometric Scale Study of Energy Deposition and its Impact on the Biological Response for Ionizing Radiation : Brachytherapy radionuclides, proton and carbon ion beams." Doctoral thesis, Uppsala universitet, Medicinsk strålningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-279385.
Повний текст джерелаKanike, Vanaja. "“Acid-spike” effect in spurs/tracks of the low/high linear energy transfer radiolysis of water : potential implications for radiobiology and nuclear industry." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9711.
Повний текст джерелаAbstract : Hydronium ions (H3O+) are formed within spurs or tracks of the low or high linear energy transfer (LET) radiolysis of pure, deaerated water at early times. The in situ radiolytic formation of H3O+ renders the spur and track regions temporarily more acid than the surrounding medium. Although experimental evidence for an acidic spur has already been reported, there is only fragmentary information on its magnitude and time dependence. In this work, spur or track H3O+ concentrations and the corresponding pH values are obtained from our calculated yields of H3O+ as a function of time, using Monte Carlo track chemistry simulations. We selected four impacting ions and we used two different spur and track models: 1) an isolated “spherical” spur model characteristic of low-LET radiation and 2) an axially homogeneous “cylindrical” track model for high-LET radiation. Very good agreement was found between our calculated time evolution of G(H3O+) in the radiolysis of pure, deaerated water by 300-MeV incident protons (which mimic 60Co gamma/fast electron irradiation) and the available experimental data at 25 °C. For all cases studied, an abrupt transient acid pH effect, which we call an “acid spike”, is observed during and shortly after the initial energy release. This acid-spike effect is virtually unexplored in water or in a cellular environment subject to the action of ionizing radiation, especially high-LET radiation. In this regard, this work raises a number of questions about the potential implications of this effect for radiobiology, some of which are briefly evoked. Our calculations were then extended to examine the effect of temperature from 25 to 350 °C on the yield of H3O+ ions that are formed in spurs of the low-LET radiolysis of water. The results showed an increasingly acidic spike response at higher temperatures. As many in-core processes in a water-cooled nuclear reactor critically depend on pH, the question here is whether these variations in acidity, even highly localized and transitory, contribute to material corrosion and damage.
Petrolli, Lorenzo. "A CONVERGENT AND MULTISCALE ASSESSMENT OF DNA DAMAGE BY PARTICLE RADIATION." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/338714.
Повний текст джерелаMustaree, Shayla. "The •OH scavenging effect of bromide ions on the yield of H[subscript 2]O[subscript 2] in the radiolysis of water by [superscript 60]Co γ-rays and tritium β-particles at room temperature : a Monte Carlo simulation study". Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8183.
Повний текст джерелаRésumé: Les simulations Monte Carlo constituent une approche théorique efficace pour étudier la chimie sous rayonnement de l'eau et des solutions aqueuses. Dans ce travail, nous avons utilisé ces simulations pour comparer l’action de deux types de rayonnement, à savoir, le rayonnement γ de [indice supérieur 60]Co (électrons de Compton ~1 Me V) et les électrons β du tritium (~ 7,8 keV), sur la radiolyse de l’eau et des solutions aqueuses diluées de bromure. Les ions Br- sont connus comme d’excellents capteurs des radicaux hydroxyles •OH, précurseurs du peroxyde d’hydrogène H[indice inférieur 2]O[indice inférieur 2]. Les simulations Monte Carlo nous ont donc permis de déterminer les rendements (ou valeurs G) de H[indice inférieur 2]O[indice inférieur 2] à 25 °C pour les deux types de rayonnements étudiés, le premier à faible transfert d'énergie linéaire (TEL) (~0,3 keV/μm) et le second à haut TEL (~6 keV/μm). L’étude a été menée pour différentes concentrations d’ions Br-, à la fois en présence et en absence d'oxygène. Les simulations ont montré que l’irradiation par les électrons β du tritium favorisait nettement la formation de H[indice inférieur 2]O[indice inférieur 2] comparativement aux rayons γ du cobalt. Ces changements ont pu être reliés aux différences qui existent dans les distributions spatiales initiales des espèces radiolytiques (i.e., la structure des trajectoires d'électrons, les électrons β du tritium déposant leur énergie sous forme de «trajectoires courtes» de nature cylindrique, et les électrons Compton produits par la radiolyse γ formant principalement des «grappes» de géométrie plus ou moins sphérique). Les simulations ont montré également que la présence d'oxygène, capteur d’électrons hydratés et d’atomes H• sur l'échelle de temps de ~10[indice supérieur -7] s (i.e., avant la fin des grappes), protégeait H[indice inférieur 2]O[indice inférieur 2] d’éventuelles réactions subséquentes avec ces espèces. Une telle «protection» conduit ainsi à une augmentation de G(H[indice inférieur 2]O[indice inférieur 2]) à temps longs. Enfin, en milieu tant désaéré qu’aéré, les rendements en H[indice inférieur 2]O[indice inférieur 2] obtenus lors de la radiolyse par les électrons β du tritium ont été trouvés plus facilement supprimés que lors de la radiolyse γ. Ces différences dans l’efficacité de capture des précurseurs de H[indice inférieur 2]O[indice inférieur 2] ont été interprétées par les différences quantitatives dans la chimie intervenant dans les trajectoires courtes et les grappes. Un excellent accord a été obtenu avec les données expérimentales existantes.
Частини книг з теми "MONTE-CARLO TRACK STRUCTURE"
Nikjoo, H., S. Uehara, I. K. Khvostunov, and F. A. Cucinotta. "Track Structure in Molecular Radiation Biology." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 251–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_40.
Повний текст джерелаTurner, J. E., R. N. Hamm, R. H. Ritchie, and W. E. Bolch. "Monte Carlo Track-Structure Calculations for Aqueous Solutions Containing Biomolecules." In Computational Approaches in Molecular Radiation Biology, 155–66. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9788-6_11.
Повний текст джерелаEmfietzoglou, D. "Inelastic Cross-Sections for Use in Monte Carlo Track Structure Codes." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 273–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_43.
Повний текст джерелаHugtenburg, Richard P. "Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy." In Radiation Damage in Biomolecular Systems, 301–11. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2564-5_18.
Повний текст джерелаDingfelder, M., and W. Friedland. "Basic Data for Track Structure Simulations: Electron Interaction Cross-Sections in Liquid Water." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 267–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_42.
Повний текст джерелаGrosswendt, B. "The Track Structure of Photons, Electrons and α-Particles from the Point of View of the Formation of Ionization Clusters." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 237–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_39.
Повний текст джерелаNikjoo, Hooshang, and Shuzo Uehara. "Comparison of Various Monte Carlo Track Structure Codes for Energetic Electrons in Gaseous and Liquid Water." In Computational Approaches in Molecular Radiation Biology, 167–85. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9788-6_12.
Повний текст джерелаSifre, Sergi Pérez, and Roman Lenner. "Evaluating the influence of daily truck traffic flow on load effects using Monte Carlo simulations." In Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, 2165–69. CRC Press, 2019. http://dx.doi.org/10.1201/9780429426506-373.
Повний текст джерелаТези доповідей конференцій з теми "MONTE-CARLO TRACK STRUCTURE"
Fang, Genshen, Weichiang Pang, and Yaojun Ge. "Flutter Fragility Analysis of Long-Span Bridges Based on 3D Typhoon Model Using Geographically Weighted Regression." In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.1775.
Повний текст джерелаFang, X., and J. Tang. "Granular Damping Analysis Using a Direct Simulation Monte Carlo Approach." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14448.
Повний текст джерелаCrews, John H., Ralph C. Smith, and Jennifer C. Hannen. "Development of Robust Control Algorithms for Shape Memory Alloy Bending Actuators." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7989.
Повний текст джерелаGokulakrishnan, Ponnuthurai, Jiankun Shao, Michael Klassen, David Davidson, and Ronald Hanson. "The Effect of Nitrogen Impurities on Oxy-Fuel Combustion Under Supercritical-CO2 Conditions." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81576.
Повний текст джерелаЗвіти організацій з теми "MONTE-CARLO TRACK STRUCTURE"
Turner, J. E., R. N. Hamm, R. H. Ritchie, and W. E. Bolch. Monte Carlo track-structure calculations for aqueous solutions containing biomolecules. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10192405.
Повний текст джерелаWilson, W. E., Miller. J. H., and D. J. Lynch. Final Report: Monte Carlo Track-Structure Simulations for Low-LET Selected-Cell Radiation Studies. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/840862.
Повний текст джерелаBichsel, H. Monte Carlo calculations of track structures. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/244506.
Повний текст джерелаAmela, R., R. Badia, S. Böhm, R. Tosi, C. Soriano, and R. Rossi. D4.2 Profiling report of the partner’s tools, complete with performance suggestions. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.023.
Повний текст джерела