Статті в журналах з теми "Monolithic sensor"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Monolithic sensor.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Monolithic sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tabata, O., H. Inagaki, and I. Igarashi. "Monolithic pressure-flow sensor." IEEE Transactions on Electron Devices 34, no. 12 (December 1987): 2456–62. http://dx.doi.org/10.1109/t-ed.1987.23335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deng, W., G. Aglieri Rinella, M. Aresti, J. Baudot, F. Benotto, S. Beole, W. Bialas, et al. "Design of an analog monolithic pixel sensor prototype in TPSCo 65 nm CMOS imaging technology." Journal of Instrumentation 18, no. 01 (January 1, 2023): C01065. http://dx.doi.org/10.1088/1748-0221/18/01/c01065.

Повний текст джерела
Анотація:
Abstract A series of monolithic active pixel sensor prototypes (APTS chips) were manufactured in the TPSCo 65 nm CMOS imaging process in the framework of the CERN-EP R&D on monolithic sensors and the ALICE ITS3 upgrade project. Each APTS chip contains a 4 × 4 pixel matrix with fast analog outputs buffered to individual pads. To explore the process and sensor characteristics, various pixel pitches (10 µm–25 µm), geometries and reverse biasing schemes were included. Prototypes are fully functional with detailed sensor characterization ongoing. The design will be presented with some experimental results also correlating to some transistor measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Zheng Yuan, Cao Yang, Yong Mei, Zhi Cheng Feng, Xiao Gang Li, Jian Gen Li, and Guo Xiang Hu. "A Monolithic Integrated Pressure Sensor." Key Engineering Materials 503 (February 2012): 8–11. http://dx.doi.org/10.4028/www.scientific.net/kem.503.8.

Повний текст джерела
Анотація:
pressure sensor, CrSi resistor networks, temperature compensation. Abstract. In this paper, focused on especial requirement monolithic integrated resistance pressure sensor, pressure structure, signal processing circuits and process compatible technology of sensor and IC were studied. The feebleness pressure signal monitoring circuits was designed, high precision CrSi resistor networks was used for temperature compensation of resistance pressure sensor, and a monolithic integrated pressure sensor only 2.3×2.3mm2 was obtained. The measuring results are as follows, measurement range is 5-115kPa, the maximum Vout is more than 4.5V, sensitivity is 1.2%.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, Hao, Marion K. Matters-Kammerer, and Peter G. M. Baltus. "Power-Reduced Monolithic Wireless Sensor." IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2, no. 2 (June 2018): 116–22. http://dx.doi.org/10.1109/jerm.2018.2825226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Asano, Shogo, Yasuyuki Nakano, Toru Fukuda, and Yoshiro Tomikawa. "Subminiature Monolithic Piezoelectric Gyro-Sensor." Japanese Journal of Applied Physics 41, Part 1, No. 5B (May 30, 2002): 3389–95. http://dx.doi.org/10.1143/jjap.41.3389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cecconi, L., F. Piro, J. L. A. de Melo, W. Deng, G. H. Hong, W. Snoeys, M. Mager, et al. "Design and readout architecture of a monolithic binary active pixel sensor in TPSCo 65 nm CMOS imaging technology." Journal of Instrumentation 18, no. 02 (February 1, 2023): C02025. http://dx.doi.org/10.1088/1748-0221/18/02/c02025.

Повний текст джерела
Анотація:
Abstract The Digital Pixel Test Structure (DPTS) is a monolithic active pixel sensor prototype chip designed to explore the TPSCo 65 nm ISC process in the framework of the CERN-EP R&D on monolithic sensors and the ALICE ITS3 upgrade. It features a 32 × 32 binary pixel matrix at 15 μm pitch with event-driven readout, with GHz range time-encoded digital signals including Time-Over-Threshold. The chip proved fully functional and efficient in testbeam allowing early verification of the complete sensor to readout chain. This paper focuses on the design, in particular the digital readout and its perspectives with some supporting results.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vicente Leitao, P., G. Aglieri Rinella, S. Bugiel, L. Cecconi, J. L. A. de Melo, G. De Robertis, W. Deng, et al. "Development of a Stitched Monolithic Pixel Sensor prototype (MOSS chip) towards the ITS3 upgrade of the ALICE Inner Tracking system." Journal of Instrumentation 18, no. 01 (January 1, 2023): C01044. http://dx.doi.org/10.1088/1748-0221/18/01/c01044.

Повний текст джерела
Анотація:
Abstract The MOnolithic Stitched Sensor (MOSS) is a development prototype chip towards the ITS3 vertexing detector for the ALICE experiment at the LHC. Designed using a 65 nm CMOS Imaging technology, it aims at profiting from the stitching technique to construct a single-die monolithic pixel detector of 1.4 cm × 26 cm. The MOSS prototype is one of the prototypes developed within the CERN-EP R&D framework to learn how to make stitched wafer-scale sensors with satisfactory yield. This contribution will describe some of the design challenges of a stitched pixel sensor and the techniques adopted during the development of this prototype.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raciti, B., Y. Gao, R. Schimassek, A. Andreazza, Z. Feng, H. Fox, Y. Han, et al. "Characterisation of HV-MAPS ATLASPix3 and its applications for future lepton colliders." Journal of Instrumentation 17, no. 09 (September 1, 2022): C09031. http://dx.doi.org/10.1088/1748-0221/17/09/c09031.

Повний текст джерела
Анотація:
Abstract HV-MAPS are a novel type of CMOS depleted active pixel sensors for ionizing particles, implemented in standard CMOS processes, that have been proposed in several future particle physics experiments for particle tracking. In depleted monolithic sensors, the sensor element is the n-well/p-substrate diode. The sensor matrix and the readout are integrated in one single piece of silicon and the electronics is embedded in shallow wells inside deep n-wells, isolated from the substrate. High voltage biasing increases the depth of the depletion region, improving sensor properties as signal amplitude, charge collection speed and radiation tolerance. ATLASPix3 is the first full reticle size high voltage Monolithic Active Pixel CMOS sensor, designed to meet the specifications of the outer layers of the ATLAS inner tracker (ITk). Its thin design, the excellent position resolution, high readout rate and high radiation tolerance make ATLASPix3 an ideal candidate for large-area tracking detector R&D of future collider experiments such as the Circular Electron Positron Collider (CEPC) silicon tracker.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Davis, Bradford S., Tim Denison, and Jinbo Kuang. "A Monolithic High-G SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations." Shock and Vibration 13, no. 2 (2006): 127–35. http://dx.doi.org/10.1155/2006/793564.

Повний текст джерела
Анотація:
Analog Devices (ADI) has designed and fabricated a monolithic high-g acceleration sensor (ADXSTC3-HG) fabricated with the ADI silicon-on-insulator micro-electro-mechanical system (SOI-MEMS) process. The SOI-MEMS sensor structure has a thickness of 10 um, allowing for the design of inertial sensors with excellent cross-axis rejection. The high-g accelerometer discussed in this paper was designed to measure in-plane acceleration to 10,000 g while subjected to 100,000 g in the orthogonal axes. These requirements were intended to meet Army munition applications. The monolithic sensor was packaged in an 8-pin leadless chip carrier (LCC-8) and was successfully demonstrated by the US Army Research Laboratory (ARL) as part of an inertial measurement unit during an instrumented flight experiment of artillery projectiles launched at 15,000 g.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Xiang-Yuan, Hao Ge, Jing Zhao, Zhi-Fei Chen, Jun Zhang, Ming-Hui Lu, Ming Bao, Yan-Feng Chen, and Xiao-Dong Li. "A monolithic three-dimensional thermal convective acoustic vector sensor with acoustic-transparent heat sink." JASA Express Letters 2, no. 4 (April 2022): 044001. http://dx.doi.org/10.1121/10.0010275.

Повний текст джерела
Анотація:
An acoustic vector sensor can directly detect acoustic particle velocity based on the measured temperature difference between closely spaced heated wires. For the detection of velocity in three dimensions, an integrated three-dimensional (3 D) sensor is desired, but it remains challenging in MEMS (Micro-Electro-Mechanical System) manufacturing. Here, a novel monolithic 3 D acoustic vector sensor is proposed, which is constructed using in-plane distributed wires assembled with acoustically transparent heat sink. The planar MEMS structure of the proposed sensor makes it easy to be fabricated and packaged. This work offers a new method for the design of acoustic vector sensors and other thermal convection-based MEMS sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lalinský, T., Š. Haščík, Ž. Mozolová, L. Grno, J. Kuzmík, and M. Porges. "Monolithic GaAs MESFET power sensor microsystem." Electronics Letters 31, no. 22 (October 26, 1995): 1914–15. http://dx.doi.org/10.1049/el:19951295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sander, Christian, Carsten Leube, Taimur Aftab, Patrick Ruther, and Oliver Paul. "Monolithic Isotropic 3D Silicon Hall Sensor." Sensors and Actuators A: Physical 247 (August 2016): 587–97. http://dx.doi.org/10.1016/j.sna.2016.06.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Eun, Christine Kay, Xin Luo, Jun-Chieh Wang, Zhongmin Xiong, Mark Kushner, and Yogesh Gianchandani. "A Microdischarge-Based Monolithic Pressure Sensor." Journal of Microelectromechanical Systems 23, no. 6 (December 2014): 1300–1310. http://dx.doi.org/10.1109/jmems.2014.2312174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhang, Zhuhong, J. H. Herringer, and N. Djeu. "Monolithic crystalline fiber optic temperature sensor." Review of Scientific Instruments 68, no. 5 (May 1997): 2068–70. http://dx.doi.org/10.1063/1.1148098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Yelkenci, A., S. Qui, M. J. Rossewij, A. Grelli, D. Gajanana, and V. Gromov. "Bandgap reference, temperature sensor and low drop-out regulator circuits monolithic sensors in TPSCo 65 nm ISC technology." Journal of Instrumentation 18, no. 02 (February 1, 2023): C02017. http://dx.doi.org/10.1088/1748-0221/18/02/c02017.

Повний текст джерела
Анотація:
Abstract With Inner Tracking System v3 (ITS3), the ALICE experiment is pursuing a wafer-scale Monolithic Active Pixel Sensor (MAPS). The chip is being developed in TPSCo 65 nm ISC technology which is under study in the framework of CERN EP R&D on monolithic sensors for High Energy Physics (HEP) applications. This contribution presents designs and measurement results of building blocks needed for this chip, in particular bandgap references and temperature sensors. In addition, simulation results of the design of Low Drop-out Regulator (LDO) to be submitted for the next prototyping run will be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Li, Hong Li. "Circuit Design of Micro-Pspice Parameter Acceleration Sensor." Advanced Materials Research 462 (February 2012): 769–74. http://dx.doi.org/10.4028/www.scientific.net/amr.462.769.

Повний текст джерела
Анотація:
This paper describes the use of HuaJing Company Pspice Transistor Division developed a miniature accelerometer parameters and signal processing integrated circuits. This system can be on the surface micromachining process for the production of the sensor signal processing, to achieve monolithic integration, but also the fabrication of bulk silicon sensors for signal processing, and hybrid integration.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Malecha, Karol, Laura Jasińska, Anna Grytsko, Kamila Drzozga, Piotr Słobodzian, and Joanna Cabaj. "Monolithic Microwave-Microfluidic Sensors Made with Low Temperature Co-Fired Ceramic (LTCC) Technology." Sensors 19, no. 3 (January 30, 2019): 577. http://dx.doi.org/10.3390/s19030577.

Повний текст джерела
Анотація:
This paper compares two types of microfluidic sensors that are designed for operation in ISM (Industrial, Scientific, Medical) bands at microwave frequencies of 2.45 GHz and 5.8 GHz. In the case of the first sensor, the principle of operation is based on the resonance phenomenon in a microwave circuit filled with a test sample. The second sensor is based on the interferometric principle and makes use of the superposition of two coherent microwave signals, where only one goes through a test sample. Both sensors are monolithic structures fabricated using low temperature co-fired ceramics (LTCCs). The LTCC-based microwave-microfluidic sensor properties are examined and compared by measuring their responses for various concentrations of two types of test fluids: one is a mixture of water/ethanol, and the other is dopamine dissolved in a buffer solution. The experiments show a linear response for the LTCC-based microwave-microfluidic sensors as a function of the concentration of the components in both test fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kleinfelder, Stuart, Shengdong Li, and Yandong Chen. "Optimization of monolithic charged-particle sensor arrays." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, no. 2 (September 2007): 695–700. http://dx.doi.org/10.1016/j.nima.2007.05.279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kauert, R., W. Budde, and A. Kalz. "A monolithic field segment photo sensor system." IEEE Journal of Solid-State Circuits 30, no. 7 (July 1995): 807–11. http://dx.doi.org/10.1109/4.391120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lai, P. T., Baiyong Liu, Xueren Zheng, Bin Li, Shouyuan Zhang, and Zhaohui Wu. "Monolithic integrated spreading-resistance silicon flow sensor." Sensors and Actuators A: Physical 58, no. 1 (January 1997): 85–88. http://dx.doi.org/10.1016/s0924-4247(97)80228-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Barrettino, D., M. Graf, S. Taschini, S. Hafizovic, C. Hagleitner, and A. Hierlemann. "CMOS Monolithic Metal–Oxide Gas Sensor Microsystems." IEEE Sensors Journal 6, no. 2 (April 2006): 276–86. http://dx.doi.org/10.1109/jsen.2006.870156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Maenaka, Kazusuke, Tatsuro Ohgusu, and Tetsuro Nakamura. "Monolithic integrated magnetic sensor realizing omnidirectional measurement." Electronics and Communications in Japan (Part II: Electronics) 75, no. 3 (1992): 65–75. http://dx.doi.org/10.1002/ecjb.4420750307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Velthuis, Jaap, Yutong Li, Jordan Pritchard, Chiara De Sio, Lana Beck, and Richard Hugtenburg. "Performance of a Full-Scale Upstream MAPS-Based Verification Device for Radiotherapy." Sensors 23, no. 4 (February 6, 2023): 1799. http://dx.doi.org/10.3390/s23041799.

Повний текст джерела
Анотація:
Intensity-modulated radiotherapy is a widely used technique for accurately targeting cancerous tumours in difficult locations using dynamically shaped beams. This is ideally accompanied by real-time independent verification. Monolithic active pixel sensors are a viable candidate for providing upstream beam monitoring during treatment. We have already demonstrated that a Monolithic Active Pixel Sensor (MAPS)-based system can fulfill all clinical requirements except for the minimum required size. Here, we report the performance of a large-scale demonstrator system consisting of a matrix of 2 × 2 sensors, which is large enough to cover almost all radiotherapy treatment fields when affixed to the shadow tray of the LINAC head. When building a matrix structure, a small dead area is inevitable. Here, we report that with a newly developed position algorithm, leaf positions can be reconstructed over the entire range with a position resolution of below ∼200 μm in the centre of the sensor, which worsens to just below 300 μm in the middle of the gap between two sensors. A leaf position resolution below 300 μm results in a dose error below 2%, which is good enough for clinical deployment.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Karandashev S. A., Klimov A. A., Lukhmyrina T. S., Matveev B. A., Remennyi M. A. та Usikova A. A. "On-chip ATR sensor (λ = 3.4 μm) based on InAsSbP/InAs double heterostructure for the determination of ethanol concentration in aqueous solutions". Optics and Spectroscopy 130, № 8 (2022): 986. http://dx.doi.org/10.21883/eos.2022.08.54772.3236-22.

Повний текст джерела
Анотація:
We discuss photoelectrical properties of an on-chip attenuated total reflection (ATR) sensor for the ethanol concentration measurements in an aqueous solution. The on-chip sensor/microchip was made from a p-InAsSbP/n-InAs monolithic double heterostructure with three mesas/individual diodes grown on a single n+-InAs substrate/waveguide. Two heterostructure diodes were used as photodiodes, while the third one - as a LED. The ethanol concentration was measured via an algorithm based on analysis of the I-V characteristic parameters of a photodiode and the L-I characteristics of the LED. Keywords: photodiodes in the mid-IR range, LEDs in the mid-IR range, on-chip sensor, optical sensors, ATR sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cai, Shengran, Wei Li, Hongshuo Zou, Haifei Bao, Kun Zhang, Jiachou Wang, Zhaohui Song, and Xinxin Li. "Design, Fabrication, and Testing of a Monolithically Integrated Tri-Axis High-Shock Accelerometer in Single (111)-Silicon Wafer." Micromachines 10, no. 4 (March 29, 2019): 227. http://dx.doi.org/10.3390/mi10040227.

Повний текст джерела
Анотація:
In this paper, a monolithic tri-axis piezoresistive high-shock accelerometer has been proposed that has been single-sided fabricated in a single (111)-silicon wafer. A single-cantilever structure and two dual-cantilever structures are designed and micromachined in one (111)-silicon chip to detect Z-axis and X-/Y-axis high-shock accelerations, respectively. Unlike the previous tri-axis sensors where the X-/Y-axis structure was different from the Z-axis one, the herein used similar cantilever sensing structures for tri-axis sensing facilitates design of uniform performance among the three elements for different sensing axes and simplifies micro-fabrication for the multi-axis sensing structure. Attributed to the tri-axis sensors formed by using the single-wafer single-sided fabrication process, the sensor is mechanically robust enough to endure the harsh high-g shocking environment and can be compatibly batch-fabricated in standard semiconductor foundries. After the single-sided process to form the sensor, the untouched chip backside facilitates simple and reliable die-bond packaging. The high-shock testing results of the fabricated sensor show linear sensing outputs along X-/Y-axis and Z-axis, with the sensitivities (under DC 5 V supply) as about 0.80–0.88 μV/g and 1.36 μV/g, respectively. Being advantageous in single-chip compact integration of the tri-axis accelerometers, the proposed monolithic tri-axis sensors are promising to be embedded into detection micro-systems for high-shock measurement applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wang, Wenhua, Xinlei Zhou, Weina Wu, Jihua Chen, Shenlong He, Weifeng Guo, Junbin Gao, Shaoxin Huang, and Xuanhua Chen. "Monolithic Structure-Optical Fiber Sensor with Temperature Compensation for Pressure Measurement." Materials 12, no. 4 (February 13, 2019): 552. http://dx.doi.org/10.3390/ma12040552.

Повний текст джерела
Анотація:
In this paper, an optical fiber pressure sensor cascading a diaphragm-assisted Fabry-Perot interferometer (FPI) and a fiber Bragg grating (FBG) is proposed and demonstrated. The sensor comprises an optical fiber, a fused-silica ferrule, and a fused-silica diaphragm. We use a femtosecond laser firstly to fabricate a pit on the end face of the ferrule and then investigate the laser heat conduction welding and deep penetration welding technology for manufacturing the seepage pressure sensor of the all-fused-silica material. We develop a sensor based on a monolithic structured FPI without adhesive bonding by means of all-laser-welding. The pressure characteristics of the sensor have good linearity at different temperatures. Also, the monolithic structured sensor possesses excellent resolution, hysteresis, and long-term stability. The environmental temperature obtained by the FBG is employed to compensate for the difference in seepage pressure at different temperatures, and the difference in seepage pressure responses at different temperatures is shown to be very small after temperature compensation.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhao, Shuai, and Rong Zhu. "Monolithic Integration of a Flexible Micro Thermal Flow Sensor." Applied Mechanics and Materials 748 (April 2015): 89–92. http://dx.doi.org/10.4028/www.scientific.net/amm.748.89.

Повний текст джерела
Анотація:
In this paper, a novel monolithically integrated flexible thermal flow sensor combining four resistors in a Wheatstone bridge including hot-film resistor, temperature-compensating resistor and two other balancing resistors on one chip is proposed in order to improve the system integration level and sensor performances, such as signal to noise ratio (SNR), power consumption and temperature compensation. Fabricating the sensor directly on a flexible polyimide printed circuit board (PCB) by incorporating printed circuit technique with micromachining sputter technique is adopted. A complete performance test on the flow sensor demonstrates its superiorities on power consumption, SNR and temperature drift, the error of which is eliminated from 43% to 8% over a range of ambient temperature (35–75°C).
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zuehlke, Hans‐Ulrich, and Mandy Gebhardt. "Cost‐Effective Production of Integrated Monolithic Sensor Packages." PhotonicsViews 18, no. 2 (April 2021): 32–35. http://dx.doi.org/10.1002/phvs.202100032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Masek, J., A. Ishida, H. Zogg, C. Maissen, and S. Blunier. "Monolithic photovoltaic PbS-on-Si infrared-sensor array." IEEE Electron Device Letters 11, no. 1 (January 1990): 12–14. http://dx.doi.org/10.1109/55.46915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Claus, G., C. Colledani, W. Dulinski, D. Husson, R. Turchetta, J. L. Riester, G. Deptuch, G. Orazi, and M. Winter. "Particle tracking using CMOS monolithic active pixel sensor." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, no. 1 (June 2001): 120–24. http://dx.doi.org/10.1016/s0168-9002(01)00368-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Le Traon, Olivier. "Mechanical decoupling device for monolithic differential vibrating sensor." Journal of the Acoustical Society of America 125, no. 4 (2009): 2467. http://dx.doi.org/10.1121/1.3117302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Achigui, Hervé F., Mohamad Sawan, and Christian J. B. Fayomi. "A monolithic based NIRS front-end wireless sensor." Microelectronics Journal 39, no. 10 (October 2008): 1209–17. http://dx.doi.org/10.1016/j.mejo.2008.01.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kakerow, R., Y. Manoli, W. Mokwa, M. Rospert, H. Meyer, H. Drewer, J. Krause, and K. Cammann. "A monolithic sensor array of individually addressable microelectrodes." Sensors and Actuators A: Physical 43, no. 1-3 (May 1994): 296–301. http://dx.doi.org/10.1016/0924-4247(93)00693-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Jin, Xiaoxia, Yue Huang, Andrew Mason, and Xiangqun Zeng. "Multichannel Monolithic Quartz Crystal Microbalance Gas Sensor Array." Analytical Chemistry 81, no. 2 (January 15, 2009): 595–603. http://dx.doi.org/10.1021/ac8018697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Afridi, M. Y., J. S. Suehle, M. E. Zaghloul, D. W. Berning, A. R. Hefner, R. E. Cavicchi, S. Semancik, C. B. Montgomery, and C. J. Taylor. "A monolithic CMOS microhotplate-based gas sensor system." IEEE Sensors Journal 2, no. 6 (December 2002): 644–55. http://dx.doi.org/10.1109/jsen.2002.807780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Li, Dan, Tao Zhao, Zhenchuan Yang, and Dacheng Zhang. "Monolithic integration of a micromachined piezoresistive flow sensor." Journal of Micromechanics and Microengineering 20, no. 3 (February 18, 2010): 035024. http://dx.doi.org/10.1088/0960-1317/20/3/035024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Soluch, Waldemar, and Tadeusz Wrobel. "Monolithic Crystal Filter for Application in Viscosity Sensor." IEEE Sensors Journal 15, no. 10 (October 2015): 6005–9. http://dx.doi.org/10.1109/jsen.2015.2451217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Shin, Jaeho, Buseong Jeong, Jinmo Kim, Vu Binh Nam, Yeosang Yoon, Jinwook Jung, Sukjoon Hong, et al. "Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration." Advanced Materials 32, no. 2 (November 7, 2019): 1905527. http://dx.doi.org/10.1002/adma.201905527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tang, Siqi, Jiang Yan, Jing Zhang, Shuhua Wei, Qingzhu Zhang, Junjie Li, Min Fang, et al. "Fabrication of Low Cost and Low Temperature Poly-Silicon Nanowire Sensor Arrays for Monolithic Three-Dimensional Integrated Circuits Applications." Nanomaterials 10, no. 12 (December 11, 2020): 2488. http://dx.doi.org/10.3390/nano10122488.

Повний текст джерела
Анотація:
In this paper, the poly-Si nanowire (NW) field-effect transistor (FET) sensor arrays were fabricated by adopting low-temperature annealing (600 °C/30 s) and feasible spacer image transfer (SIT) processes for future monolithic three-dimensional integrated circuits (3D-ICs) applications. Compared with other fabrication methods of poly-Si NW sensors, the SIT process exhibits the characteristics of highly uniform poly-Si NW arrays with well-controlled morphology (about 25 nm in width and 35 nm in length). Conventional metal silicide and implantation techniques were introduced to reduce the parasitic resistance of source and drain (SD) and improve the conductivity. Therefore, the obtained sensors exhibit >106 switching ratios and 965 mV/dec subthreshold swing (SS), which exhibits similar results compared with that of SOI Si NW sensors. However, the poly-Si NW FET sensors show the Vth shift as high as about 178 ± 1 mV/pH, which is five times larger than that of the SOI Si NW sensors. The fabricated poly-Si NW sensors with 600 °C/30 s processing temperature and good device performance provide feasibility for future monolithic three-dimensional integrated circuit (3D-IC) applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Sieberer, P., C. Zhang, T. Bergauer, R. Casanova, C. Irmler, N. Karim, J. Mazorra de Cos, B. Pilsl, and E. Vilella. "RD50-MPW3: a fully monolithic digital CMOS sensor for future tracking detectors." Journal of Instrumentation 18, no. 02 (February 1, 2023): C02061. http://dx.doi.org/10.1088/1748-0221/18/02/c02061.

Повний текст джерела
Анотація:
Abstract The CERN-RD50 CMOS working group develops the RD50-MPW series of monolithic high-voltage CMOS pixel sensors for potential use in future high luminosity experiments such as the HL-LHC and FCC-hh. In this contribution, the design of the latest prototype in this series, RD50-MPW3, is presented. An overview of its pixel matrix and digital readout periphery is given, with discussion of the new structures implemented in the chip and the problems they aim to solve. The main analogue and digital features of the sensor are already tested and initial laboratory characterisation of the chip is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Crescenzi, Rocco, Giuseppe Vincenzo Castellito, Simone Quaranta, and Marco Balucani. "Design of a Tri-Axial Surface Micromachined MEMS Vibrating Gyroscope." Sensors 20, no. 10 (May 15, 2020): 2822. http://dx.doi.org/10.3390/s20102822.

Повний текст джерела
Анотація:
Gyroscopes are one of the next killer applications for the MEMS (Micro-Electro-Mechanical-Systems) sensors industry. Many mature applications have already been developed and produced in limited volumes for the automotive, consumer, industrial, medical, and military markets. Plenty of high-volume applications, over 100 million per year, have been calling for low-cost gyroscopes. Bulk silicon is a promising candidate for low-cost gyroscopes due to its large scale availability and maturity of its manufacturing industry. Nevertheless, it is not suitable for a real monolithic IC integration and requires a dedicated packaging. New designs are supposed to eliminate the need for magnets and metal case package, and allow for a real monolithic MEMS-IC (Integrated Circuit) electronic system. In addition, a drastic cost reduction could be achieved by utilizing off-the-shelf plastic packaging with lead frames for the final assembly. The present paper puts forward the design of a novel tri-axial gyroscope based on rotating comb-drives acting as both capacitive sensors and actuators. The comb-drives are comprised of a single monolithic moving component (rotor) and fixed parts (stators). The former is made out of different concentrated masses connected by curved silicon beams in order to decouple the motion signals. The sensor was devised to be fabricated through the PolyMUMPs® process and it is intended for working in air in order to semplify the MEMS-IC monolithic integration.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Shen, Lulu, Bo Yang, Yingwu Yang, Xuelin Yang, Wenwei Zhu, and Qingzhong Wang. "Real-Time Monitoring for Monolithic Movement of a Heritage Curtilage Using Wireless Sensor Networks." Buildings 12, no. 11 (October 25, 2022): 1785. http://dx.doi.org/10.3390/buildings12111785.

Повний текст джерела
Анотація:
Since monolithic movement is considered a promising technology to relocate historical buildings, corresponding real-time monitoring is of great interest due to the buildings’ age and poor structural integrity. However, the related paperwork and practical applications are still limited. This paper describes a wireless sensor network (WSN)-based strategy as a non-invasive approach to monitor heritage curtilage during monolithic movement. The collected data show that the inclination of the curtilage is almost negligible. With the aid of finite element simulation, it was found that the crack displacement curves changed from −0.02 to 0.07 mm, which is affected by moving direction while the value is not enough to cause structural cracks. The deformation of the steel underpinning beam, which is used to reinforce masonry walls and wooden pillars, is obviously related to the stiffness in different directions. Additionally, the strain variations of the steel chassis, which bear the vertical loads from wooden pillars and masonry walls, are less than 0.04%. This indicates that they are kept within the elastic range during monolithic movement. This work has proved that the WSN-based approach has the potential to be applied as an effective route in real-time monitoring of the monolithic movement of an historic building.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Jobert, Gabriel, Pierre Barritault, Maryse Fournier, Cyrielle Monpeurt, Salim Boutami, Cécile Jamois, Pietro Bernasconi, Andrea Lovera, Daniele Braga, and Christian Seassal. "Miniature Optical Particle Counter and Analyzer Involving a Fluidic-Optronic CMOS Chip Coupled with a Millimeter-Sized Glass Optical System." Sensors 21, no. 9 (May 3, 2021): 3181. http://dx.doi.org/10.3390/s21093181.

Повний текст джерела
Анотація:
Our latest advances in the field of miniaturized optical PM sensors are presented. This sensor combines a hybrid fluidic-optronic CMOS (holed retina) that is able to record a specific irradiance pattern scattered by an illuminated particle (scattering signature), while enabling the circulation of particles toward the sensing area. The holed retina is optically coupled with a monolithic, millimeter-sized, refracto-reflective optical system. The latter notably performs an optical pre-processing of signatures, with a very wide field of view of scattering angles. This improves the sensitivity of the sensors, and simplifies image processing. We report the precise design methodology for such a sensor, as well as its fabrication and characterization using calibrated polystyrene beads. Finally, we discuss its ability to characterize particles and its potential for further miniaturization and integration.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zhou, Xu Hua, Shi Liu Xu, and Zheng Yuan Zhang. "High-Performance Readout Circuit for Monolithic Integrated Pressure Sensor." Applied Mechanics and Materials 130-134 (October 2011): 4216–19. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.4216.

Повний текст джерела
Анотація:
A readout circuit with high sensitivity and high linearity is proposed in this paper. The applied pressure is sensed by Wheatstone bridge which can reduce the adverse effect of temperature. As the applied pressure changes from 15kPa to 115kPa, the sensitivity of the bridge is 0.36mV/kPa. The current source of the circuit can provide a current with a positive coefficient which can compensate for the inherent high-temperature loss of sensitivity of the Piezoresistive Bridge. Three high-precision operational amplifiers with symmetrical input and rail-to-rail output are used to process the output signal of the bridge. It can provide high CMRR with 123.8dB, open loop gain is 110dB and the output swings from 36.41mV to 4.953mV as the power supply is 5V. A thin film resistors network can compensate for the zero pressure offset and sensitivity by trimming. The high sensitivity of the bridge and the high linearity of the proposed circuit make the readout circuit suitable for monolithically integrated pressure sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhao, D. Q., Xia Zhang, P. Liu, F. Yang, C. Lin, and D. C. Zhang. "Fabrication of Monolithic Integrated Bimaterial Resonant Uncooled IR Sensor." Key Engineering Materials 543 (March 2013): 176–79. http://dx.doi.org/10.4028/www.scientific.net/kem.543.176.

Повний текст джерела
Анотація:
In this work we studied the fabrication of a monolithic bimaterial micro-cantilever resonant IR sensor with on-chip drive circuits. The effects of high temperature process and stress induced performance degradation were investigated. The post-CMOS MEMS (micro electro mechanical system) fabrication process of this IR sensor is the focus of this paper, starting from theoretical analysis and simulation, and then moving to experimental verification. The capacitive cantilever structure was fabricated by surface micromachining method, and drive circuits were prepared by standard CMOS process. While the stress introduced by MEMS films, such as the tensile silicon nitride which works as a contact etch stopper layer for MOSFETs and releasing stop layer for the MEMS structure, increases the electron mobility of NMOS, PMOS hole mobility decreases. Moreover, the NMOS threshold voltage (Vth) shifts, and transconductance (Gm) degrades. An additional step of selective removing silicon nitride capping layer and polysilicon layer upon IC area were inserted into the standard CMOS process to lower the stress in MOSFET channel regions. Selective removing silicon nitride and polysilicon before annealing can void 77% Vth shift and 86% Gm loss.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Cohen, D. A., E. J. Skogen, H. Marchand, and L. A. Coldren. "Monolithic chemical sensor using heterodyned sampled grating DBR lasers." Electronics Letters 37, no. 22 (2001): 1358. http://dx.doi.org/10.1049/el:20010927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Schaadt, D. M., E. T. Yu, S. Sankar, and A. E. Berkowitz. "A monolithic field-effect-transistor-amplified magnetic field sensor." Applied Physics Letters 75, no. 5 (August 2, 1999): 731–33. http://dx.doi.org/10.1063/1.124496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kuo, F. Y., C. Y. Lin, P. C. Chuang, C. L. Chien, Y. L. Yeh, and Stella K. A. Wen. "Monolithic Multi-Sensor Design With Resonator-Based MEMS Structures." IEEE Journal of the Electron Devices Society 5, no. 3 (May 2017): 214–18. http://dx.doi.org/10.1109/jeds.2017.2666821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Chavan, A. V., and K. D. Wise. "A monolithic fully-integrated vacuum-sealed CMOS pressure sensor." IEEE Transactions on Electron Devices 49, no. 1 (2002): 164–69. http://dx.doi.org/10.1109/16.974763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mattiazzo, S., M. Battaglia, D. Bisello, M. Caselle, P. Chalmet, N. Demaria, P. Giubilato, et al. "LePIX: First results from a novel monolithic pixel sensor." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 718 (August 2013): 288–91. http://dx.doi.org/10.1016/j.nima.2012.10.098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії