Добірка наукової літератури з теми "Momentum-energy conservation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Momentum-energy conservation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Momentum-energy conservation"

1

Ares de Parga, G., R. E. González-Narvaez, and R. Mares. "Conservation of the Energy-Momentum." International Journal of Theoretical Physics 56, no. 10 (August 1, 2017): 3213–31. http://dx.doi.org/10.1007/s10773-017-3489-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Zhao-Yan. "Gravitational Energy-Momentum and Conservation of Energy-Momentum in General Relativity." Communications in Theoretical Physics 65, no. 6 (June 1, 2016): 716–30. http://dx.doi.org/10.1088/0253-6102/65/6/716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

van den Heuvel, B. M. "Energy‐momentum conservation in gauge theories." Journal of Mathematical Physics 35, no. 4 (April 1994): 1668–87. http://dx.doi.org/10.1063/1.530563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bak, Dongsu, D. Cangemi, and R. Jackiw. "Energy-momentum conservation in gravity theories." Physical Review D 49, no. 10 (May 15, 1994): 5173–81. http://dx.doi.org/10.1103/physrevd.49.5173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GOLDMAN, T. "NEUTRINO OSCILLATIONS AND ENERGY–MOMENTUM CONSERVATION." Modern Physics Letters A 25, no. 07 (March 7, 2010): 479–87. http://dx.doi.org/10.1142/s0217732310032706.

Повний текст джерела
Анотація:
A description of neutrino oscillation phenomena is presented which is based on relativistic quantum mechanics with four-momentum conservation. This is different from both conventional approaches which arbitrarily use either equal energies or equal momenta for the different neutrino mass eigenstates. Both entangled state and source dependence aspects are also included. The time dependence of the wave function is found to be crucial to recovering the conventional result to second order in the neutrino masses. An ambiguity appears at fourth order which generally leads to source dependence, but the standard formula can be promoted to this order by a plausible convention.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Miao. "Energy–momentum conservation and holographic S-matrix." Nuclear Physics B 568, no. 1-2 (February 2000): 195–207. http://dx.doi.org/10.1016/s0550-3213(99)00656-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guo, D., T. E. Knight, and J. K. McCusker. "Angular Momentum Conservation in Dipolar Energy Transfer." Science 334, no. 6063 (December 22, 2011): 1684–87. http://dx.doi.org/10.1126/science.1211459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zandi, Omid, Zahra Atlasbaf, and Mohammad Sadegh Abrishamian. "Combined Electromagnetic Energy and Momentum Conservation Equation." IEEE Transactions on Antennas and Propagation 58, no. 11 (November 2010): 3585–92. http://dx.doi.org/10.1109/tap.2010.2071340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nissani, Noah, and Elhanan Leibowitz. "Global energy-momentum conservation in general relativity." International Journal of Theoretical Physics 28, no. 2 (February 1989): 235–45. http://dx.doi.org/10.1007/bf00669815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moradpour, H., J. P. Morais Graça, I. P. Lobo, and I. G. Salako. "Energy Definition and Dark Energy: A Thermodynamic Analysis." Advances in High Energy Physics 2018 (August 9, 2018): 1–8. http://dx.doi.org/10.1155/2018/7124730.

Повний текст джерела
Анотація:
Accepting the Komar mass definition of a source with energy-momentum tensor Tμν and using the thermodynamic pressure definition, we find a relaxed energy-momentum conservation law. Thereinafter, we study some cosmological consequences of the obtained energy-momentum conservation law. It has been found out that the dark sectors of cosmos are unifiable into one cosmic fluid in our setup. While this cosmic fluid impels the universe to enter an accelerated expansion phase, it may even show a baryonic behavior by itself during the cosmos evolution. Indeed, in this manner, while Tμν behaves baryonically, a part of it, namely, Tμν(e) which is satisfying the ordinary energy-momentum conservation law, is responsible for the current accelerated expansion.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Momentum-energy conservation"

1

Hall, Bryan, University of Western Sydney, and of Science Technology and Environment College. "Energy and momentum conservation in Bohm's Model for quantum mechanics." THESIS_CSTE_XXX_Hall_B.xml, 2004. http://handle.uws.edu.au:8081/1959.7/717.

Повний текст джерела
Анотація:
Bohm's model for quantum mechanics is examined and a well-known drawback of the model is considered, namely the fact that the model does not conserve energy and momentum.It is shown that the Lagrangian formalism and the use of energy-momentum tensors provide a way of addressing this non-conservation aspect once the model is considered from the point of view of an interacting particle-field system. The full mathematical formulation that is then presented demonstrates that conservation can be reintroduced without disrupting the present agreement of Bohm's model with experiment.
Doctor of Philosphy (PhD)
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hall, Bryan. "Energy and momentum conservation in Bohm's Model for quantum mechanics." View thesis, 2004. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.155043/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

El, Moueddeb Khaled. "Principles of energy and momentum conservation to analyze and model air flow for perforated ventilation ducts." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42024.

Повний текст джерела
Анотація:
A theoretical model was developed to predict the air distribution pattern and thus to design perforated ventilation ducts equipped with a fan. The analysis of the air distribution pattern of such systems requires accurate measurement procedures. Several experimental methods were tested and compared. Accordingly, the piezometric flush taps and thermo-anemometer were selected to measure respectively the duct air pressure and the outlet air flow.
Based on the equations of energy and momentum conservation, a model was formulated to predict the air flow performance of perforated ventilation ducts and to evaluate the outlet discharge angle and the duct regain coefficients without evaluating frictional losses. The basic assumptions of the model were validated by experimentally proving the equivalence of the friction losses expressed in the 2 cited equations. When compared to experimental results measured from four wooden perforated ventilation ducts with aperture ratios of 0.5, 1.0, 1.5, and 2.0, the model predicted the outlet air flow along the full length of perforated duct operated under turbulent flow conditions with a maximum error of 9%. The regain coefficient and the energy correction factor were equal to one, and the value of the discharge coefficient remained constant at 0.65, along the full length of the perforated duct. The outlet air jet discharge angle varied along the entire duct length, and was not influenced by friction losses for turbulent flow.
Assuming a common effective outlet area, the model was extended to match the performance of the fan and the perforated duct and to determine their balance operating point.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

El, Moueddeb Khaled. "Principles of energy and momentum conservation to analyze and model air flow for perforated ventilation ducts." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ29929.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Грицунов, А. В., И. Н. Бондаренко, А. Б. Галат, О. В. Глухов, and А. Г. Пащенко. "On the quantum electrodynamics of nanosystems." Thesis, Kharkiv, bookfabrik, 2019. http://openarchive.nure.ua/handle/document/10408.

Повний текст джерела
Анотація:
Problems of quantum dynamics of nanoobjects essential for development of new nanoelectronic systems are discussed. According to the theory of natural oscillatory systems (NOSs), “interaction” between the objects is interpreted as a quantum-dynamic phenomenon meaning a stable trend arising from the quantum chaos. As an opposite, “interchange” is denominated as the permanent stochastic exchange with action quanta between different NOSs in 4D spacetime, being the physical base of the quantum chaos. The Tetrode-Wheeler-Feynman’s concept of “direct interparticle action” is reconciled with both the quantum radiation-absorption and the Coulomb interaction. A conservation law for the action is supposed as a necessary condition for the momentum-energy conservation. The “classic” conservation law for the momentum-energy is considered as derivative, being valid for the momentum as well as some physical value that is an integral over 3D space from a linear combination of stress-energy tensor principal diagonal terms. Such redefinition enables the unconditional quantization of the energy unlike “orthodox” quantum theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bock, Nicolas. "Femtoscopy of proton-proton collisions in the ALICE experiment." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316184643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chhang, Sophy. "Energy-momentum conserving time-stepping algorithms for nonlinear dynamics of planar and spatial euler-bernoulli/timoshenko beams." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0027/document.

Повний текст джерела
Анотація:
Dans la première partie de la thèse, les schémas d’intégration conservatifs sont appliqués aux poutres co-rotationnelles 2D. Les cinématiques d'Euler-Bernoulli et de Timoshenko sont abordées. Ces formulations produisent des expressions de l'énergie interne et l'énergie cinétique complexe et fortement non-linéaires. L’idée centrale de l’algorithme consiste à définir, par intégration, le champ des déformations en fin de pas à partir du champ de vitesses de déformations et non à partir du champ des déplacements au travers de la relation déplacement-déformation. La même technique est appliquée aux termes d’inerties. Ensuite, une poutre co-rotationnelle plane avec rotules généralisées élasto-(visco)-plastiques aux extrémités est développée et comparée au modèle fibre avec le même comportement pour des problèmes d'impact. Des exemples numériques montrent que les effets de la vitesse de déformation influencent sensiblement la réponse de la structure. Dans la seconde partie de cette thèse, une théorie de poutre spatiale d’Euler-Bernoulli géométriquement exacte est développée. Le principal défi dans la construction d’une telle théorie réside dans le fait qu’il n’existe aucun moyen naturel de définir un trièdre orthonormé dans la configuration déformée. Une nouvelle méthodologie permettant de définir ce trièdre et par conséquent de développer une théorie de poutre spatiale en incorporant l'hypothèse d'Euler- Bernoulli est fournie. Cette approche utilise le processus d'orthogonalisation de Gram-Schmidt couplé avec un paramètre rotation qui complète la description cinématique et décrit la rotation associée à la torsion. Ce processus permet de surmonter le caractère non-unique de la procédure de Gram-Schmidt. La formulation est étendue au cas dynamique et un schéma intégration temporelle conservant l'énergie est également développé. De nombreux exemples démontrent l’efficacité de cette formulation
In the first part of the thesis, energymomentum conserving algorithms are designed for planar co-rotational beams. Both Euler-Bernoulli and Timoshenko kinematics are addressed. These formulations provide us with highly complex nonlinear expressions for the internal energy as well as for the kinetic energy which involve second derivatives of the displacement field. The main idea of the algorithm is to circumvent the complexities of the geometric non-linearities by resorting to strain velocities to provide, by means of integration, the expressions for the strain measures themselves. Similarly, the same strategy is applied to the highly nonlinear inertia terms. Next, 2D elasto-(visco)-plastic fiber co-rotational beams element and a planar co-rotational beam with generalized elasto-(visco)-plastic hinges at beam ends have been developed and compared against each other for impact problems. In the second part of this thesis, a geometrically exact 3D Euler-Bernoulli beam theory is developed.The main challenge in defining a three-dimensional Euler-Bernoulli beam theory lies in the fact that there is no natural way of defining a base system at the deformed configuration. A novel methodology to do so leading to the development of a spatial rod formulation which incorporates the Euler-Bernoulli assumption is provided. The approach makes use of Gram-Schmidt orthogonalisation process coupled to a one-parametric rotation to complete the description of the torsional cross sectional rotation and overcomes the non-uniqueness of the Gram-Schmidt procedure. Furthermore, the formulation is extended to the dynamical case and a stable, energy conserving time-stepping algorithm is developed as well. Many examples confirm the power of the formulation and the integration method presented
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shaw, Tiffany A. "Energy and Momentum Consistency in Subgrid-scale Parameterization for Climate Models." Thesis, 2009. http://hdl.handle.net/1807/19089.

Повний текст джерела
Анотація:
This thesis examines the importance of energy and momentum consistency in subgrid-scale parameterization for climate models. It is divided into two parts according to the two aspects of the problem that are investigated, namely the importance of momentum conservation alone and the consistency between energy and momentum conservation. The first part addresses the importance of momentum conservation alone. Using a zonally-symmetric model, it is shown that violating momentum conservation in the parameterization of gravity wave drag leads to large errors and non-robustness of the response to an imposed radiative perturbation in the middle atmosphere. Using the Canadian Middle Atmosphere Model, a three-dimensional climate model, it is shown that violating momentum conservation, by allowing gravity wave momentum flux to escape through the model lid, leads to large errors in the mean climate when the model lid is placed at 10 hPa. When the model lid is placed at 0.001 hPa the errors due to nonconservation are minimal. When the 10 hPa climate is perturbed by idealized ozone depletion in the southern hemisphere, nonconservation is found to significantly alter the polar temperature and surface responses. Overall, momentum conservation ensures a better agreement between the 10 hPa and the 0.001 hPa climates. The second part addresses the self-consistency of energy and momentum conservation. Using Hamiltonian geophysical fluid dynamics, pseudoenergy and pseudomomentum wave-activity conservation laws are derived for the subgrid-scale dynamics. Noether’s theorem is used to derive a relationship between the wave-activity fluxes, which represents a generalization of the first Eliassen-Palm theorem. Using multiple scale asymptotics a theoretical framework for subgrid-scale parameterization is built which consistently conserves both energy and momentum and respects the second law of thermodynamics. The framework couples a hydrostatic resolved-scale flow to a non-hydrostatic subgrid-scale flow. The transfers of energy and momentum between the two scales are understood using the subgrid-scale wave-activity conservation laws, whose relationships with the resolved-scale dynamics represent generalized non-acceleration theorems. The derived relationship between the wave-activity fluxes — which represents a generalization of the second Eliassen-Palm theorem — is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Allen, Jon Scott. "An Analysis of Self-similarity, Momentum Conservation and Energy Transport for an Axisymmetric Turbulent Jet through a Staggered Array of Rigid Emergent Vegetation." Thesis, 2013. http://hdl.handle.net/1969.1/151041.

Повний текст джерела
Анотація:
Marsh vegetation is widely considered to offer protection against coastal storm damage, and vegetated flow has thus become a key area of hydrodynamic research. This study investigates the utility of simulated Spartina alterniora marsh vegetation as storm protection using an ADV measurement technique, and is the first to apply jet self-similarity analysis to characterize the overall mean and turbulent flow properties of a three-dimensional axisymmetric jet through a vegetated array. The mean axial flow of a horizontal axisymmetric turbulent jet is obstructed by three configurations of staggered arrays of vertical rigid plant stems. The entire experiment is repeated over five sufficiently high jet Reynolds number conditions to ensure normalization and subsequent collapse of data by nozzle velocity so that experimental error is obtained. All self-similarity parameters for the unobstructed free jet correspond to typical published values: the axial decay coefficient B is 5:8 +/- 0:2, the Gaussian spreading coefficient c is 85 +/- 5, and the halfwidth spreading rate eta_(1/2) is 0:093 +/- 0:003. Upon the introduction of vegetation, from partially obstructed to fully obstructed, B falls from 5:1+/- 0:2 to 4:2 +/- 0:2 and finally 3:7 +/-0:1 for the fully obstructed case, indicating that vegetation reduces axial jet velocity. Cross-sectionally averaged momentum for the unobstructed free jet is M=M0 = 1:05 +/- 0:07, confirming conservation of momentum. Failure of conservation of momentum is most pronounced in the fully obstructed scenario – M=M0 = 0:54 +/- 0:05. The introduction of vegetation increases spreading of the impinging jet. The entrainment coefficient alpha for the free jet case is 0.0575; in the fully obstructed case, alpha = 0:0631. Mean advection of mean and turbulent kinetic energy demonstrates an expected reduction in turbulence intensity within the vegetated array. In general, turbulent production decreases as axial depth of vegetation increases, though retains the bimodal profile of the free jet case; the fully vegetated case, however, exhibits clear peaks behind plant stems. Turbulent transport was shown to be unaffected by vegetation and appears to be primarily a function of axial distance from the jet nozzle. An analysis of rate of dissipation revealed that not only does the cumulative effect of upstream wakes overall depress the magnitude of spectral energy density across all wavenumbers but also that plant stems dissipate large anisotropic eddies in centerline streamwise jet flow. This study, thus, indicates that sparse emergent vegetation both reduces axial flow velocity and has a dissipative effect on jet flow. Typically, however, storm surge does not exhibit the lateral spreading demonstrated by an axisymmetric jet; therefore, the results of this study cannot conclusively support the claim that coastal vegetation reduces storm surge axial velocity.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Momentum-energy conservation"

1

Momentum. New York: Holiday House, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deruelle, Nathalie, and Jean-Philippe Uzan. Conservation laws. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0045.

Повний текст джерела
Анотація:
This chapter studies how the ‘spacetime symmetries’ can generate first integrals of the equations of motion which simplify their solution and also make it possible to define conserved quantities, or ‘charges’, characterizing the system. As already mentioned in the introduction to matter energy–momentum tensors in Chapter 3, the concepts of energy, momentum, and angular momentum are related to the invariance properties of the solutions of the equations of motion under spacetime translations or rotations. The chapter explores these in greater detail. It first turns to isometries and Killing vectors. The chapter then examines the first integrals of the geodesic equation, and Noether charges.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Deruelle, Nathalie, and Jean-Philippe Uzan. Conservation laws. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0007.

Повний текст джерела
Анотація:
This chapter defines the conserved quantities associated with an isolated dynamical system, that is, the quantities which remain constant during the motion of the system. The law of momentum conservation follows directly from Newton’s third law. The superposition principle for forces allows Newton’s law of motion for a body Pa acted on by other bodies Pa′ in an inertial Cartesian frame S. The law of angular momentum conservation holds if the forces acting on the elements of the system depend only on the separation of the elements. Finally, the conservation of total energy requires in addition that the forces be derivable from a potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deruelle, Nathalie, and Jean-Philippe Uzan. The Maxwell equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0030.

Повний текст джерела
Анотація:
This chapter presents Maxwell equations determining the electromagnetic field created by an ensemble of charges. It also derives these equations from the variational principle. The chapter studies the equation’s invariances: gauge invariance and invariance under Poincaré transformations. These allow us to derive the conservation laws for the total charge of the system and also for the system energy, momentum, and angular momentum. To begin, the chapter introduces the first group of Maxwell equations: Gauss’s law of magnetism, and Faraday’s law of induction. It then discusses current and charge conservation, a second set of Maxwell equations, and finally the field–energy momentum tensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Changes Within Physical Systems And/or Conservation Of Energy And Momentum: An Anthology Of Current Thought (Contemporary Discourse in the Field of Physics). Rosen Central, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration., ed. Rarefied gas effects on aerobraking/reentry vehicles with wakes. [Huntsville, AL]: Remtech, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Deruelle, Nathalie, and Jean-Philippe Uzan. Dynamics of a point particle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0024.

Повний текст джерела
Анотація:
This chapter attributes an inertial ‘mass–energy’ to particles. It also distinguishes between the action of an external field and of long-range and short-range internal forces, which is useful for establishing the laws of dynamics of an interacting body—that is, the equations determining its world line. The chapter also presents the 4-momentum conservation law for massive particles and light particles in inertial reference frames. It then gives some examples which illustrate the role played by this law in collisions. Finally, the chapter illustrates the conservation law by the Compton experiment, that is, the collision of a light corpuscle with a particle, and the concept of the quantum of action that can be derived from it.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coopersmith, Jennifer. Hamiltonian Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198743040.003.0007.

Повний текст джерела
Анотація:
Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Escudier, Marcel. Compressible pipe flow. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0013.

Повний текст джерела
Анотація:
In this chapter gas flow through pipes is analysed, taking account of compressibility and either friction or heat exchange with the fluid. It is shown that in all cases the key parameter is the Mach number. The analyses are based upon the conservation laws for mass, momentum, and energy, together with an equation of state. So that significant results can be achieved, the flowing fluid is treated as a perfect gas, and the flow as one dimensional. Adiabatic pipe flow with wall friction is termed Fanno flow. Frictionless pipe flow with heat transfer is termed Rayleigh flow. It is found that both flows, and also isothermal pipe flow with wall friction, can be limited by choking.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Momentum-energy conservation"

1

Calle, Carlos I. "Conservation of Energy and Momentum." In Superstrings and Other Things, 55–67. Third edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429431029-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gal’tsov, Dmitri. "Radiation Reaction and Energy–Momentum Conservation." In Mass and Motion in General Relativity, 367–93. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3015-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taler, Dawid. "Mass, Momentum and Energy Conservation Equations." In Numerical Modelling and Experimental Testing of Heat Exchangers, 9–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91128-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baerg, Bill. "Conservation Laws for Mass, Momentum, and Energy." In ACS Symposium Series, 12–30. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0290.ch002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cebeci, Tuncer. "Conservation Equations for Mass, Momentum, and Energy." In Convective Heat Transfer, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-06406-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cebeci, Tuncer, and Peter Bradshaw. "Conservation Equations for Mass, Momentum, and Energy." In Physical and Computational Aspects of Convective Heat Transfer, 19–40. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3918-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cebeci, Tuncer, and P. Bradshaw. "Conservation Equations for Mass, Momentum and Energy." In Solutions Manual and Computer Programs for Physical and Computational Aspects of Convective Heat Transfer, 3–5. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4899-6710-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tavares, J. M. "Bullet Block Experiment: Angular Momentum Conservation and Kinetic Energy Dissipation." In Offbeat Physics, 199–214. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003187103-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dionatos, Odysseas. "Observational Constraints on the Conservation of Momentum and Energy in Jet-Driven Molecular Outflows." In Astrophysics and Space Science Proceedings, 139–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14128-8_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dolzhansky, Felix V. "Potential Vorticity and the Conservation Laws of Energy and Momentum for a Stratified Incompressible Fluid." In Fundamentals of Geophysical Hydrodynamics, 13–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31034-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Momentum-energy conservation"

1

Xin, Binbin. "Energy and Angular Momentum Conservation Analysis of Tornado." In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/msmee-17.2017.322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mortenson, Juliana H. J. "The conservation of light's energy, mass, and momentum." In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Andrei Yu Khrennikov, and Al F. Kracklauer. SPIE, 2011. http://dx.doi.org/10.1117/12.893531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yan, Chunji, Xinxiang Pan, and Xiaowei Lu. "Mechanisms of Thin-Film Evaporation Considering Momentum and Energy Conservation." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22157.

Повний текст джерела
Анотація:
A mathematic model, which can be used to predict the evaporation and fluid flow in thin film region, is developed based on momentum and energy conservations and the augmented Young-Laplace equation in this paper. In the model the variations of the enthalpy and kinetics energy of the thin-film along the evaporating region are considered. By theoretical analysis, we have obtained the governing equation for thin film profile. The fluid flow and phase-change heat transfer in an evaporating extended meniscus are numerically studied. The differences between the model considering momentum conservation only and including both momentum and energy conservations are compared. It is found that the maximum heat flux of the thin-film evaporation by using two mathematical models obtained has no change, but when considering the momentum and energy conservations the total heat transfer rate unit width along the thin-film evaporation region is greater than that of only including momentum equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharafutdinov, G. Z. "The relationship between the laws of conservation of energy and momentum." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2019. http://dx.doi.org/10.18411/lj-03-2019-113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Humer, Alexander, and Johannes Gerstmayr. "Energy-Momentum Conserving Time Integration of Modally Reduced Flexible Multibody Systems." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13173.

Повний текст джерела
Анотація:
Many conventional time integration schemes frequently adopted in flexible multibody dynamics fail to retain the fundamental conservation laws of energy and momentum of the continuous time domain. Lack of conservation, however, in particular of angular momentum, may give rise to unexpected, unphysical results. To avoid such problems, a scheme for the consistent integration of modally reduced multibody systems subjected to holonomic constraints is developed in the present paper. As opposed to the conventional approach, in which the floating frame of reference formulation is combined with component mode synthesis for approximating the flexible deformation, an alternative, recently proposed formulation based on absolute coordinates is adopted in the analysis. Owing to the linear relationship between the generalized coordinates and the absolute displacement, the inertia terms in the equations of motion attain a very simple structure. The mass matrix remains independent of the current state of deformation and the velocity dependent term known from the floating frame approach vanishes due to the absence of relative coordinates. These advantageous properties facilitate the construction of an energy and momentum consistent integration scheme. By the mid-point rule, algorithmic conservation of both linear and angular momentum is achieved. In order to consistently integrate the total energy of the system, the discrete derivative needs to be adopted when evaluating the strain energy gradient and the derivative of the algebraic constraint equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fu, Zheng, Fatih Aydogan, and Richard J. Wagner. "Development of Conservative Form of RELAP5 Thermal Hydraulic Equations: Part II — Numerical Approach and Code Results." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40013.

Повний текст джерела
Анотація:
One of the principle features of RELAP5-based system thermal hydraulic codes is the use of a two-fluid, non-equilibrium, non-homogeneous, hydrodynamic model for the transient simulation of the two-phase system behavior. This model includes six governing equations to describe the mass, energy, and momentum of the two fluids. The current version of RELAP-5 uses non-conservative numerical approximation form of conservation equations. The current version of RELAP5 versions have mass and energy errors during time advancements, either resulting in (a) automatic reduction of time steps used in the advancement of the equations and increased run times or (b) the growth of unacceptably large errors in the transient results. Therefore, conservative conservation equations and closure equations were developed to address this problem in the first part of the paper series This part of the series demonstrates the numerical approach to implement the developed conservative conservation equations into RELAP5 and the results of RELAP5 including developed conservative form of conservation equations. RELAP5 versions including conservative and non-conservative conservation equations are compared for various tests from a single pipe to a whole Pressurized Water Reactor (PWR) model.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, Zhiliang. "Mass, Momentum and Energy Flux in Nonlinear Water Wave Based on HAM Solution." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54856.

Повний текст джерела
Анотація:
In this paper, the Homotopy Analysis Method (HAM) is applied to solve the fully nonlinear partial differential equation for the steady propagating periodic gravity wave of finite water depth. The series solution of the wave elevation and the velocity potential function are obtained. And then the velocity and pressure fields are plotted and discussed carefully. In order to overcome the drawback of the integral calculations with complex free surface elevation, the discrete integration and fitting procedure based on high-order Fourier series is developed. Based on the accurate HAM solution and fitting technique, the mass, momentum and energy conservation equations are validated. At last, the corresponding mean fluxes are calculated and the velocities of the mass transport and energy transport are supplied accurately.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rybicki, Andrzej, Miroslaw Kielbowicz, Antoni Szczurek, and Iwona Anna Sputowska. "New results on energy and momentum conservation for particle emission in A+A collisions at not too high energies." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.314.0656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Meghdari, Ali, Seyed Hossein Tamaddoni, and Farid Jafari. "Synthesis of a Compensated Kick Pattern for Humanoid Robots Using Conservation Laws." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99121.

Повний текст джерела
Анотація:
The motivation of this work is to synthesize a kicking pattern for a humanoid robot with consideration of various objectives such as retaining its balance even after the kick is done and reducing the undesired angular momentum using both hands and torso. This kick pattern is designed so that a desirable ball velocity is achieved. In this paper, the law of conservation of angular momentum is used to generate a less energy consuming trajectory. Effectiveness of the proposed method is verified using computer simulation and is tested on Sharif CEDRA humanoid robot.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sohrab, Siavash H. "Invariant Forms of Conservation Equations and Some Examples of Their Exact Solutions." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21154.

Повний текст джерела
Анотація:
A scale-invariant model of statistical mechanics is described leading to invariant Boltzmann equation and the corresponding invariant Enskog equation of change. A modified form of Cauchy stress tensor for fluid is presented such that in the limit of vanishing intermolecular spacing all tangential forces vanish in accordance with perceptions of Cauchy and Poisson. The invariant forms of mass, thermal energy, linear momentum, and angular momentum conservation equations derived from invariant Enskog equation of change are described. Also, some exact solution of the conservation equations for the problems of normal shock, flow over a flat plate, and flow within a spherical droplet located at the stagnation point of opposed cylindrically-symmetric gaseous jets are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Momentum-energy conservation"

1

Investigation on Design and Analysis of Passenger Car Body Crash-Worthiness in Frontal Impact Using Radioss. SAE International, September 2020. http://dx.doi.org/10.4271/2020-28-0498.

Повний текст джерела
Анотація:
Increasing advancement in automotive technologies ensures that many more lightweight metals become added to the automotive components for the purpose of light weighting and passenger safety. The accidents are unexpected incidents most drivers cannot be avoided that trouble situation. Crash studies are among the most essential methods for enhancing automobile safety features. Crash simulations are attempting to replicate the circumstances of the initial crash. Frontal crashes are responsible for occupant injuries and fatalities 42% of accidents occur on frontal crash. This paper aims at studying the frontal collision of a passenger car frame for frontal crashes based on numerical simulation of a 35 MPH. The structure has been designed to replicate a frontal collision into some kind of inflexible shield at a speed of 15.6 m/s (56 km/h). The vehicle’s exterior body is designed by CATIA V5 R20 along with two material properties to our design. The existing Aluminum alloy 6061 series is compared with carbon fiber IM8 material. The simulation is being carried out by us in the “Radioss” available in “Hyper mesh 17.0” software. The energy conservation and momentum energy absorption are carried out from this dynamic structural analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії