Добірка наукової літератури з теми "Momentum correlations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Momentum correlations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Momentum correlations"

1

Bożek, P., W. Broniowski, and S. Chatterjee. "Transverse Momentum Fluctuations and Correlations." Acta Physica Polonica B Proceedings Supplement 10, no. 4 (2017): 1091. http://dx.doi.org/10.5506/aphyspolbsupp.10.1091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Borghini, N. "Multiparticle correlations from momentum conservation." European Physical Journal C 30, no. 3 (October 2003): 381–85. http://dx.doi.org/10.1140/epjc/s2003-01265-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Harris, John W., and Collaboration STAR. "High Transverse Momentum Correlations in STAR." Acta Physica Hungarica A) Heavy Ion Physics 21, no. 2-4 (November 1, 2004): 229–35. http://dx.doi.org/10.1556/aph.21.2004.2-4.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Berger, Edmond L. "Momentum correlations in heavy-quark hadroproduction." Physical Review D 37, no. 7 (April 1, 1988): 1810–17. http://dx.doi.org/10.1103/physrevd.37.1810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lorcé, Cédric. "Quark Spin-Orbit Correlations." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560036. http://dx.doi.org/10.1142/s2010194515600368.

Повний текст джерела
Анотація:
The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

YANG, ZHENWEI, JIANPING CHENG, and XIANGMING SUN. "SPIN INTERACTION EFFECTS ON MOMENTUM CORRELATIONS FOR IDENTICAL FERMIONS EMITTED IN RELATIVISTIC HEAVY-ION COLLISIONS." Modern Physics Letters A 22, no. 02 (January 20, 2007): 131–39. http://dx.doi.org/10.1142/s0217732307020920.

Повний текст джерела
Анотація:
The Hanbury-Brown and Twiss (HBT) effects predict a Bose–Einstein enhancement of the two-particle momentum correlations of identical bosons at small relative momentum. However, the parallel momentum correlations between identical fermions are less argued. The momentum correlations can be altered by many factors, among which the spin interaction effects are discussed in this paper. It is found that the spin interaction plays an important role on the momentum correlations of identical fermions. For spin triplet state, a full Fermi–Dirac suppression represents as expected. On the contrary, a fake Bose–Einstein enhancement shows up for spin singlet state. The measured momentum correlations of fermions could hence provide some hints of spin interactions between them if all other factors such as Coulomb interactions were removed. Spin interactions make it more complicated to extract physical information from momentum correlations between fermions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SCHÄFER, BJÖRN MALTE. "GALACTIC ANGULAR MOMENTA AND ANGULAR MOMENTUM CORRELATIONS IN THE COSMOLOGICAL LARGE-SCALE STRUCTURE." International Journal of Modern Physics D 18, no. 02 (February 2009): 173–222. http://dx.doi.org/10.1142/s0218271809014388.

Повний текст джерела
Анотація:
I review the theory of angular momentum acquisition of galaxies by tidal torquing, the resulting angular momentum distribution and the angular momentum correlation function, and discuss the implications of angular momentum alignments for weak lensing measurements. Starting from linear models for tidal torquing, I summarize perturbative approaches and the results from n-body simulations of cosmic structure formation. Then I discuss the validity of decompositions of the tidal shear and inertia fields, the effects of angular momentum biasing, the applicability of parametrized angular momentum correlation models and the consequences of angular momentum correlations for shape alignments. I compile the results of observations of shape alignments in recent galaxy surveys as well as in n-body simulations. Finally, I review the contamination of weak lensing surveys by spin-induced shape alignments and methods for suppressing this contamination.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Popescu, R., T. Glasmacher, J. D. Dinius, S. J. Gaff, C. K. Gelbke, D. O. Handzy, M. J. Huang, et al. "Sensitivity of two-fragment correlation functions to initial-state momentum correlations." Physical Review C 58, no. 1 (July 1, 1998): 270–80. http://dx.doi.org/10.1103/physrevc.58.270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ALVIOLI, MASSIMILIANO, CLAUDIO CIOFI DEGLI ATTI, LEONID P. KAPTARI, CHIARA BENEDETTA MEZZETTI, and HIKO MORITA. "UNIVERSALITY OF NUCLEON–NUCLEON SHORT-RANGE CORRELATIONS AND NUCLEON MOMENTUM DISTRIBUTIONS." International Journal of Modern Physics E 22, no. 08 (August 2013): 1330021. http://dx.doi.org/10.1142/s021830131330021x.

Повний текст джерела
Анотація:
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon–nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a universal character, in that the correlation hole that they produce in nuclei appears to be almost A-independent and similar to the correlation hole in the deuteron. The correlation hole creates high-momentum components, missing in a mean-field (MF) description and exhibiting several scaling properties and a peculiar spin–isospin structure. In particular, the momentum distribution of a pair of nucleons in spin–isospin state (ST) = (10), depending upon the pair relative (k rel ) and center-of-mass (c.m.) (K c.m. ) momenta, as well as upon the angle Θ between them, exhibits a remarkable property: in the region k rel ≳2 fm -1 and K c.m. ≲1 fm -1, the relative and c.m. motions are decoupled and the two-nucleon momentum distribution factorizes into the deuteron momentum distribution and an A-dependent momentum distribution describing the c.m. motion of the pair in the medium. The impact of these and other properties of one- and two-nucleon momentum distributions on various nuclear phenomena, on ab initio calculations in terms of low-momentum interactions, as well as on ongoing experimental investigations of SRCs, are briefly commented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kumar, Suneel, and Rajeev K. Puri. "Role of momentum correlations in fragment formation." Physical Review C 58, no. 1 (July 1, 1998): 320–25. http://dx.doi.org/10.1103/physrevc.58.320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Momentum correlations"

1

Bureik, Jan-Philipp. "Number statistics and momentum correlations in interacting Bose gases." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP014.

Повний текст джерела
Анотація:
Ce travail de thèse est dédié à l'étude des statistiques du nombre et corrélations en impulsion dans des gaz de Bose sur réseaux interagissants. Le modèle de Bose-Hubbard est simulé en chargeant des condensats de Bose-Einstein (BEC) d'atomes d'Hélium-4 métastables dans un réseau optique tridimensionnel (3D). Ce modèle présente une transition de phase quantique d'un superfluide à un isolant de Mott induite par des fluctuations quantiques provoquées par l'interaction. L'objectif de ce travail est de comprendre le rôle de ces fluctuations quantiques en analysant leurs signatures dans l'espace des impulsions. Le schéma de détection original utilisé à cette fin fournit la distribution d'impulsion résolue à l'échelle de l'atome unique en 3D. À partir de ces jeux de données composés de milliers d'atomes individuels, les statistiques du nombre d'occupation de différents sous-volumes de l'espace des impulsions fournissent des informations sur les propriétés de corrélation ou de cohérence du gaz de Bose interagissant. À impulsions proches, ces probabilités d'occupation permettent l'identification de statistiques d'état pur sous-jacentes dans le cas d'états many-body classiques tels que les superfluides en réseau et les isolants de Mott. Dans le régime faiblement interagissant, des corrélations bien établies entre les paires d'atomes à impulsions opposées sont observées. De plus, on constate que ces corrélations entre paires diminuent en faveur de corrélations plus complexes entre plus de deux particules lorsque les interactions sont augmentées. Une observation directe de corrélations non-Gaussiennes encapsule la nature statistique complexe des superfluides fortement interagissants bien en amont de la transition de phase vers l'isolant de Mott. Enfin, lors de la transition de phase, on constate une augmentation des fluctuations du nombre d'occupation du mode du BEC, constituant une signature directe des fluctuations quantiques induisant la transition. Des quantités indépendantes de la taille du système, telles que le cumulant de Binder, présentent des variations abruptes même dans un système de taille finie et semblent prometteuses pour constituer des observables appropriés permettant de déterminer le comportement universel lorsqu'elles sont mesurées dans un système homogène
This thesis work is dedicated to the study of number statistics and momentum correlations in interacting lattice Bose gases. The Bose-Hubbard model is simulated by loading Bose-Einstein condensates (BECs) of metastable Helium-4 atoms into a three-dimensional (3D) optical lattice. This model exhibits a quantum phase transition from a superfluid to a Mott insulator that is driven by interaction-induced quantum fluctuations. The objective of this work is to comprehend the role of these quantum fluctuations by analyzing their signatures in momentum space. The original detection scheme employed towards this aim provides the single-particle resolved momentum distribution of the atoms in 3D. From such datasets made up of thousands of individual atoms, the number statistics of occupation of different sub-volumes of momentum space yield information about correlation or coherence properties of the interacting Bose gas. At close-by momenta these occupation probabilities permit the identification of underlying pure-state statistics in the case of textbook many-body states such as lattice superfluids and Mott insulators. In the weakly-interacting regime, well-established correlations between pairs of atoms at opposite momenta are observed. Furthermore, these pair correlations are found to decrease in favor of more intricate correlations between more than two particles as interactions are increased. A direct observation of non-Gaussian correlations encapsulates the complex statistical nature of strongly-interacting superfluids well before the Mott insulator phase transition. Finally, at the phase transition, fluctuations of the occupation number of the BEC mode are found to be enhanced, constituting a direct signature of the quantum fluctuations driving the transition. System-size independent quantities such as the Binder cumulant are shown to exhibit distinctive sharp features even in a finite-size system, and hold promise for constituting suitable observables for determining universal behavior when measured in a homogeneous system
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becher, Jan Hendrik Willibald [Verfasser], and Selim [Akademischer Betreuer] Jochim. "Characterizing Few-Fermion Systems with Momentum Correlations / Jan Hendrik Willibald Becher ; Betreuer: Selim Jochim." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1210647788/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Littek, Carsten [Verfasser], and Matthias [Akademischer Betreuer] Bartelmann. "Kinetic Field Theory: Momentum-Density Correlations and Fuzzy Dark Matter / Carsten Littek ; Betreuer: Matthias Bartelmann." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252848/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chadwick, Helen J. "Angular momentum polarisation effects in inelastic scattering." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:474b04fa-4f50-4618-88ab-c85878723f2a.

Повний текст джерела
Анотація:
In this thesis, a joint experimental and theoretical investigation of the vector properties that describe the inelastic scattering of a diatomic radical with an atomic collision partner is presented. A particular emphasis is placed on those correlations that include the final rotational angular momentum, j', of the radical. The depolarisation of both NO(A) and OH(A) brought about through collisions with krypton has been studied, providing a measure of the j-j' correlation, where j is the initial rotational angular momentum associated with the diatom. The total depolarisation cross- sections for both collisional disorientation and disalignment have been measured using quantum beat spectroscopy, and modelled theoretically using quasi-classical trajectory (QCT) calculations. The agreement between experiment and theory for NO(A)-Kr is excellent, but is not observed for OH(A)-Kr under thermal conditions. This has been attributed to the importance of electronic quenching in OH(A)-Kr. The depolarisation cross-sections have also been determined at a higher collision energy for OH(A)-Kr where electronic quenching is less significant, and the experimental results are in better agreement with those obtained theoretically. The NO(A)-Kr depolarisation cross-sections fall with increasing rotational quantum number, N, whereas for OH(A)-Kr, they exhibit less of an N dependence. This trend is mirrored in the elastic depolarisation cross-sections, which have also been determined experimentally for OH(A)-Kr. The significantly attractive and anisotropic nature of the OH(A)-Kr potential energy surface (PES) accounts for these observations. The j-j' correlation is extended to include the initial (relative) velocity (k) in a new theoretical treatment of the k-j-j' correlation. The formalism developed is used with the results from the QCT calculations for NO(A)-Kr and OH(A)-Kr to provide further insight into the mechanism of depolarisation in the two systems. Collisions of NO(A) with krypton do not cause significant depolarisation due to their impulsive nature, and the projection of j onto the kinematic apse is conserved. In contrast, collisions of OH(A) with krypton effectively randomise the direction of j, again showing the influence of the anisotropic and attractive nature of the PES. However, the projection of j onto the kinematic apse is still conserved. The inelastic scattering of NO(X) with argon and krypton has also been investigated, using a crossed molecular beam apparatus. The initial Λ-doublet state of the NO(X) was selected using hexapole focussing, and the products of the collision detected using velocity mapped ion imaging. The state to state differential cross-sections (equivalent to the k-k' correlation, where k' is the final relative velocity) have been measured for collisions which conserve the initial spin-orbit level of the NO(X) with krypton. The same parity dependent effects were seen as have been observed previously for NO(X)-Ar. The collision induced alignment (equivalent to the k-k'-j' correlation) of NO(X) as a result of scattering with argon has also been determined experimentally. The results can be explained classically by considering the conservation of the projection of j onto the kinematic apse.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cao, Ze. "Investigation of Momentum and Heat Transfer in Flow Past Suspensions of Non-Spherical Particles." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/102662.

Повний текст джерела
Анотація:
Investigation of momentum and heat transfer between the fluid and solid phase is critical to the study of fluid-particle systems. Dense suspensions are characterized by the solid fraction (ratio of solid volume to total volume), the particle Reynolds number, and the shape of the particle. The behavior of non-spherical particles deviates considerably from spherical particle shapes which have been studied extensively in the literature. Momentum transfer, to first-order, is driven by drag forces experienced by the particles in suspension, followed by lift and lateral forces, and also through the transmission of fluid torque to the particles. The subject of this thesis is a family of prolate ellipsoidal particle geometries of aspect ratios (AR) 2.5, 5.0 and 10.0 at nominal solid fractions (φ) between 0.1 and 0.3, and suspensions of cylinders of AR=0.25. The nominal particle Reynolds number (Re) is varied between 10 to 200, representative of fluidized beds. Fluid forces and heat transfer coefficients are obtained numerically by Particle Resolved Simulations (PRS) using the Immersed Boundary Method (IBM). The method enables the calculation of the interstitial flow and pressure field surrounding each particle in suspension leading to the direct integration of fluid forces acting on each particle in the suspension. A substantial outcome of the research is the development of a new drag force correlation for random suspensions of prolate ellipsoids over the full range of geometries and conditioned studied. In many practical applications, especially as the deviation from the spherical shape increases, particles are not oriented randomly to the flow direction, resulting in suspensions which have a mean preferential orientation. It is shown that the mean suspension drag varies linearly with the orientation parameter, which varies from -2.0 for particles oriented parallel to the flow direction to 1.0 for particles normal to the flow direction. This result is significant as it allows easy calculation of drag force for suspension with any preferential orientation. The heat transfer coefficient or Nusselt number is investigated for prolate ellipsoid suspensions. Significantly, two methods of calculating the heat transfer coefficient in the literature are reconciled and it is established that one asymptotes to the other. It is also established that unlike the drag force, at low Reynolds number the suspension mean heat transfer coefficient is very sensitive to the spatial distribution of particles or local-to-particle solid fractions. For the same mean solid fraction, suspensions dominated by particle clusters or high local solid fractions can exhibit Nusselt numbers which are lower than the minimum Nusselt number imposed by pure conduction on a single particle in isolation. This results from the dominant effect of thermal wakes at low Reynolds numbers. As the Reynolds number increases, the effect of particle clusters on heat transfer becomes less consequential. For the 0.25 aspect ratio cylinder, it was found that while existing correlations under predicted the drag forces, a sinusoidal function F_(d,θ)=F_(d,θ=0°)+(F_(d,θ=90°)-F_(d,θ=0°) )sin⁡(θ) captured the variation of normalized drag with respect to inclination angle over the range 10≤Re≤300 and 0≤φ≤0.3. Further the mean ensemble drag followed F_d=F_(d,θ=0°)+1/2(F_(d,θ=90°)-F_(d,θ=0°)). It was shown that lift forces were between 20% to 80% of drag forces and could not be neglected in models of fluid-particle interaction forces. Comparing the pitching fluid torque to collision torque during an elastic collision showed that as the particle equivalent diameter, density, and collision velocities decreased, fluid torque could be of the same order of magnitude as collisional torque and it too could not be neglected from models of particle transport in suspensions.
Doctor of Philosophy
Momentum and heat exchange between the fluids (air, water…) and suspensions of solid particles plays a critical role in power generation, chemical processing plants, pharmaceuticals, in the environment, and many other applications. One of the key components in momentum exchange are the forces felt by the particles in the suspension due to the flow of the fluid around them and the amount of heat the fluid can transfer to or from the particles. The fluid forces and heat transfer depend on many factors, chief among them being the properties of the fluid (density, viscosity, thermal properties) and the properties of the particles in the suspension (size, shape, density, thermal properties, concentration). This introduces a wide range of parameters that have the potential to affect the way the fluid and particles behave and move. Experimental measurements are very difficult and expensive to conduct in these systems and computational modeling can play a key role in characterization. For accuracy, computational models have to have the correct physical laws encoded in the software. The objective of this thesis is to use very high-fidelity computer models to characterize the forces and heat transfer under different conditions to develop general formulas or correlations which can then be used in less expensive computer models. Three basic particle shapes are considered in this study, a sphere, a disk like cylindrical particles, and particles of ellipsoidal shapes. More specifically, Particle Resolved Simulations of flow through suspensions of ellipsoids with aspect ratio of 2.5, 5, 10 and cylinders with aspect ratio of 0.25 are performed. The Reynolds number range covered is [10, 200] for ellipsoids and [10, 300] for cylinders with solid fraction range of [0.1, 0.3]. New fluid drag force correlations are proposed for the ellipsoid and cylinder suspensions, respectively, and heat transfer behavior is also investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Risbey, James S. (James Sydney). "An analysis of zonal mean atmospheric angular momentum and high cloud cover : periodicities, time-latitude structure, and cross correlations." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/57727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Johnson, Aisling. "One-dimensional Bose Gases on an Atom Chip : Correlations in Momentum Space and Theoretical Investigation of Loss-induced Cooling." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLO013/document.

Повний текст джерела
Анотація:
L'objet de cette thèse est l'étude théorique et expérimentale de gaz de Bose à une dimension (1D), confinés à la surface d'une micro-structure. Une part importante du travail de thèse a été la modification du montage expérimental: le système laser a été remplacé, et l'installation d'un nouvel objectif de grande ouverture numérique (0.4) a nécessité le changement du dessin de la puce ainsi que l'adaptation du système à vide. Nous avons étudié les corrélations du second ordre dans l'espace des impulsions, en appliquant une méthode qui nous permet d'enregistrer en une seule image la distribution en vitesses complète de notre gaz. Nos données explorent les différents régimes du gaz à faibles interactions, du gaz de Bose idéal au quasi-condensat. Ces mesures ont montré le phénomène de groupement bosonique dans les deux phases, tandis que le quasi-condensat comporte des corrélations négatives en dehors de la diagonale. Ces anti-corrélations sont une signature de l'absence d'ordre à longue portée en 1D. Les mesures sont en bon accord avec des calculs analytiques ainsi que des simulations numériques de type Monte Carlo Quantique. Ensuite, l'objet d'un second projet est l'étude du refroidissement de gaz 1D. Comme nos échantillons occupent seulement l'état fondamental du piège transverse, il n'est pas possible de sélectionner les atomes les plus énergiques pour évaporer le gaz de façon habituelle. Une méthode alternative, qui repose sur la perte non-sélective d'atomes, a été proposée et mise en pratique expérimentalement par des collègues. Leurs résultats sont compatibles avec des observations faites sur notre montage, très semblable au leur. Tout d'abord, nous avons aussi obtenu des température d'environ 10% de l'énergie de l'état fondamental transverse. Deuxièmement, des simulations champ classique ont montré la robustesse de l'état hors d'équilibre généré par de telles pertes: les différents modes perdent en effet de l'énergie à des taux différents. Ceci est en accord avec l'observation expérimentale suivante: selon la méthode de thermométrie utilisée, chacune explorant des excitations d'énergies différentes, les températures mesurées sont différentes. Enfin, nous relions cet état non-thermique à la nature intégrable du système considéré
We present experimental and theoretical results on ultracold one-dimensional (1D) Bose gases, trapped at the surface of a micro-structure. A large part of the doctoral work was dedicated to the upgrade of the experimental apparatus: the laser system was replaced and the installation of a new imaging objective of high numerical aperture (0.4) required the modification of the atom chip design and the vacuum system. We then probed second-order correlations in momentum space, using a focussing method which allows us to record the velocity distribution of our gas in a single shot. Our data span the weakly-interacting regime of the 1D Bose gas, going from the ideal Bose gas regime to the quasi-condensate. These measurements revealed bunching in both phases, while in the quasi-condensate off-diagonal negative correlations, a the signature of the absence of long-range order in 1D, were revealed. These experimental results agree well with analytical calculations and exact Quantum Monte Carlo simulations. A second project focussed on the cooling of such 1D gases. Since the samples lie in the ground state of the transverse trap, energy selection to carry out usual evaporative cooling is not possible. An alternative cooling scheme, based on non-selective removal of particles, was proposed and demonstrated by colleagues. These findings are compatible with observations on our setup, similar to theirs. Firstly, we also reached temperatures as low as 10% of the transverse gap in earlier experiments. Secondly, with classical field simulations we demonstrate the robustness of the non-thermal arising from these losses: different modes indeed lose energy at different rates. This agrees with the following observation: depending on the thermometry we use, each probing excitations of different energies, the measured temperatures are different, beyond experimental uncertainty. Finally, we relate this non-thermal state to the integrable nature of the 1D Bose gas
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Bin. "Searching for Short Range Correlations Using (e,e'NN) Reactions." Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Research ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2003. http://www.osti.gov/servlets/purl/824928-2353Al/native/.

Повний текст джерела
Анотація:
Thesis; Thesis information not provided; 1 Feb 2003.
Published through the Information Bridge: DOE Scientific and Technical Information. "JLAB-PHY-03-38" "DOE/ER/40150-2762" Bin Zhang. 02/01/2003. Report is also available in paper and microfiche from NTIS.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Subedi, Ramesh Raj. "Studying Short-Range Correlations with the 12C(e,e'pn) Reaction." [Kent, Ohio] : Kent State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1194961371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cayla, Hugo. "Measuring the momentum distribution of a lattice gas at the single-atom level." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLO005/document.

Повний текст джерела
Анотація:
Ce travail de thèse démontre une technique de détection capable de mesurer, avec une sensibilité à l'atome unique, l'espace des impulsions d'un gaz ultrafroid chargé dans un réseau optique 3D. Nous avons développé un détecteur basé sur des galettes de micro-canaux, capable de sonder électroniquement des nuages d'Hélium-4 métastable. Le gaz est détecté après un temps de vol de 325ms, suffisamment long pour atteindre l'expansion de champ lointain, où la distribution spatiale du gaz coïncide avec la distribution d'impulsion asymptotique. En se plac{c}ant dans un régime proche du remplissage unitaire du réseau, les effets de collisions entre atomes aux premiers instants de l'expansion deviennent négligeables, et donc la distribution d'impulsion asymptotique est égale à la distribution d'impulsion in situ. Nous démontrons expérimentalement cette égalité en comparant nos mesures en champ lointain avec la distribution d'impulsion calculée à partir de l'Hamiltonien de Bose-Hubbard, gr^ace à des simulations Monte Carlo Quantique. Nous observons un bon accord avec la théorie sur plus de 3 ordres de grandeur en densité. Ces simulations sont calculées à partir de nos paramètres expérimentaux, la température étant la seule variable ajustable. Nous utilisons ensuite cette comparaison pour réaliser une thermométrie précise du gaz sur réseau, permettant une exploration de la transition superfluide-gaz normal à travers la mesure directe de différentes quantités, comme la fraction condensée ou la fonction de corrélation à deux particules
In this thesis, we report the demonstration of a detection technique able to probe, with a single-atom sensitivity, the momentum distribution of an ultracold gas loaded inside a 3D optical lattice. We have developed a micro-channel plate detector, able to electronically probe clouds of metastable Helium-4. The gas is detected after a time-of-flight of 325ms, long enough to reach the far-field expansion, where the spatial distribution of the cloud can be mapped to the asymptotic momentum distribution. By putting ourselves in a regime where the lattice filling is close to unity, the atomic collisions in the first instant of the expansion become negligible, so that the asymptotic momentum distribution is equal to the in situ momentum distribution. We experimentally demonstrate this equality, by comparing our far-field measurements with the momentum distribution calculated from the Bose-Hubbard Hamiltonian, thanks to ab initio quantum Monte Carlo simulations. We show a good agreement with the theory over more than 3 orders of magnitude in density. Those simulations are calculated with our experimental parameters, the temperature being the only adjustable variable. We then use this comparison to perform a precise thermometry of the lattice gas, allowing us to explore the superfluid-normal gas transition through a direct measurement of different quantities, like the condensed fraction or the two-particles correlation function
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Momentum correlations"

1

Aamir, Shabbir, Lumley John L. 1930-, and United States. National Aeronautics and Space Administration., eds. Advances in modeling the pressure correlation terms in the second moment equations. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rocky Mountain Forest and Range Experiment Station (Fort Collins, Colo.), ed. Eddy diffusivities for sensible heat, ozone and momentum from eddy correlation and gradient measurements. Fort Collins, Colo: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zeller, K. F. Eddy diffusivities for sensible heat, ozone, and momentum from eddy correlation and gradient measurements. 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ellguth, Martin. A spin- and momentum-resolved photoemission study of strong electron correlation in Co/Cu. Logos Verlag Berlin, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

(Editor), M. Donath, Peter A. Dowben (Editor), and W. Nolting (Editor), eds. Magnatism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds. World Scientific Publishing Company, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morawetz, Klaus. Spectral Properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0008.

Повний текст джерела
Анотація:
The spectral properties of the nonequilibrium Green’s functions are explored. Causality and sum rules are shown to be completed by the extended quasiparticle picture. The off-shell motion is seen to become visible in satellite structures of the spectral function. Different forms of ansatz to reduce the two-time Green’s function to a one-time reduced density matrix are discussed with respect to the consistency to other approximations. We have seen from the information contained in the correlation function that the statistical weight of excitations with which the distributions are populated are given by the spectral function. This momentum-resolved density of state can be found by the retarded and advance functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Magnetism and electronic correlations in local-moment systems: Rare-earth elements and compounds : Berlin, Germany, 16-18 March 98. Singapore: World Scientific, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Correlation of forebody pressures and aircraft yawing moments on the X-29A aircraft at high angles of attack. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guimarães, Ms Celso Cursino. The trap of Pearson's product-moment correlation: How the instability and mathematical indetermination of this coefficient have made work inaccurate over decades. http://cbl.org.br/, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Borodin, Alexei, and Leonid Petrov. Integrable probability: stochastic vertex models and symmetric functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0002.

Повний текст джерела
Анотація:
This chapter presents the study of a homogeneous stochastic higher spin six-vertex model in a quadrant. For this model concise integral representations for multipoint q-moments of the height function and for the q-correlation functions are derived. At least in the case of the step initial condition, these formulas degenerate in appropriate limits to many known formulas of such type for integrable probabilistic systems in the (1+1)d KPZ universality class, including the stochastic six-vertex model, ASEP, various q-TASEPs, and associated zero-range processes. The arguments are largely based on properties of a family of symmetric rational functions that can be defined as partition functions of the higher spin six-vertex model for suitable domains; they generalize classical Hall–Littlewood and Schur polynomials. A key role is played by Cauchy-like summation identities for these functions, which are obtained as a direct corollary of the Yang–Baxter equation for the higher spin six-vertex model.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Momentum correlations"

1

Egido, J. L., and L. M. Robledo. "10 Angular Momentum Projection and Quadrupole Correlations Effects in Atomic Nuclei." In Extended Density Functionals in Nuclear Structure Physics, 269–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39911-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rosati, Sergio, Michele Viviani, and Enrique Buendia. "Correlations and Momentum Distribution in the Ground State of Liquid 3He." In Condensed Matter Theories, 119–25. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holm, Darryl D., Ruiao Hu, and Oliver D. Street. "Coupling of Waves to Sea Surface Currents Via Horizontal Density Gradients." In Mathematics of Planet Earth, 109–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_8.

Повний текст джерела
Анотація:
AbstractThe mathematical models and numerical simulations reported here are motivated by satellite observations of horizontal gradients of sea surface temperature and salinity that are closely coordinated with the slowly varying envelope of the rapidly oscillating waves. This coordination of gradients of fluid material properties with wave envelopes tends to occur when strong horizontal buoyancy gradients are present. The nonlinear models of this coordinated movement presented here may provide future opportunities for the optimal design of satellite imagery that could simultaneously capture the dynamics of both waves and currents directly.The model derived here appears in two levels of approximation: first for rapidly oscillating waves, and then for their slowly varying envelope (SVE) approximation obtained by using the WKB approach. The WKB wave-current-buoyancy interaction model derived here for a free surface with significant horizontal buoyancy gradients indicates that the mechanism for the emergence of these correlations is the ponderomotive force of the slowly varying envelope of rapidly oscillating waves acting on the surface currents via the horizontal buoyancy gradient. In this model, the buoyancy gradient appears explicitly in the WKB wave momentum, which in turn generates density-weighted potential vorticity whenever the buoyancy gradient is not aligned with the wave-envelope gradient.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bobkov, Sergey, Gennadiy Chistyakov, and Friedrich Götze. "Moments and Correlation Conditions." In Concentration and Gaussian Approximation for Randomized Sums, 3–22. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31149-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miller, William. "The Product Moment Correlation." In Statistics and Measurement Concepts with OpenStat, 53–86. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5743-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hoffman, Yehuda. "Hierarchical Clustering: Angular Momentum Density Anti-Correlation." In Dark Matter in the Universe, 363. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4772-6_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Löhneysen, H. V. "Heavily Doped Semiconductors: Magnetic Moments, Electron-Electron Interactions and the MetalInsulator Transition." In Concepts in Electron Correlation, 155–67. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0213-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gooch, Jan W. "Pearson’s Product-Moment Correlation Coefficient." In Encyclopedic Dictionary of Polymers, 991. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gardner, Susan, and Daheng He. "T-odd momentum correlation in radiative β decay." In SSP 2012, 71–78. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6485-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hall, G. E., N. Sivakumar, P. L. Houston, and I. Burak. "Angular Momentum-Velocity Correlation of OCS Photodissociation Products." In Methods of Laser Spectroscopy, 429–33. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9459-8_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Momentum correlations"

1

Gamberg, L. P., G. R. Goldstein, and M. Schlegel. "TRANSVERSE MOMENTUM-SPIN CORRELATIONS." In Proceedings of the Second Workshop on Transverse Polarization Phenomena in Hard Processes. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277785_0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mitchell, Jeffery. "Fluctuations and low transverse momentum correlation results from PHENIX." In Correlations and Fluctuations in Relativistic Nuclear Collisions. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.030.0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Johnson, D. J., M. P. Desjarlais, D. F. Wenger, T. A. Haill, and T. A. Mehlhorn. "Lithium beam energy-momentum correlations on PBFAII." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pajares, Carlos, Leticia Cunqueiro, and Elena Gonzalez Ferreiro. "Multiplicity, transverse momentum, forward-backward long range correlations and percolation of strings." In Correlations and Fluctuations in Relativistic Nuclear Collisions. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.030.0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vos, M. "Electron momentum spectroscopy of metals." In CORRELATIONS,POLARIZATION,AND IONIZATION IN ATOMIC SYSTEMS:Proceedings of the International Symposium on(e,2e),Double Photoionization and Related Topics and the Eleventh International Symposium on Polarization and Correlation in Electronic and Atomic .... AIP, 2002. http://dx.doi.org/10.1063/1.1449316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Osorio, Clara I., Gabriel Molina-Terriza, and Juan P. Torres. "Orbital Angular Momentum Correlations in Spontaneous Parametric Down Conversion." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/cqo.2007.cmc2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Borghini, Nicolas. "Multiparticle correlations due to momentum conservation and statistical jet studies." In High-pT physics at LHC. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.045.0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hegde, U., D. Stocker, M. Bahadori, U. Hegde, D. Stocker, and M. Bahadori. "Temperature correlations and dissipation in a momentum-dominated diffusion flame." In 3rd AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xiao, Dong Beom Kim, Virginia O. Lorenz, and Siddharth Ramachandran. "Shaping Biphoton Spectral Correlations with Orbital Angular Momentum Fiber Modes." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4b.1.

Повний текст джерела
Анотація:
We leverage large channel-count optical fibers supporting orbital angular momentum (OAM) modes to show that near-infrared to telecom photon pairs can be engineered to have arbitrary correlations by choice of mode combinations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Charity, R. J., and Bertram Blank. "Momentum correlations in the two-proton decay of light nuclei." In THE 4TH INTERNATIONAL CONFERENCE ON PROTON EMITTING NUCLEI AND RELATED TOPICS. AIP, 2011. http://dx.doi.org/10.1063/1.3664156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Momentum correlations"

1

Lee, J. H. Transverse momentum dependent two-pion Bose-Einstein correlations in Au + Au collisions at 11.6 A {center_dot} GeV/c. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/674842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Klems, J. H. Parity-violating momentum correlations as a means of observing weak interactions in e/sup +/e/sup minus/ /yields/ hadrons. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6839435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Labonte, M., and F. Goodarzi. The Relationship Between Dendographs and Pearson Product - Moment Correlation Coefficients. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Osipenko, Mikhail. Moments of F2 Structure Functions and Multiparton Correlations in Nuclei. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/824903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bent, A. L., and P. Voss. Seismicity in the Labrador-Baffin Seaway and surrounding onshore regions. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321857.

Повний текст джерела
Анотація:
Studying earthquakes in Baffin Bay and the surrounding regions is challenging. There is no knowledge of earthquake activity in this region prior to 1933 when a moment magnitude (MW) 7.4 earthquake occurred in Baffin Bay. With improved instrumentation, increased seismograph coverage in the north, and modern analysis techniques, knowledge and understanding of earthquakes in the Baffin region is improving. Active seismic zones include Baffin Bay, the east coast of Baffin Island, and the Labrador Sea, separated by areas of low seismicity. Focal-mechanism solutions show a mix of faulting styles, predominantly strike-slip and thrust. Regional stress-axes orientations show more consistency, which suggests that activity is occurring on previously existing structures in response to the current stress field. There is little correlation between earthquake epicentres in Baffin Bay and mapped structures. Glacial isostatic adjustment may be a triggering mechanism for earthquakes in the Baffin region, but modelling efforts have yielded equivocal results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Riley, Mark, and Akis Pipidis. The Mechanical Analogue of the "Backbending" Phenomenon in Nuclear-structure Physics. Florida State University, May 2008. http://dx.doi.org/10.33009/fsu_physics-backbending.

Повний текст джерела
Анотація:
This short pedagogical movie illustrates an effect in nuclear physics called backbending which was first observed in the study of the rotational behavior of rapidly rotating rare-earth nuclei in Stockholm, Sweden in 1971. The video contains a mechanical analog utilizing rare-earth magnets and rotating gyroscopes on a turntable along with some historic spectra and papers associated with this landmark discovery together with its explanation in terms of the Coriolis induced uncoupling and rotational alignment of a specific pair of particles occupying high-j intruder orbitals. Thus backbending represents a crossing in energy of the groundstate, or vacuum, rotational band by another band which has two unpaired high-j nucleons (two quasi-particles) with their individual angular momenta aligned with the rotation axis of the rapidly rotating nucleus. Backbending was a major surprise which pushed the field of nuclear structure physics forward but which is now sufficiently well understood that it can be used as a precision spectroscopic tool providing useful insight for example, into nuclear pairing correlations and changes in the latter due to blocking effects and quasi-particle seniority, nuclear deformation, the excited configurations of particular rotational structures and the placement of proton and neutron intruder orbitals at the Fermi surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії