Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Molecular selectivity.

Статті в журналах з теми "Molecular selectivity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Molecular selectivity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Murray, Royce. "Chemical Sensors and Molecular Selectivity." Analytical Chemistry 66, no. 9 (April 1994): 505a. http://dx.doi.org/10.1021/ac00081a600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Somorjai, Gabor A, and Jeong Y Park. "Molecular Factors of Catalytic Selectivity." Angewandte Chemie International Edition 47, no. 48 (November 12, 2008): 9212–28. http://dx.doi.org/10.1002/anie.200803181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Guangyang, Xiaodong Huang, Lingyun Li, Xiaomin Xu, Yanguo Zhang, Jun Lv, and Donghui Xu. "Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis." Nanomaterials 9, no. 7 (July 18, 2019): 1030. http://dx.doi.org/10.3390/nano9071030.

Повний текст джерела
Анотація:
Molecular imprinting technology (MIT), also known as molecular template technology, is a new technology involving material chemistry, polymer chemistry, biochemistry, and other multi-disciplinary approaches. This technology is used to realize the unique recognition ability of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs). MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity, and their internal recognition sites can be selectively combined with template molecules to achieve selective recognition. A molecularly imprinted fluorescence sensor (MIFs) incorporates fluorescent materials (fluorescein or fluorescent nanoparticles) into a molecularly imprinted polymer synthesis system and transforms the binding sites between target molecules and molecularly imprinted materials into readable fluorescence signals. This sensor demonstrates the advantages of high sensitivity and selectivity of fluorescence detection. Molecularly imprinted materials demonstrate considerable research significance and broad application prospects. They are a research hotspot in the field of food and environment safety sensing analysis. In this study, the progress in the construction and application of MIFs was reviewed with emphasis on the preparation principle, detection methods, and molecular recognition mechanism. The applications of MIFs in food and environment safety detection in recent years were summarized, and the research trends and development prospects of MIFs were discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Candeago, Riccardo, Hanyu Wang, Manh-Thuong Nguyen, Mathieu Doucet, Vassiliki Alexandra Glezakou, Jim Browning, and Xiao Su. "Molecular Insights into Redox-Active Polymer Interfaces: Solvation and Ion Valency Effects on Metal Oxyanion Selectivity." ECS Meeting Abstracts MA2024-01, no. 55 (August 9, 2024): 2910. http://dx.doi.org/10.1149/ma2024-01552910mtgabs.

Повний текст джерела
Анотація:
Chemical separations are responsible for 10-15% of the world’s energy consumption. Minimizing energy and materials inputs in selective separations is imperative for a sustainable future. Ion-electrosorption mediated by redox-active metallopolymer interfaces has the unique advantage of selectively capturing and releasing metal oxyanions in a switchable manner by adjusting the applied potential, without any regenerants. Electrosorption addresses the need for selective separation approaches with low chemical and energy inputs. Previous studies on ferrocene metallopolymers have demonstrated the role of polymer structure and applied potential on selectivity—however, the ubiquitous role of solvation in redox-polymers has remained unexplored. Here, we investigate how solvation and ion valency influence selectivity of ReO4 - vs MoO4 2- for two redox-metallopolymers, poly(vinyl ferrocene) (PVFc) and poly(3-ferrocenylpropyl methacrylamide) (PFPMAm). Both polymers display time-dependent Re/Mo selectivity, with PVFc having higher selectivity compared to PFPMAm. Operando neutron reflectometry, ellipsometry, and electrochemical quartz-crystal microbalance show that both PVFc and PFPMAm swell in the presence of ReO4 - (with PFPMAm having higher solvation), but do not swell in contact with MoO4 2-. We find that the less solvated anion (ReO4 -) is preferably adsorbed by the more hydrophobic redox-polymer (PVFc). We expect that a deeper understanding of solvation and valency effects on selectivity mechanisms in redox interfaces will expedite the development of targeted selective ion-electrosorption systems. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rauschenberg, Melanie, Eva-Corrina Fritz, Christian Schulz, Tobias Kaufmann, and Bart Jan Ravoo. "Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin." Beilstein Journal of Organic Chemistry 10 (June 16, 2014): 1354–64. http://dx.doi.org/10.3762/bjoc.10.138.

Повний текст джерела
Анотація:
The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors (“synthetic lectins”) constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepared a fluorescently labeled synthetic lectin consisting of a cyclic dimer of the tripeptide Cys-His-Cys, which forms spontaneously by air oxidation of the monomer. Amine-tethered derivatives of N-acetylneuraminic acid (NANA), β-D-galactose, β-D-glucose and α-D-mannose were microcontact printed on epoxide-terminated self-assembled monolayers. Successive prints resulted in simple microarrays of two carbohydrates. The selectivity of the synthetic lectin was investigated by incubation on the immobilized carbohydrates. Selective binding of the synthetic lectin to immobilized NANA and β-D-galactose was observed by fluorescence microscopy. The selectivity and affinity of the synthetic lectin was screened in competition experiments. In addition, the carbohydrate binding of the synthetic lectin was compared with the carbohydrate binding of the lectins concanavalin A and peanut agglutinin. It was found that the printed carbohydrates retain their characteristic selectivity towards the synthetic and natural lectins and that the recognition of synthetic and natural lectins is strictly orthogonal.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Farman, Nicolette, and Brigitte Bocchi. "Mineralocorticoid selectivity: Molecular and cellular aspects." Kidney International 57, no. 4 (April 2000): 1364–69. http://dx.doi.org/10.1046/j.1523-1755.2000.00976.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Comba, Peter. "Metal ion selectivity and molecular modeling." Coordination Chemistry Reviews 185-186 (May 1999): 81–98. http://dx.doi.org/10.1016/s0010-8545(98)00249-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laskin, Julia, Alexander Laskin, Sergey A. Nizkorodov, Patrick Roach, Peter Eckert, Mary K. Gilles, Bingbing Wang, Hyun Ji (Julie) Lee, and Qichi Hu. "Molecular Selectivity of Brown Carbon Chromophores." Environmental Science & Technology 48, no. 20 (October 7, 2014): 12047–55. http://dx.doi.org/10.1021/es503432r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Epa, Kanishka, Christer B. Aakeröy, John Desper, Sundeep Rayat, Kusum Lata Chandra, and Aurora J. Cruz-Cabeza. "Controlling molecular tautomerism through supramolecular selectivity." Chemical Communications 49, no. 72 (2013): 7929. http://dx.doi.org/10.1039/c3cc43935f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Souverijns, Wim, Lieve Rombouts, Johan A. Martens, and Pierre A. Jacobs. "Molecular shape selectivity of EUO zeolites." Microporous Materials 4, no. 2-3 (June 1995): 123–30. http://dx.doi.org/10.1016/0927-6513(94)00091-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Selçuk, Berkay, Ismail Erol, Serdar Durdağı, and Ogün Adebali. "Evolutionary association of receptor-wide amino acids with G protein–coupling selectivity in aminergic GPCRs." Life Science Alliance 5, no. 10 (May 25, 2022): e202201439. http://dx.doi.org/10.26508/lsa.202201439.

Повний текст джерела
Анотація:
G protein-coupled receptors (GPCRs) induce signal transduction pathways through coupling to four main subtypes of G proteins (Gs, Gi, Gq, and G12/13), selectively. However, G protein selective activation mechanisms and residual determinants in GPCRs have remained obscure. Herein, we performed extensive phylogenetic analysis and identified specifically conserved residues for the aminergic receptors having similar coupling profiles. By integrating our methodology of differential evolutionary conservation of G protein–specific amino acids with structural analyses, we identified specific activation networks for Gs, Gi1, Go, and Gq. To validate that these networks could determine coupling selectivity we further analyzed Gs-specific activation network and its association with Gs selectivity. Through molecular dynamics simulations, we showed that previously uncharacterized Glycine at position 7x41 plays an important role in receptor activation and it may determine Gs coupling selectivity by facilitating a larger TM6 movement. Finally, we gathered our results into a comprehensive model of G protein selectivity called “sequential switches of activation” describing three main molecular switches controlling GPCR activation: ligand binding, G protein selective activation mechanisms, and G protein contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ge, Huizhen, Chunchao Tang, Yiting Pan, and Xiaojun Yao. "Theoretical Studies on Selectivity of HPK1/JAK1 Inhibitors by Molecular Dynamics Simulations and Free Energy Calculations." International Journal of Molecular Sciences 24, no. 3 (January 31, 2023): 2649. http://dx.doi.org/10.3390/ijms24032649.

Повний текст джерела
Анотація:
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell receptor, which has been regarded as a potential target for immunotherapy. Yu et al. observed the off-target effect of the high-throughput screening HPK1 kinase inhibitor hits on JAK1 kinase. The off-target effect is usually due to the lack of specificity of the drug, resulting in toxic side effects. Therefore, exploring the mechanisms to selectively inhibit HPK1 is critical for developing effective and safe inhibitors. In this study, two indazole compounds as HPK1 inhibitors with different selectivity towards JAK1 were used to investigate the selectivity mechanism using multiple computational methods, including conventional molecular dynamics simulations, binding free energy calculations and umbrella sampling simulations. The results indicate that the salt bridge between the inhibitor and residue Asp101 of HPK1 favors their selectivity towards HPK1 over JAK1. Information obtained from this study can be used to discover and design more potent and selective HPK1 inhibitors for immunotherapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhang, Ji Shi, Zhe Wang, Jing Wen Xue, and Xin Zhu Li. "Cr-Substituted Mesoporous Aluminophosphate Molecular Sieve: Preparation, Characterization and Catalytic Activity in the Oxidation Reaction of Ethylbenzene." Advanced Materials Research 496 (March 2012): 285–89. http://dx.doi.org/10.4028/www.scientific.net/amr.496.285.

Повний текст джерела
Анотація:
Cr-substituted mesoporous aluminophosphate molecular sieve (Cr-MAP) was prepared and characterized. Cr-MAP is a typical mesoporous molecular sieve with long-range ordered structure, providing effective molecular sieve for fabricating acetophenone by selectively oxizing ethylbenzene with tertiary butyl hydro peroxide (TBHP). When the reaction is at 100 °C for 8 h, using chlorobenzene as solvent and TBHP as oxidant, ethylbenzene conversion, acetophenone selectivity and acetophenone yield reach 72.8 %, 85.4 %, and 62.2 %, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kurata, Harley T., L. Revell Phillips, Thierry Rose, Gildas Loussouarn, Stefan Herlitze, Hariolf Fritzenschaft, Decha Enkvetchakul, Colin G. Nichols, and Thomas Baukrowitz. "Molecular Basis of Inward Rectification." Journal of General Physiology 124, no. 5 (October 11, 2004): 541–54. http://dx.doi.org/10.1085/jgp.200409159.

Повний текст джерела
Анотація:
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sharma, Mahima, Palika Abayakoon, Ruwan Epa, Yi Jin, James P. Lingford, Tomohiro Shimada, Masahiro Nakano, et al. "Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis." ACS Central Science 7, no. 3 (February 23, 2021): 476–87. http://dx.doi.org/10.1021/acscentsci.0c01285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nassimbeni, L. R. "Molecular recognition and selectivity in organic clathrates." Acta Crystallographica Section A Foundations of Crystallography 62, a1 (August 6, 2006): s110. http://dx.doi.org/10.1107/s0108767306097807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Smit, Berend, and Theo L. M. Maesen. "Towards a molecular understanding of shape selectivity." Nature 451, no. 7179 (February 2008): 671–78. http://dx.doi.org/10.1038/nature06552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Chen, Alexander N., and Sara E. Skrabalak. "Molecular-like selectivity emerges in nanocrystal chemistry." Dalton Transactions 49, no. 36 (2020): 12530–35. http://dx.doi.org/10.1039/d0dt01168a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Milo, Anat, Elizabeth N. Bess, and Matthew S. Sigman. "Interrogating selectivity in catalysis using molecular vibrations." Nature 507, no. 7491 (March 2014): 210–14. http://dx.doi.org/10.1038/nature13019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Huang, Shengxi, Xi Ling, Liangbo Liang, Yi Song, Wenjing Fang, Jin Zhang, Jing Kong, Vincent Meunier, and Mildred S. Dresselhaus. "Molecular Selectivity of Graphene-Enhanced Raman Scattering." Nano Letters 15, no. 5 (April 2, 2015): 2892–901. http://dx.doi.org/10.1021/nl5045988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lusti-Narasimhan, Manjula, André Chollet, Christine A. Power, Bernard Allet, Amanda E. I. Proudfoot, and Timothy N. C. Wells. "A Molecular Switch of Chemokine Receptor Selectivity." Journal of Biological Chemistry 271, no. 6 (February 9, 1996): 3148–53. http://dx.doi.org/10.1074/jbc.271.6.3148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Conrad, Marcel P., Jörg Piontek, Dorothee Günzel, Michael Fromm, and Susanne M. Krug. "Molecular basis of claudin-17 anion selectivity." Cellular and Molecular Life Sciences 73, no. 1 (July 21, 2015): 185–200. http://dx.doi.org/10.1007/s00018-015-1987-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Colombini, Marco. "The VDAC channel: Molecular basis for selectivity." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1863, no. 10 (October 2016): 2498–502. http://dx.doi.org/10.1016/j.bbamcr.2016.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hu, Ye, and Jürgen Bajorath. "Exploring Target-Selectivity Patterns of Molecular Scaffolds." ACS Medicinal Chemistry Letters 1, no. 2 (February 2010): 54–58. http://dx.doi.org/10.1021/ml900024v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Farman, Nicolette. "Molecular and cellular determinants of mineralocorticoid selectivity." Current Opinion in Nephrology and Hypertension 8, no. 1 (January 1999): 45–51. http://dx.doi.org/10.1097/00041552-199901000-00008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Imoto, Keiji. "Ion channels: molecular basis of ion selectivity." FEBS Letters 325, no. 1-2 (June 28, 1993): 100–103. http://dx.doi.org/10.1016/0014-5793(93)81422-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dietz, Nikolaus, Markus Huber, Isabel Sorg, Arnaud Goepfert, Alexander Harms, Tilman Schirmer, and Christoph Dehio. "Structural basis for selective AMPylation of Rac-subfamily GTPases by Bartonella effector protein 1 (Bep1)." Proceedings of the National Academy of Sciences 118, no. 12 (March 15, 2021): e2023245118. http://dx.doi.org/10.1073/pnas.2023245118.

Повний текст джерела
Анотація:
Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Charlton, James L., Guy L. Plourde та Glenn H. Penner. "Asymmetric induction in Diels–Alder reactions of α-alkoxyorthoquinodimethanes". Canadian Journal of Chemistry 67, № 6 (1 червня 1989): 1010–14. http://dx.doi.org/10.1139/v89-153.

Повний текст джерела
Анотація:
It has been shown that dienophiles cycloadd selectively to one face of o-quinodimethanes (o-QDMs) bearing chiral α-alkoxy groups. The face selectivity (diastereoselectivity) increases for the series of chiral groups -OCH(Ph)CH3, -OCH(Ph)CH(CH3)2, and -OCH(Ph)C(CH3)3. A similar effect on the face selectivity of the Diels–Alder reactions of chiral alkoxy vinyl ethers for the same series of chiral groups has been noted previously by others. A mechanism has been proposed to explain the face selectivity in the cycloaddition reactions of the alkoxy o-QDMs. Abinitio molecular orbital calculations with geometry optimization on vinyl 1-phenylethyl ether to determine its lowest energy conformations support the proposed mechanism. The absolute stereochemistries of the o-QDM cycloadducts have been determined to verify the predictions of the model. Keywords: o-quinodimethanes, asymmetric, Diels–Alder, cycloaddition.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Chunyan, Jingxiang Yuan, Chaozhan Wang, and Yinmao Wei. "Molecular bottlebrush polymer modified magnetic adsorbents with high physicochemical selectivity and unique shape selectivity." Journal of Chromatography A 1564 (August 2018): 16–24. http://dx.doi.org/10.1016/j.chroma.2018.06.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Liu, Xuanyan, Yidan Jing, Yuanyuan She, Jun Liu, Wenwei Hu, and Dulin Yin. "Bifunctional Oxidation Catalysis of New Titanium-Silicon Molecular Sieve (HTS-1) Based on the Reaction of Allyl Alcohol and Hydrogen Peroxide." Science of Advanced Materials 14, no. 6 (June 1, 2022): 1144–49. http://dx.doi.org/10.1166/sam.2022.4321.

Повний текст джерела
Анотація:
The HTS-1 (Hollow Titanium silicalite molecular sieve) catalyst with bifunctional catalysis showed superior catalytic activity in the epoxidation of olefins and the oxidation of alcohols. The competitive oxidation law of enols in the HTS-1/H2O2 oxidation system was studied. The effects of various reaction conditions, such as the reaction temperature, solvent, catalyst type, and the amount of additive, were examined. The results indicated that the HTS-1 catalyst preferentially catalyzes AA epoxidation to produce glycidol (GLY) efficiently and selectively using polar proton solvent and proper temperature. Using alkaline additives can greatly improve the catalytic activity of HTS-1 and selectivity of glycidol. Under optimal conditions, the conversion of AA can rate to 77%, and the selectivity of GLY can also achieve 91%.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rogne, Per, Marie Rosselin, Christin Grundström, Christian Hedberg, Uwe H. Sauer, and Magnus Wolf-Watz. "Molecular mechanism of ATP versus GTP selectivity of adenylate kinase." Proceedings of the National Academy of Sciences 115, no. 12 (March 5, 2018): 3012–17. http://dx.doi.org/10.1073/pnas.1721508115.

Повний текст джерела
Анотація:
Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallography experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an atomic view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure–function analysis enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Dores, Robert M., Richard L. Londraville, Jeremy Prokop, Perry Davis, Nathan Dewey, and Natalie Lesinski. "MOLECULAR EVOLUTION OF GPCRS: Melanocortin/melanocortin receptors." Journal of Molecular Endocrinology 52, no. 3 (June 2014): T29—T42. http://dx.doi.org/10.1530/jme-14-0050.

Повний текст джерела
Анотація:
The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal–interrenal (HPA–I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA–I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1–24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs).
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Jiang, Shan, Kim E. Jelfs, Daniel Holden, Tom Hasell, Samantha Y. Chong, Maciej Haranczyk, Abbie Trewin, and Andrew I. Cooper. "Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids." Journal of the American Chemical Society 135, no. 47 (November 14, 2013): 17818–30. http://dx.doi.org/10.1021/ja407374k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sun, Qing, Zhi Xiang Xu, Li Min Zhang, Lei Xu, and Jie Zhou. "The Recent Advance of Molecularly Imprinted on-Line Solid Phase Extraction and its Application in Sample Pretreatment - A Mini Review." Advanced Materials Research 415-417 (December 2011): 1799–805. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1799.

Повний текст джерела
Анотація:
Solid phase extraction (SPE) is a sample pretreatment technique which is increasingly popular and widely used. However, most of the traditional SPE material has poor selectivity. Molecular imprinting is an emerging technology for the preparation of functionalized materials with molecular recognition ability. Using the imprinted polymers as new sorbent, a molecularly imprinted on-line solid phase extraction coupled with chromatography or other techniques has become one of the most interesting applications of MIP, which has not only the extraction efficiency of SPE but also the high selectivity of imprinted polymers. This paper focuses on the recent states, advantages and outlooks of molecularly imprinted on-line solid phase extraction in sample pretreatment. This mini review may promote the extensive application of MIP in food safety.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Murata, Kazuyoshi, Kaoru Mitsuoka, Terahisa Hirai, Thomas Walz, Peter Agre, J. Bernard Heymann, Andreas Engel, and Yoshinori Fujiyoshi. "Molecular basis of water selectivity on aquaporin-1." Kidney International 60, no. 2 (August 2001): 399. http://dx.doi.org/10.1046/j.1523-1755.2001.00821-5.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Aakeröy, Christer B., Tharanga K. Wijethunga, and John Desper. "Molecular electrostatic potential dependent selectivity of hydrogen bonding." New Journal of Chemistry 39, no. 2 (2015): 822–28. http://dx.doi.org/10.1039/c4nj01324g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Newcomb, Martin, and Pavel A. Simakov. "Lack of molecular selectivity in Gif-type oxidations." Tetrahedron Letters 39, no. 9 (February 1998): 965–66. http://dx.doi.org/10.1016/s0040-4039(97)10671-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Sardar, Vineet M., Debra L. Bautista, David J. Fischer, Kazuaki Yokoyama, Nora Nusser, Tamas Virag, De-an Wang, Daniel L. Baker, Gabor Tigyi, and Abby L. Parrill. "Molecular basis for lysophosphatidic acid receptor antagonist selectivity." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1582, no. 1-3 (May 2002): 309–17. http://dx.doi.org/10.1016/s1388-1981(02)00185-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Wess, Jürgen. "Molecular Basis of Receptor/G-Protein-Coupling Selectivity." Pharmacology & Therapeutics 80, no. 3 (December 1998): 231–64. http://dx.doi.org/10.1016/s0163-7258(98)00030-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Cook, Ian, Ting Wang, and Thomas S. Leyh. "Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism." Biochemistry 54, no. 39 (September 23, 2015): 6114–22. http://dx.doi.org/10.1021/acs.biochem.5b00406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yang, Yingkui, and Carroll M. Harmon. "Molecular determinants of ACTH receptor for ligand selectivity." Molecular and Cellular Endocrinology 503 (March 2020): 110688. http://dx.doi.org/10.1016/j.mce.2019.110688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Park, Eul-Soo, Minji Kim та Jong-Shik Shin. "Molecular determinants for substrate selectivity of ω-transaminases". Applied Microbiology and Biotechnology 93, № 6 (9 жовтня 2011): 2425–35. http://dx.doi.org/10.1007/s00253-011-3584-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Erlenbach, Isolde, and Jürgen Wess. "Molecular Basis of V2 Vasopressin Receptor/GsCoupling Selectivity." Journal of Biological Chemistry 273, no. 41 (October 9, 1998): 26549–58. http://dx.doi.org/10.1074/jbc.273.41.26549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Bartok, Adam, Gyorgy Panyi, Lourival Domingos Possani, and Zoltan Varga. "Molecular Determinants of Selectivity for Kv1.3 K+ Channels." Biophysical Journal 104, no. 2 (January 2013): 465a. http://dx.doi.org/10.1016/j.bpj.2012.11.2572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Bartos, Mariana, Diego Rayes, and Cecilia Bouzat. "Molecular Determinants of Pyrantel Selectivity in Nicotinic Receptors." Molecular Pharmacology 70, no. 4 (July 6, 2006): 1307–18. http://dx.doi.org/10.1124/mol.106.026336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Rao, Mukti S., and Bakul C. Dave. "Thermally-Regulated Molecular Selectivity of Organosilica Sol−Gels." Journal of the American Chemical Society 125, no. 39 (October 2003): 11826–27. http://dx.doi.org/10.1021/ja0352348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Cui, Wenqiang, Junlin Dong, Shiyu Wang, Horst Vogel, Rongfeng Zou, and Shuguang Yuan. "Molecular basis of ligand selectivity for melatonin receptors." RSC Advances 13, no. 7 (2023): 4422–30. http://dx.doi.org/10.1039/d2ra06693a.

Повний текст джерела
Анотація:
The sandwich structure in human melatonin receptors was disrupted. In MT1 this opened a gate for the water molecule from the bulk environment to fluctuate into the inner space. In MT2, the sandwich structure was stabilized by MEL during the whole MD simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Pomès, Régis. "Molecular Mechanisms of Ion Permeation, Selectivity, and Leakage." Biophysical Journal 114, no. 3 (February 2018): 7a. http://dx.doi.org/10.1016/j.bpj.2017.11.074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Matamoros, Marcos, Sun Joo Lee, Shizhen Wang, and Colin G. Nichols. "Molecular Mechanisms of Ion Selectivity in Potassium Channels." Biophysical Journal 118, no. 3 (February 2020): 363a. http://dx.doi.org/10.1016/j.bpj.2019.11.2087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Li, Dan C., Colin G. Nichols, and Monica Sala-Rabanal. "Molecular Determinants of Substrate Selectivity in OCT3 (SLC22A3)." Biophysical Journal 108, no. 2 (January 2015): 461a. http://dx.doi.org/10.1016/j.bpj.2014.11.2516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії