Статті в журналах з теми "Molecular decontamination on orbit"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Molecular decontamination on orbit.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Molecular decontamination on orbit".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Diboune, Mathieu, Habiba Nouali, Michel Soulard, Joël Patarin, Guillaume Rioland, Delphine Faye, and T. Jean Daou. "Green hybrid zeolite coatings for on-orbit molecular decontamination." Microporous and Mesoporous Materials 307 (November 2020): 110478. http://dx.doi.org/10.1016/j.micromeso.2020.110478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kabalan, I., B. Lebeau, M. B. Fadlallah, J. Toufaily, T. Hamieh, J. P. Bellat, and T. J. Daou. "Hierarchical Faujasite-Type Zeolite for Molecular Decontamination." Journal of Nanoscience and Nanotechnology 16, no. 9 (September 1, 2016): 9318–22. http://dx.doi.org/10.1166/jnn.2016.12884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shu-Tang, Liu, Sun Fu-Yan, and Shen Shu-Lan. "Chaos Behaviour of Molecular Orbit." Chinese Physics Letters 24, no. 12 (December 2007): 3590–92. http://dx.doi.org/10.1088/0256-307x/24/12/081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stanke, Monika, Ewa Palikot, Dariusz Kȩdziera, and Ludwik Adamowicz. "Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians." Journal of Chemical Physics 145, no. 22 (December 14, 2016): 224111. http://dx.doi.org/10.1063/1.4971376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maquin, Philippe, and Hisanori Kambara. "Reduction of Airborne Molecular Contamination on 300 mm Front Opening Unified POD (FOUP) and Wafers Surface by Vacuum Technology." Solid State Phenomena 145-146 (January 2009): 139–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.145-146.139.

Повний текст джерела
Анотація:
With decreasing critical size of micro-electronic fabrication imposed by ITRS today, Front Opening Unified Pod (FOUP) has been designed to transport the silicon wafers in the 300 mm semiconductor fab to decrease the particles contamination, without taking the Airborne Molecular Contamination (AMC) and moisture problems into account. Various methods of AMC decontamination methods has been introduced in past, such as purging mini-environment with nitrogen, however the efficiency of its yield improvement capacity has not been proven. An ultimate AMC decontamination method with vacuum decontamination and passivation technology shows a very good efficiency on the AMC removal mechanism, with a direct impact on the yield improvement.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kokkonen, E., T. Löytynoja, K. Jänkälä, J. A. Kettunen, S. Heinäsmäki, A. Karpenko, and M. Huttula. "Spin–orbit interaction mediated molecular dissociation." Journal of Chemical Physics 140, no. 18 (May 14, 2014): 184304. http://dx.doi.org/10.1063/1.4873718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Shu Tang, and Sitao Wu. "Spacial chaos behavior of molecular orbit." Chaos, Solitons & Fractals 31, no. 5 (March 2007): 1181–86. http://dx.doi.org/10.1016/j.chaos.2005.10.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Veĭko, V. P., E. A. Shakhno, V. N. Smirnov, A. M. Myaskovskiĭ, S. S. Borovskikh, and G. D. Nikishin. "Laser decontamination of metallic surfaces." Journal of Optical Technology 74, no. 8 (August 1, 2007): 536. http://dx.doi.org/10.1364/jot.74.000536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Kang, Xiong Liu, Caroline R. Nowlan, Zhaonan Cai, Kelly Chance, Christian Frankenberg, Richard A. M. Lee, Randy Pollock, Robert Rosenberg, and David Crisp. "Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements." Atmospheric Measurement Techniques 10, no. 3 (March 10, 2017): 939–53. http://dx.doi.org/10.5194/amt-10-939-2017.

Повний текст джерела
Анотація:
Abstract. Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy (0. 25 %) compared to previous spaceborne grating spectrometers. On-orbit ILS functions for all three bands of the OCO-2 instrument have been derived using its frequent solar measurements and high-resolution solar reference spectra. The solar reference spectrum generated from the 2016 version of the Total Carbon Column Observing Network (TCCON) solar line list shows significant improvements in the fitting residual compared to the solar reference spectrum currently used in the version 7 Level 2 algorithm in the O2 A band. The analytical functions used to represent the ILS of previous grating spectrometers are found to be inadequate for the OCO-2 ILS. Particularly, the hybrid Gaussian and super-Gaussian functions may introduce spurious variations, up to 5 % of the ILS width, depending on the spectral sampling position, when there is a spectral undersampling. Fitting a homogeneous stretch of the preflight ILS together with the relative widening of the wings of the ILS is insensitive to the sampling grid position and accurately captures the variation of ILS in the O2 A band between decontamination events. These temporal changes of ILS may explain the spurious signals observed in the solar-induced fluorescence retrieval in barren areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zacheus, Outi M., and Pertti J. Martikainen. "Effect of heat flushing on the concentrations of Legionella pneumophila and other heterotrophic microbes in hot water systems of apartment buildings." Canadian Journal of Microbiology 42, no. 8 (August 1, 1996): 811–18. http://dx.doi.org/10.1139/m96-102.

Повний текст джерела
Анотація:
The decontamination of Legionella pneumophila and other heterotrophic microbes by heat flushing in four legionellae-positive hot water systems was studied. Before the decontamination procedure, the concentration of legionellae varied from 3.0 × 10−3 to 3.5 × 10−5 cfu/L and the hot water temperature from 43.6 to 51.5 °C. During the contamination the temperature was raised to 60–70 °C. All taps and showers were cleaned from sediments and flushed with hot water twice a day for several minutes. The decontamination lasted for 2–4 weeks. In a few weeks the heat-flushing method reduced the concentration of legionellae below the detection limit (50 cfu/L) in the hot circulating water system just before and after the heat exchanger. The high hot water temperature also decreased the viable counts of heterotrophic bacteria, fungi, and total microbial cells determined by the epifluorescent microscopy. However, the eradication of legionellae failed in a water system where the water temperature remained below 60 °C in some parts of the system. After the decontamination, the temperature of hot water was lowered to 55 °C. Thereafter, all the studied hot water systems were recolonized by legionellae within a few months, showing that the decontamination by heat flushing was temporary. Also, the contamination of other bacteria increased in a few months to the level before decontamination.Key words: legionellae, hot water system, decontamination, water temperature, heterotrophic bacteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ziubrii, S. "COMPARATIVE CHARACTERISTIC OF EFFECTIVENESS OF SOME DECONTAMINATION FACILITIES USED FOR CARRYING OUT OF FORENSIC MOLECULAR GENETIC EXAMINATION." Theory and Practice of Forensic Science and Criminalistics 19, no. 1 (June 2, 2019): 489–502. http://dx.doi.org/10.32353/khrife.1.2019.39.

Повний текст джерела
Анотація:
The article is devoted to comparing the performance of disinfectants at different concentrations of a contaminating agent. Contamination of objects can occur at any stage of the study, so effective methods of decontamination should be used to prevent it, which at the same time should be safe for laboratory staff. The purpose of the work is to check the effectiveness of disinfectants while working in biological laboratories and to determine their effects on the genetic information of the cell, the effect on the inhibition of PCR reaction and DNA degradation. The mechanisms of influence on a cell and DNA of chemical solutions are analyzed: Винсепт експресс, Бациллол АФ, Дезактин 0, 2 %, WIP'ANIOS Premium, DNAZap™ PCR DNA Degradation Solutions, 70 % и 96 % ethyl alcohols, and physical methods: ultraviolet radiation, alcohol treatment followed by calcination in the flame of the burner and treatment with bidistilled deionized water. While research the contaminating DNA is represented by the synthetic genomic DNA produced by the Promega company. As a result of the pilot study, DNAZap ™ PCR DNA Degradation Solutions and bidistilled deionized water had the highest decontamination efficiency. Bidistilled deionized water can be used to the fullest in the laboratory if medical waste disposal standards are met. Other methods showed an efficiency of more than 99.98% which also allows them to be used when working in a biological laboratory, following the suggested recommendations. The presented methods of decontamination did not cause inhibition of the PCR reaction. Preserved, after decontamination treatment, DNA for most agents had a low level of degradation. After being treated with ultraviolet radiation, the level of DNA degradation was medium which means that ultraviolet radiation destroys long strands of DNA, leaving strands unbroken up to 200 bp. In addition, increasing the concentration of contaminating DNA did not affect the change in the efficiency of decontamination substances. All the decontaminated substances analyzed can be modified in molecular genetic laboratories.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ginghina, Raluca-Elena, Gabriela Toader, Munizer Purica, Adriana-Elena Bratu, Claudiu Lazaroaie, Tudor-Viorel Tiganescu, Ramona-Elena Oncioiu, et al. "Antimicrobial Activity and Degradation Ability Study on Nanoparticle-Enriched Formulations Specially Designed for the Neutralization of Real and Simulated Biological and Chemical Warfare Agents." Pharmaceuticals 15, no. 1 (January 14, 2022): 97. http://dx.doi.org/10.3390/ph15010097.

Повний текст джерела
Анотація:
The present work reveals a comprehensive decontamination study on real and simulated biological and chemical warfare agents (BCWA). The emphasis was on evaluating the antimicrobial activity against real biological warfare agents, such as Bacillus anthracis, and also the capacity of neutralizing real chemical warfare agents, such as mustard gas or soman, by employing three different types of organic solutions enriched with ZnO, TiO2, and zeolite nanoparticles, specially designed for decontamination applications. The capacity of decontaminating BCWA was evaluated through specific investigation tools, including surface monitoring with the swabs method, minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) evaluations, time-kill tests for microorganisms, and GC-MS for monitoring chemical agents on different types of surfaces (glass, painted metal, rubber, and cotton butyl rubber). These tests revealed high decontamination factors for BCWA even after only 10 min, accomplishing the requirements imposed by NATO standards. At the completion of the decontamination process, the formulations reached 100% efficacy for Bacillus anthracis after 10–15 min, for soman after 20–30 min, and for mustard gas in an interval comprised between 5 and 24 h depending on the type of surface analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kabalan, I., G. Rioland, H. Nouali, B. Lebeau, S. Rigolet, M. B. Fadlallah, J. Toufaily, T. Hamiyeh, and T. J. Daou. "Synthesis of purely silica MFI-type nanosheets for molecular decontamination." RSC Advances 4, no. 70 (August 12, 2014): 37353. http://dx.doi.org/10.1039/c4ra05567e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Morono, Yuki, Katsuhiro Yamamoto, and Fumio Inagaki. "Radical Gas-Based DNA Decontamination for Ultra-Sensitive Molecular Experiments." Microbes and Environments 27, no. 4 (2012): 512–14. http://dx.doi.org/10.1264/jsme2.me12061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cisowski, Claire M., and Ricardo R. B. Correia. "Splitting an optical vortex beam to study photonic orbit–orbit interactions." Optics Letters 43, no. 3 (January 25, 2018): 499. http://dx.doi.org/10.1364/ol.43.000499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

LI Dan, 李. 丹., and 于. 洋. YU Yang. "Prediction algorithm of close-orbit satellite based on orbit elements." Optics and Precision Engineering 24, no. 10 (2016): 2540–48. http://dx.doi.org/10.3788/ope.20162410.2540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Greifzu, Georg, Torsten Kahl, Marion Herrmann, Wolfgang Lippmann, and Antonio Hurtado. "Laser-based decontamination of metal surfaces." Optics & Laser Technology 117 (September 2019): 293–98. http://dx.doi.org/10.1016/j.optlastec.2019.04.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Sullivan, T. J., G. W. Aylward, and J. E. Wright. "Actinomycosis of the orbit." British Journal of Ophthalmology 76, no. 8 (August 1, 1992): 505–6. http://dx.doi.org/10.1136/bjo.76.8.505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wright, J. E. "Diseases of the Orbit." British Journal of Ophthalmology 74, no. 2 (February 1, 1990): 126. http://dx.doi.org/10.1136/bjo.74.2.126-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Skubal, Laura R., Alan L. McArthur, and Matthew Newville. "Films for Self-Detection and Decontamination." International Journal of Photoenergy 2008 (2008): 1–6. http://dx.doi.org/10.1155/2008/343714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zakondyrin, D. Ye, N. P. Ryabukha, and V. P. Bersnev. "Surgical treatment of cranial orbit tumors." Bulletin of Siberian Medicine 7, no. 5-2 (December 30, 2008): 318–21. http://dx.doi.org/10.20538/1682-0363-2008-5-2-318-321.

Повний текст джерела
Анотація:
The pathology of cranioorbital region draws attention of surgeons of various specialities because of close and difficult anatomic mutual relation of a cavity of a skull, an orbit and additional sinuses of a nose. To various pathological processes, in particular to tumours of this localization, were long since developed extracranial and transcranial approaches depending on primary diffusion of pathological processes. The group of extracranial approaches is especially numerous and includes both transorbital, and approaches through additional sinuses of a nose. Division of transcranial approaches is based on presence or absence of necessity of mobilisation in the course of approach supraorbital edge.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kerr, C. M. L., та J. K. G. Watson. "Rotational line strengths in 3Δ–3Σ electronic transitions. The Herzberg III system of molecular oxygen". Canadian Journal of Physics 64, № 1 (1 січня 1986): 36–44. http://dx.doi.org/10.1139/p86-006.

Повний текст джерела
Анотація:
Electronic transitions of the type 3Δ–3Σ are forbidden in the absence of spin–orbit or orbit–rotation coupling, but spin–orbit perturbations produce three transition moments, two perpendicular (Y1 and Y2) and one parallel (Z1) while low-order orbit–rotation couplings introduce three further perpendicular transition moments (X1, X2, and X3). Formulas are presented for the rotational line strengths in a 3Δ(a)–3Σ(int) transition in terms of these parameters and are applied to recent data of Coquart and Ramsay for the Herzberg III system [Formula: see text] of molecular oxygen. It is shown that all six parameters are significant, and that there are noticeable departures from the first-order relations Y1 = Y2, Z1 = 0, X1 = X2 = X3. The observation of orbit–rotation intensity effects led to the first identification of lines of the Ω′ = 3 subbands of the 4–0 to 7–0 bands of the Herzberg III system, which are forbidden for the spin–orbit mechanism. The wave numbers of these lines are in satisfactory agreement with the analysis of the A′3Δu → a1Δg emission by Slanger and Huestis.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Miura, Yoko, Masatoshi Sato, Youichi Yamakawa, Tatsuro Habaguchi, and Yoshiaki Ōno. "Structural Transition of Li2RuO3Induced by Molecular-Orbit Formation." Journal of the Physical Society of Japan 78, no. 9 (September 15, 2009): 094706. http://dx.doi.org/10.1143/jpsj.78.094706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Burghardt, I., and P. Gaspard. "Molecular transition state, resonances, and periodic‐orbit theory." Journal of Chemical Physics 100, no. 9 (May 1994): 6395–411. http://dx.doi.org/10.1063/1.467049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Daou, T. Jean, Natacha Lauridant, Gilles Arnold, Ludovic Josien, Delphine Faye, and Joël Patarin. "Synthesis of MFI/EMT zeolite bi-layer films for molecular decontamination." Chemical Engineering Journal 234 (December 2013): 66–73. http://dx.doi.org/10.1016/j.cej.2013.08.103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Justova, Eva, Jindrich Pazdera, Vladimir Mihal, and Josef Nekula. "HAEMANGIOMAS OF THE ORBIT." Biomedical Papers 147, no. 1 (November 1, 2003): 43–49. http://dx.doi.org/10.5507/bp.2003.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhou, Yixuan, Weimin Zhang, Yongliang Shi, Ziyu Wang, Fangxing Li, and Qiang Huang. "LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation." Sensors 20, no. 23 (November 30, 2020): 6853. http://dx.doi.org/10.3390/s20236853.

Повний текст джерела
Анотація:
In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitigates the model drift problem. Our decontamination approach maintains the local neighborhood feature points structures of the bounding box center. This proposed tracking-result validation approach models not only the spatial neighborhood relationship but also the topological structures of the bounding box center. Additionally, a closed-form solution to our approach is derived, which makes the tracking-result validation process could be accomplished in only milliseconds. Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance of our translation estimation component. Comprehensive experiments are performed on OTB-2015, LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance among most existing decontamination trackers under the real-time requirement.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Perkins, Douglas J., Steven Villescas, Terry H. Wu, Timothy Muller, Steven Bradfute, Ivy Hurwitz, Qiuying Cheng, et al. "COVID-19 global pandemic planning: Decontamination and reuse processes for N95 respirators." Experimental Biology and Medicine 245, no. 11 (May 12, 2020): 933–39. http://dx.doi.org/10.1177/1535370220925768.

Повний текст джерела
Анотація:
Coronavirus disease 2019 (COVID-19) is an illness caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was first identified as a cluster of respiratory illness in Wuhan City, Hubei Province, China, in December 2019, and has rapidly spread across the globe to greater than 200 countries. Healthcare providers are at an increased risk for contracting the disease due to occupational exposure and require appropriate personal protective equipment (PPE), including N95 respirators. The rapid worldwide spread of high numbers of COVID-19 cases has facilitated the need for a substantial supply of PPE that is largely unavailable in many settings, thereby creating critical shortages. Creative solutions for the decontamination and safe reuse of PPE to protect our frontline healthcare personnel are essential. Here, we describe the development of a process that began in late February 2020 for selecting and implementing the use of hydrogen peroxide vapor (HPV) as viable method to reprocess N95 respirators. Since pre-existing HPV decontamination chambers were not available, we optimized the sterilization process in an operating room after experiencing initial challenges in other environments. Details are provided about the prioritization and implementation of processes for collection and storage, pre-processing, HPV decontamination, and post-processing of filtering facepiece respirators. Important lessons learned from this experience include, developing an adequate reserve of PPE for effective reprocessing and distribution, and identifying a suitable location with optimal environmental controls (i.e. operating room). Collectively, information presented here provides a framework for other institutions considering decontamination procedures for N95 respirators. Impact statement There is a critical shortage of personal protective equipment (PPE) around the globe. This article describes the safe collection, storage, and decontamination of N95 respirators using hydrogen peroxide vapor (HPV). This article is unique because it describes the HPV process in an operating room, and is therefore, a deployable method for many healthcare settings. Results presented here offer creative solutions to the current PPE shortage.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Otter, Jonathan A., and Saber Yezli. "Cycle times for hydrogen peroxide vapour decontamination." Canadian Journal of Microbiology 56, no. 4 (April 2010): 356–57. http://dx.doi.org/10.1139/w10-017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Moss, Joel, and Martha Vaughan. "Molecules in the ARF Orbit." Journal of Biological Chemistry 273, no. 34 (August 21, 1998): 21431–34. http://dx.doi.org/10.1074/jbc.273.34.21431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Badenoch, P. R., S. J. Alfrich, T. R. Wedding, and D. J. Coster. "Effectiveness of a decontamination method for donor corneas." British Journal of Ophthalmology 72, no. 3 (March 1, 1988): 225–27. http://dx.doi.org/10.1136/bjo.72.3.225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Krieger, Nico, Jürgen Ott, Fabian Walter, J. M. Diederik Kruijssen, and Henrik Beuther. "Temperature Evolution of Molecular Clouds in the Central Molecular Zone." Proceedings of the International Astronomical Union 11, S322 (July 2016): 160–61. http://dx.doi.org/10.1017/s1743921316011960.

Повний текст джерела
Анотація:
AbstractWe infer the absolute time dependence of kinematic gas temperature along a proposed orbit of molecular clouds in the Central Molecular Zone (CMZ) of the Galactic Center (GC). Ammonia gas temperature maps are one of the results of the “Survey of Water and Ammonia in the Galactic Center” (SWAG, PI: J. Ott); the dynamical model of molecular clouds in the CMZ was taken from Kruijssen et al. (2015). We find that gas temperatures increase as a function of time in both regimes before and after the cloud passes pericenter on its orbit in the GC potential. This is consistent with the recent proposal that pericenter passage triggers gravitational collapse. Other investigated quantities (line width, column density, opacity) show no strong sign of time dependence but are likely dominated by cloud-to-cloud variations.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Janik, Edyta, Maciej Bartos, Marcin Niemcewicz, Leslaw Gorniak, and Michal Bijak. "SARS-CoV-2: Outline, Prevention, and Decontamination." Pathogens 10, no. 2 (January 23, 2021): 114. http://dx.doi.org/10.3390/pathogens10020114.

Повний текст джерела
Анотація:
The new coronavirus began to spread around the world in late 2019. Initially, it was found only in China, but in the following days there were reported cases of infections in other countries. Subsequently, based on taxonomy, phylogeny, and accepted practice, the virus was officially designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As a result of the rapid spread of SARS-CoV-2 in different countries around the world, on March 11, 2020, the World Health Organization (WHO) announced a status change in the disease caused by this coronavirus—from an epidemic to a pandemic disease. Although the world is taking unprecedented efforts to control the spread of SARS-CoV-2, the number of confirmed cases is rising. Therefore, effective preventive measures are needed in order to limit the spread of illness. The prevention measures are mainly based on information on the virus transmission routes, its environmental stability, and persistence on commonly touched surfaces. Social distancing, mask usage, and good hygiene practice are the most important recommendations for general public. Healthcare professionals who are directly involved in SARS-CoV-2 patients care are more exposed to virus infection and additional protection measures are necessary, including protective suits, aprons, face shields, goggles, and gloves. Due to the stability of SARS-CoV-2 on different surfaces, such as glass, paper, or wood, proper disinfection is crucial. Several studies have shown that despite the virus’s stability, it is sensitive to various disinfectants, such as ethanol, isopropanol, sodium hypochlorite, or hydrogen peroxide. These findings underline the importance of having comprehensive knowledge about SARS-CoV-2 and multidirectional strategies in order to limit the spread of the virus. This review is a summary of the most important information about SARS-CoV-2, such as its stability on different surfaces, protection strategies, and decontamination options.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Barnes, Robert A., Robert E. Eplee, Stuart F. Biggar, Kurtis J. Thome, Edward F. Zalewski, Philip N. Slater, and Alan W. Holmes. "SeaWiFS transfer-to-orbit experiment." Applied Optics 39, no. 30 (October 20, 2000): 5620. http://dx.doi.org/10.1364/ao.39.005620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Veiko, V. P., T. Y. Mutin, V. N. Smirnov, and E. A. Shakhno. "Laser decontamination of radioactive nuclides polluted surfaces." Laser Physics 21, no. 3 (February 2, 2011): 608–13. http://dx.doi.org/10.1134/s1054660x11050264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

James, Thomas, Samuel Collins, and Tim Marczylo. "Identification of Novel Simulants for Toxic Industrial Chemicals and Chemical Warfare Agents for Human Decontamination Studies: A Systematic Review and Categorisation of Physicochemical Characteristics." International Journal of Environmental Research and Public Health 18, no. 16 (August 17, 2021): 8681. http://dx.doi.org/10.3390/ijerph18168681.

Повний текст джерела
Анотація:
Chemical simulants have long been used in human trials of mass decontamination to determine the efficacy of decontamination interventions against more toxic agents. Until now, reliance has mostly been on individual chemicals as surrogates to specific agents (e.g., methyl salicylate for sulphur mustard). A literature review was conducted to identify chemicals that had been previously tested on human volunteers and that represent diverse physicochemical characteristics in order to create a repository for chemical simulants. Of the 171 unique chemicals identified, 78 were discounted for the risk they could pose to human volunteers, 39 were deemed suitable for use, and a further 54 were considered to be possible simulants but would require further research. Suitable simulants included both solid and liquid chemicals spanning a wide range of physicochemical properties including molecular weight, octanol/water partition coefficient, vapour pressure, and solubility. This review identifies an array of potential simulants suitable for use in human volunteer decontamination studies and is of relevance to future studies on systemic absorption and surface decontamination.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Bibby, K., and R. McFadzean. "Fibrous dysplasia of the orbit." British Journal of Ophthalmology 78, no. 4 (April 1, 1994): 266–70. http://dx.doi.org/10.1136/bjo.78.4.266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

MISRA, A. "Osteosarcoma with metastasis to orbit." British Journal of Ophthalmology 85, no. 11 (November 1, 2001): 1384c—1384. http://dx.doi.org/10.1136/bjo.85.11.1384c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Esser, Karl-Heinz, Wolfram H. Marx, and Thomas Lisowsky. "DNA decontamination: DNA-ExitusPlus in comparison with conventional reagents." Nature Methods 3, no. 2 (February 2006): i—ii. http://dx.doi.org/10.1038/nmeth853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tagliavia, Marcello, Aldo Nicosia, and Fabrizio Gianguzza. "Complete decontamination and regeneration of DNA purification silica columns." Analytical Biochemistry 385, no. 1 (February 2009): 182–83. http://dx.doi.org/10.1016/j.ab.2008.10.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Glushkov, S. A., A. G. Bragin, and G. M. Dymshits. "Decontamination of polymerase chain reaction reagents using DEAE–cellulose." Analytical Biochemistry 393, no. 1 (October 2009): 135–37. http://dx.doi.org/10.1016/j.ab.2009.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Roberts, Roland G. "A Galactic View of Nature's Decontamination Squad." PLoS Biology 12, no. 4 (April 22, 2014): e1001842. http://dx.doi.org/10.1371/journal.pbio.1001842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Toy, Madeline S., Roger S. Stringham, and Samuel S. Woodward. "Ultrasonic digestion of low molecular weight organics and bacterial decontamination in water." Environmental Technology 14, no. 7 (July 1993): 657–64. http://dx.doi.org/10.1080/09593339309385335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Fischer, Melina, Nathalie Renevey, Barbara Thür, Donata Hoffmann, Martin Beer, and Bernd Hoffmann. "Efficacy Assessment of Nucleic Acid Decontamination Reagents Used in Molecular Diagnostic Laboratories." PLOS ONE 11, no. 7 (July 13, 2016): e0159274. http://dx.doi.org/10.1371/journal.pone.0159274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Rogers, S. O., V. Theraisnathan, L. J. Ma, Y. Zhao, G. Zhang, S. G. Shin, J. D. Castello, and W. T. Starmer. "Comparisons of Protocols for Decontamination of Environmental Ice Samples for Biological and Molecular Examinations." Applied and Environmental Microbiology 70, no. 4 (April 2004): 2540–44. http://dx.doi.org/10.1128/aem.70.4.2540-2544.2004.

Повний текст джерела
Анотація:
ABSTRACT Drilling and laboratory manipulations of glacial ice cores introduce contemporary microbes and biomolecules onto the cores. We report herein a systematic comparative study of several decontamination protocols. Only treatment with 5% sodium hypochlorite eliminated all external contaminating microbes and nucleic acids while maintaining the integrity of those within the cores.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Saxena, K. M. S., and Gulzari Malli. "Spin-other-orbit and spin-orbit splitting factors for f6 electron configurations." International Journal of Quantum Chemistry 5, S5 (June 18, 2009): 619–30. http://dx.doi.org/10.1002/qua.560050871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Spratt, D. A., J. Latif, L. L. Montebugnoli, and M. Wilson. "In vitro modeling of dental water line contamination and decontamination." FEMS Microbiology Letters 235, no. 2 (June 2004): 363–67. http://dx.doi.org/10.1111/j.1574-6968.2004.tb09611.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Pedersen, Kasper S., Daniel N. Woodruff, Saurabh Kumar Singh, Alain Tressaud, Etienne Durand, Mihail Atanasov, Panagiota Perlepe, et al. "[OsF6 ] x − : Molecular Models for Spin-Orbit Entangled Phenomena." Chemistry - A European Journal 23, no. 47 (July 27, 2017): 11244–48. http://dx.doi.org/10.1002/chem.201702894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

CHENG, TU-CHEN, VIPIN K. RASTOGI, JOSEPH J. DEFRANK, and GAMIL P. SAWIRIS. "G-Type Nerve Agent Decontamination by Alteromonas Prolidase." Annals of the New York Academy of Sciences 864, no. 1 ENZYME ENGINE (December 1998): 253–58. http://dx.doi.org/10.1111/j.1749-6632.1998.tb10316.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

GHOSHAL, S., S. K. BANERJI, and R. K. BAJPAI. "Role of Photodegradation in Pentachlorophenol Decontamination in Soils." Annals of the New York Academy of Sciences 665, no. 1 Biochemical E (October 1992): 412–22. http://dx.doi.org/10.1111/j.1749-6632.1992.tb42604.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії