Дисертації з теми "Modulo geometrico"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Modulo geometrico".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Van, Bloemestein Ulric Patrick. "Seasonal movement and activity patterns of the endangered geometric tortoise, Psammobates geometricus." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерелаCentazzo, Alessandro. "Strategie di riorientamento nei bambini: uno studio in stanze grandi e piccole e in ambienti virtuali." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/10069.
Повний текст джерелаLa maggior parte delle specie animali è capace di recuperare l’orientamento dopo essere stata passivamente disorientata e lo fa utilizzando le informazioni provenienti dall’ambiente, informazioni che possono essere di tipo geometrico (come per esempio la forma di una superficie contornata da margini) o di tipo non-geometrico come per esempio punti di riferimento –landmark- o, in una stanza, il colore diverso di una parete. Nel nostro lavoro abbiamo indagato la capacità di riorientamento di bambini a partire dai 6 anni. Il compito consisteva nel trovare, dopo essere stati disorientati, un oggetto che i bambini avevano visto nascondere in prossimità di un angolo di una stanza rettangolare (in prossimità di ogni angolo era presente una struttura che fingeva da nascondiglio) nella quale una parete aveva un colore diverso dalle altre. Abbiamo cercato di capire come venissero utilizzate le informazioni geometriche e non-geometriche quando queste venivano messe in conflitto tra loro (affine transformation). Per fare ciò, il colore diverso della parete veniva cambiato (passando dal lato lungo a quello corto o viceversa) tra la fase di addestramento, nella quale il soggetto vedeva dove veniva nascosto l’oggetto da cercare, e la fase di ricerca, nella quale l’oggetto doveva essere ritrovato. La nostra ricerca si è articolata in più fasi. In un primo momento abbiamo pensato di riprodurre gli esperimenti presenti in letteratura e indicativi di un utilizzo più consistente delle informazioni geometriche negli ambienti piccoli rispetto a quelli grandi. A differenza da quanto riportato in letteratura non abbiamo trovato differenze tra la stanza grande e quella piccola: in entrambe i bambini prediligono le informazioni geometriche. Successivamente abbiamo impegnato i bambini nel medesimo compito ma in stanze con caratteristiche diverse. Abbiamo utilizzato stanze nelle quali il nascondiglio aveva dimensioni dimezzate rispetto alle stanze precedenti, oppure non era presente, e stanze nelle quali abbiamo diminuito il rapporto tra le lunghezze dei lati lungo e corto (stanze che abbiamo chiamato “quasi-quadrate”). Tra le diverse tipologie di stanza è stata calcolata un’analisi della varianza che ha messo in luce che la forma (e non la dimensione) della stanza e la presenza o assenza dei nascondigli sono le due variabili che condizionano maggiormente le scelte dei soggetti. In particolare, i bambini prediligono le informazioni geometriche quando non sono presenti i nascondigli e quando le stanze sono “quasi-quadrate”. Dai nostri dati emerge che i bambini sono in grado di utilizzare tutte le informazioni a disposizione. Il prediligere un tipo piuttosto che l’altro dipende dalle caratteristiche dell’ambiente e probabilmente dalla stima di quanto una determinata informazione è affidabile per recuperare l’orientamento. La teoria della combinazione adattativa è quella che sembra spiegare meglio i risultati che abbiamo trovato.
XXV - Ciclo
1972
MIRAGLIOTTA, ELISA. "La previsione geometrica: un modello per analizzare un processo cognitivo inerente il problem-solving in geometria." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1200566.
Повний текст джерелаThe purpose of the research is to study cognitive aspects of how geometric predictions are produced during problem-solving activities in Euclidean geometry. The process of geometric prediction is seen as a specific visuo-spatial ability involved in geometrical reasoning. Indeed, when solvers engage in solving a geometrical problem, they can imagine the consequences of transformations of the figure; such transformations can be more or less coherent with the theoretical constraints given by the problem, and the products of such transformations can hinder or promote the problem-solving process. Previous research has stressed the dual nature of geometrical objects, intertwining a conceptual component and a figural component. Interpreting geometrical reasoning in terms of a dialectic between these two aspects (Fischbein, 1993), this study aims at gaining insight into the cognitive process of geometric prediction, a process through which a figure is manipulated, and its change is imagined, while certain properties are maintained invariant. This process is described through a model of prediction-generation elaborated cyclically by observing, analyzing through a microgenetic approach, and re-analyzing solvers’ resolution of prediction open problems in a paper-and-pencil environment and in a Dynamic Geometry Environment (DGE). The prediction open problems designed were proposed during task-based interviews to participants selected on a voluntary basis. Participants were a total of 37 Italian high school students and undergraduate, graduate and PhD students in mathematics. Data are composed of video and audio recordings, transcriptions, solvers’ drawings. The final version of the model provides a description of the prediction processes accomplished by a solver who engages in the resolution of prediction open problems proposed in this study; it provides a lens through which solvers’ productions can be analyzed and it provides insight into prediction processes. In particular, it sheds light onto the key role played by theoretical elements that are introduced by the solvers during the resolution process and the key role played by the solver’s theoretical control. The study has implications for the design of activities, especially at the high school level, with the educational objective of fostering students’ geometrical reasoning and in particular their theoretical control over the geometrical figures.
Caruso, Monica. "Geometrie non euclidee: dalla negazione del V postulato all'interpretazione geometrica del cosmo." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Знайти повний текст джерелаAlqahtani, Lamia Saeed M. "Geometric flows on soliton moduli spaces." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4967/.
Повний текст джерелаFerro, Dennis Eduardo Zavaleta. "Some geometric aspects of non-linear sigma models /." São Paulo, 2016. http://hdl.handle.net/11449/151647.
Повний текст джерелаResumo: We review some relevant examples for String Theory of non-linear sigma models. These are bosonic strings propagating in curved background, the Wess-Zumino-Witten model and superstrings in flat and AdS superspace. The mathematical tools required for the study of these models (e.g. topological quantization, Cartan geometry, Lie superalgebras and geometry on coset spaces) are also described. Throughout the dissertation we have focused on classical aspects of these models such as the construction of the action and its symmetries where conditions for holomorphic symmetry of the bosonic string case were found.
Mestre
Nandihalli, Sunil S. "A B-spline geometric modeling methodology for free surface simulation." Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04072004-185017.
Повний текст джерелаLundkvist, Christian. "Moduli spaces of zero-dimensional geometric objects." Doctoral thesis, Stockholm : Matematik, Kungliga Tekniska högskolan, 2009. http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:223079.
Повний текст джерелаTarasca, Nicola. "Geometric cycles on moduli spaces of curves." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16518.
Повний текст джерелаThe aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.
Vieira, Erica Pinheiro. "Produção digital de maquetes arquitetonicas : um estudo exploratorio." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257720.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-10T23:07:07Z (GMT). No. of bitstreams: 1 Vieira_EricaPinheiro_M.pdf: 5079109 bytes, checksum: ed92461f98d5f0d28c0fb6e2b52c30df (MD5) Previous issue date: 2007
Resumo: Este trabalho consiste em um estudo exploratório sobre a produção digital de maquetes arquitetônicas. Inicialmente, foi realizada uma revisão bibliográfica com a finalidade de conhecer os novos métodos de produção digital de maquetes, incluindo software de modelagem e equipamentos de prototipagem rápida. Nesse estudo inicial, além de explorar os principais equipamentos, processos, aplicações e materiais, identificou-se dois arquitetos renomados que fazem uso dessa tecnologia nos seus processos de projeto: Frank Gehry e Norman Foster. Deste estudo verificou-se processos distintos de projeto e diferentes abordagens sobre a utilização dessas ferramentas, o que motivou a realização de experimentos para exemplificar como produzir digitalmente maquetes arquitetônicas. O Museu Guggenheim de Bilbao, de Frank Gehry, foi escolhido como variável fixa para realização dos experimentos de produção digital de maquetes, por ser um modelo de grande complexidade, permitindo testar os limites dos equipamentos de prototipagem rápida disponíveis no Laboratório de Prototipagem para Arquitetura e Construção (LAPAC) da FEC ¿ Unicamp e no Centro de Pesquisas Renato Archer (CenPRA). Além disso, foram testadas diferentes técnicas e materiais, inclusive materiais alternativos, com o objetivo de viabilização econômica. Os resultados comprovaram que o processo de produção digital de maquetes arquitetônicas é viável em termos de procedimentos, de custo, de materiais disponíveis no mercado, qualidade das maquetes produzidas e rapidez na execução. A partir das conclusões obtidas nos experimentos realizados foi elaborado um caderno de recomendações para a confecção de maquetes que será utilizado pelos usuários do LAPAC e que servirá como importante ferramenta de auxílio para os iniciantes na produção digital de maquetes arquitetônicas. Espera-se que os resultados desta pesquisa possam auxiliar a estabelecer diretrizes para a incorporação dessas técnicas e equipamentos em disciplinas de projeto e na prática de arquitetura
Abstract: The present work is an exploratory study about the digital fabrication of architectural models. It started with a literature review, with the aim of getting in contact with the new digital methods for making models and prototypes, from modeling software to rapid prototyping equipment, processes, materials and applications. Still in this initial study the work of two well-known architects, Frank Gehry and Norman Foster, who use rapid prototyping techniques in their design process, was analyzed. From this part of the research it was possible to conclude that the different approaches that architects have to the design process is reflected in the way they use digital techniques for making their models. The second part of the research consisted of a series of experiments with the objective of illustrating the digital production of architectural models. For these experiments, Frank Gehry's Guggenheim Museum in Bilbao was chosen as a fixed variable for the production of models, due to its geometric complexity, which allowed to push the use of the available rapid prototyping equipment to their limits. Only the equipment available at FEC-UNICAMP's (Laboratório de Prototipagem para Arquitetura e Construção - LAPAC) and CENPRA's (Laboratório de Prototipagem Rápida do Centro de Pesquisas Renato Archer) laboratories were used. They consisted of a 3d printer, a fusion deposition modeller (FDM) machine, and a laser cutter. Different techniques and materials were tested in these machines, with the objective of evaluating the quality and economic viability of the resulting models. The results showed that the digital production of architectural models is viable for use in Brazilian architecture schools, in terms of procedures, cost, availability of materials, time spent and quality of the models. Finally, a manual with recommendations and tips was produced, with the aim of helping students build their own models using rapid prototyping equipment. We hope that the results of this research will help guiding the incorporation of these techniques in architecture education and practice in Brazil
Mestrado
Arquitetura e Construção
Mestre em Engenharia Civil
Sousa, Welington Fernandes de. "A geometria analítica como um modelo para a geometria euclidiana." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/31974.
Повний текст джерелаSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-11-07T16:23:55Z No. of bitstreams: 1 2017_VitorSoaresRabeloAdriano.pdf: 10962275 bytes, checksum: c8cb507a31646087a77dfce259e055db (MD5)
Approved for entry into archive by Patrícia Nunes da Silva (patricia@bce.unb.br) on 2018-05-28T15:45:45Z (GMT) No. of bitstreams: 1 2017_VitorSoaresRabeloAdriano.pdf: 10962275 bytes, checksum: c8cb507a31646087a77dfce259e055db (MD5)
Made available in DSpace on 2018-05-28T15:45:45Z (GMT). No. of bitstreams: 1 2017_VitorSoaresRabeloAdriano.pdf: 10962275 bytes, checksum: c8cb507a31646087a77dfce259e055db (MD5)
Este trabalho mostra, com ênfase na geometria plana, o modelo dedutivo formulado por Euclides de Alexandria pelo qual ele constrói e organiza todo o conhecimento geométrico conhecido até então. Este modelo euclidiano, chamado axiomático, com o passar dos anos revelou falhas em demonstrações de algumas proposições que são citadas e comentadas neste trabalho. As tentativas para corrigir as falhas e formalizar o modelo axiomático de Euclides, levou a um novo modelo axiomático mais formal, que corrige as falhas cometidas por Euclides e traz uma linguagem mais coerente com a proposta da matemática moderna. Tal modelo foi publicado por David Hilbert em seu trabalho Grundlagen der Geometrie, e também está presente neste trabalho. Após mostrar como a geometria euclidiana plana foi formulada em função de seus axiomas, o trabalho chega ao seu ponto principal: mostrar que a geometria euclidiana plana pode ser demonstrada na geometria sobre corpos (geometria analítica). E para isso, este trabalho disponibiliza a demonstração de todos os axiomas de Hilbert, para a geometria euclidiana plana, em um plano cartesiano sobre um corpo. Veremos que não haverá necessidade de trabalharmos sobre o corpo dos números reais para que esta geometria euclidiana plana seja demonstrada pela geometria analítica. Além disso o trabalho traz um pouco das características e propriedades de corpos e suas extensões à medida que as demonstrações se aprofundam. Chegaremos à conclusão de que todos os axiomas da geometria euclidiana plana podem ser demonstrados na geometria analítica, sobre um corpo ordenado com extensão às raízes quadradas de elementos positivos.
This work shows, with emphasis on plane geometry, the deductive model formulated by Euclid of Alexandria by which he constructed and organized all known geometric knowledge until then. This Euclidean model, called axiomatic, over the years revealed aws in demonstrations of some propositions that are cited and commented on in this work. The attempts to correct the failures and formalizing the axiomatic model of Euclid led to a new more formal axiomatic model that corrects Euclid's failures which is more and uses a language more consistent to proposal of modern mathematics. Such a model was published by David Hilbert in his work Grundlagen der Geometrie, and is also present in this work. After showing how Euclidean geometry is formulated in terms of its axioms, the work reaches its main point: to show that Euclidean plane geometry can be demonstrated in geometry over elds (analytic geometry). And for this, we provide the demonstration of all axioms of Hilbert, for Euclidean plane geometry, in a Cartesian plane over a eld. We will see that there will be no need to work on the eld of real numbers for this Euclidean plane geometry to be demonstrated by analytic geometry. In addition the work brings some of the characteristics and properties of elds and their extensions as the demonstrations deepen. We will arrive at the conclusion that all the axioms of Euclidean plane geometry can be demonstrated in analytical geometry, on an ordered eld with extension to the square roots of positive elements.
林紹健 and Siu-kin Lum. "Trimming operations for geometric modelling." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31211732.
Повний текст джерелаLum, Siu-kin. "Trimming operations for geometric modelling /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13857733.
Повний текст джерелаScasserra, Annalisa. "Un modello geometrico delle mappe di orientazioni corticali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19250/.
Повний текст джерелаGasparini, Riccardo. "Engineering Analysis in Imprecise Geometric Models." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1793.
Повний текст джерелаSchwander, Olivier. "Information-geometric methods for mixture models." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/93/17/22/PDF/these.pdf.
Повний текст джерелаThis thesis presents new methods for mixture model learning based on information geometry. We focus on mixtures of exponential families, which encompass a large number of mixtures used in practice. With information geometry, statistical problems can be studied with geometrical tools. This framework gives new perspectives allowing to design algorithms which are both fast and generic. Two main contributions are proposed here. The first one is a method for simplification of kernel density estimators. This simplification is made with clustering algorithms, first with the Bregman divergence and next, for speed reason, with the Fisher-Rao distance and model centroids. The second contribution is a generalization of the k-MLE algorithm which allows to deal with mixtures where all the components do not belong to the same family: this method is applied to mixtures of generalized Gaussians and of Gamma laws and is faster than existing methods. The description of this two algorithms comes with a complete software implementation and their efficiency is evaluated through applications in bio-informatics and texture classification
Hernandez, Gabriel. "Platform design for customizable products as a problem of access in a geometric space." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/16760.
Повний текст джерелаVeelo, Bastiaan Niels. "Variations of Shape in Industrial Geometric Models." Doctoral thesis, Norwegian University of Science and Technology, Department of Product Design, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-240.
Повний текст джерелаThis thesis presents an approach to free-form surface manipulations, which conceptually improves an existing CAD system that constructs surfaces by smoothly interpolating a network of intersecting curves. There are no regularity requirements on the network, which already yields superior modelling capabilities compared to systems that are based on industry-standard NURBS surfaces.
Originally, the shape of such a surface can be modified only locally by manipulating a curve in the network. In this process there is an inherent danger that the curve is being pulled away from intersections that it has with other curves. When this happens, the network is invalidated as a surface representation, and many curves may have to be adjusted to restore network consistency and surface quality. This thesis contributes a method that solves these problems by propagating changes that are made in one curve to curves in its vicinity. How and to what extent curves react to changes is controlled by two parameters that can be varied along the curve that is being manipulated. Any curve may be constrained in one or more degrees of freedom. The integrity of the curve network is implicitly conserved, as well as the geometric continuity of the surface.
The result is a tool for the modification of curve-interpolating surfaces, which can easily be applied to large areas on models with any level of detail. This allows designers to concentrate on the creative process, rather than on planning chains of actions. They can explore different design variations, optimise shapes further, and generally be more productive.
Dette doktorgradsarbeidet presenterer en fremgangsmåte for formgivning og modifisering av datamaskinbaserte, skulpturerte flater. Metoden forbedrer et eksisterende system for data-assistert konstruksjon (DAK) som bygger dobbeltkrummede flater ved å interpolere et nettverk av skjærende kurver. Nettverket trenger ikke være regelmessig, noe som allerede gir bedre modelleringsmuligheter sammenliknet med systemer som er basert på standard NURBS flater.
En slik flate kan opprinnelig bare endres lokalt ved å dra i en kurve. I denne prosessen er det fare for at kurven blir dratt fra skjæringspunkter den har med andre kurver. Hvis dette skjer, representerer ikke nettverket en flate lenger, og mange kurver må justeres for å få tilbake integriteten i nettverket og kvaliteten i formen. Denne avhandlingen bidrar med en metode som løser disse problemene ved å spre endringer som blir gjort i en kurve til andre kurver i nærheten. Hvordan og i hvilken utstrekning kurvene reagerer på endringen styres av to parametre som kan varieres langs kurven som blir endret. Enhver kurve kan låses i en eller flere frihetsgrader. Integriteten til nettverket samt glattheten i formen blir bevart automatisk.
Resultatet er et redskap for modifikasjon av kurve-interpolerende flater som med letthet kan brukes på større områder av modeller med hvilken som helst grad av detalj. Dette gir designere muligheten til å konsentrere seg om det kreative, istedenfor å planlegge handlingsrekker. De kan utforske forskjellige designvariasjoner, optimalisere former ytterligere, og i det hele tatt være mer produktive.
Kannala, J. (Juho). "Models and methods for geometric computer vision." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261510.
Повний текст джерелаCheung, Elliot. "Birational models of geometric invariant theory quotients." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61278.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Iverson, Lee A. (Lee Allan). "Toward discrete geometric models for early vision." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41630.
Повний текст джерелаWe build on a general theory of distributed, local representations which we call thick traces. Thick trace descriptions of continuous graphs preserve topological properties such as connectivity, and allow for the descriptions of multi-valued mappings.
Local operators for extracting image curves have been a focus of machine vision research for twenty years. Considered in the context of thick traces, however, we can reassess the goals of these operators and provide a clear description of when they should respond positively and when they should not. In order to achieve this behaviour, we develop an algebra, the Logical/Linear algebra, which incorporates features of both Boolean and linear algebra into a set of non-linear combinators. This algebra is then used to design a family of local operators which explicitly test the logical preconditions underlying the definition of an image curve.
Relaxation labelling is a highly parallel, distributed method of extracting consistent structures from a set of labels. There is a natural match between the representations used in relaxation labelling and thick traces. We exploit this connection by developing a general method for relaxing a set of potentially noisy initial estimates of thick traces (as produced by image operators) into descriptions which are thick traces of geometric models. Furthermore we show how such a system can interpolate into gaps in the traces while simultaneously respecting legitimate discontinuities and boundaries.
Finally, we apply these methods to two problems in early vision: the description of curves and texture flow fields. For image curves, the resulting descriptions of piecewise smooth curves include both local orientation and curvature information. The entire process accurately describes end-points, corners, junctions and bifurcations by allowing many consistent traces to be incident on a single point in the image.
The term texture flow is used to describe a class of static textures with locally parallel dense orientation structure (e.g. Glass or hair patterns). We derive a geometric model of these textures from a smooth non-deforming velocity field. Initial operators and a relaxation network are then defined to interpolate dense, piecewise smooth flow from sparse inputs. The resulting system produces accurate descriptions even in the presence of discontinuities, holes, and overlapping textures.
Salamon, Csaba. "Information hiding in boundary representation geometric models." Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=17405.
Повний текст джерелаArroyave-Tobón, Santiago. "Polyhedral models reduction in geometric tolerance analysis." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0720/document.
Повний текст джерелаThe cumulative stack-up of geometric variations in mechanical systems can be modelled summing and intersecting sets of constraints. These constraints derive from tolerance zones or from contact restrictions between parts. The degrees of freedom (DOF) of jointsgenerate unbounded sets (i.e. polyhedra) which are difficult to deal with. L. Homri presented in 2014 a solution based on the setting of fictitious limits (called cap constraints) to each DOFto obtain bounded 6D sets (i.e. polytopes). These additional constraints, however, increase the complexity of the models, and therefore, of the computations. In response to this situation,we defined a derived strategy to control the effects of the propagation of the fictitious limits by tracing and simplifying the generated, new cap constraints. We proposed a second strategy based on the decomposition of polyhedra into the sum of a polytope and a set of straight lines.The strategy consists in isolating the straight lines (associated to the DOF) and summing the polytopes in the smallest sub-space. After solving an industrial case, we concluded that tracing caps constraints during the operations allows reducing the models complexity and,consequently, the computational time; however, it still involves working in 6d even in caseswhere this is not necessary. In contrast, the strategy based on the operands decompositionis more efficient due to the dimension reduction. This study allowed us to conclude that the management of mechanisms’ mobility is a crucial aspect in tolerance simulations. The gain on efficiency resulting from the developed strategies opens up the possibility for doing statistical treatment of tolerances and tolerance synthesis
Meira, Gilmara Gomes. "Comunicação e resolução de problemas utilizando o modelo Van Hiele para a exploração geométrica em sala de aula." Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2381.
Повний текст джерелаApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-22T15:09:09Z (GMT) No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-22T15:09:19Z (GMT) No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5)
Made available in DSpace on 2016-07-22T15:09:19Z (GMT). No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5) Previous issue date: 2015-04-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This research analyzes limits and possibilities from problems solving that consider the level of comprehension of van Hiele Model. Therefore, we want to know how students communicate with each other when they develop activities with geometric problems solving in the referred Model perspective. The target audience for the research development was a third year class of high school from a public school in Cabaceiras city – PB. The theoretical framework emphasizes the Problem Solving, the Geometric teaching and learning relevance, van Hiele Model, the use of manipulable materials and the aspects of social interaction taking into consideration particularly the written and oral students’ communication. This research, developed together with the Program Observatório de Educação/CAPES proposal, from which we are part of, happenned in three steps – with all the class working on Duo; with all the class working individually and; with the Duo selected from its development on van Hiele tests. Such study is of qualitative nature, it happened from the class development on selected activities that after it resulted in three case studies where it is analyzed the respective development on problems solving subsidized by the use of Tangram and the manner in which the double interact and communicate. The data were collected by participant observation, audiorecordings and recordings of oral and written communication from the Duo. Some of the main references used as theoretical support were Boavida et al (2008), Nasser and Sant'Anna (2010), Rego, Rego and Vieira (2012), Van de Walle (2009), Fonseca (2009), Carvalho (2009 ), among others. The results indicate there is fragility in Geometry knowledge from the students who finish High School, reflecting in limitations to solve problems. Also it reveals the potentialities that exist in the work developed from social interaction, raising a progressive communication that leads the students on reflecting by specific development in problems solving.
A presente pesquisa analisa limites e possibilidades a partir da resolução de problemas que levam em consideração o Nível de compreensão segundo o Modelo van Hiele. Dessa forma, queremos saber como os alunos se comunicam quando desenvolvem atividades com resolução de problemas geométricos, na perspectiva do referido Modelo. O público alvo para desenvolvimento da pesquisa foi uma turma do 3º Ano do Ensino Médio de uma escola pública estadual da cidade de Cabaceiras - PB. O quadro teórico enfatiza a Resolução de Problemas, a relevância do ensino e aprendizagem da Geometria, o Modelo van Hiele, o uso de Materiais Manipuláveis e aspectos da interação social tendo em vista, particularmente, a comunicação oral e escrita dos alunos. Essa pesquisa desenvolvida em conjunto com a proposta do Programa Observatório de Educação/CAPES, do qual fazemos parte, aconteceu em três etapas - com a turma toda trabalhando em Díades; com a turma toda trabalhando individualmente e; com as Díades selecionadas a partir do seu desenvolvimento nos testes van Hiele. Esse estudo é de natureza qualitativa, aconteceu a partir do desenvolvimento da turma em atividades selecionadas que, posteriormente, resultou em três estudos de caso nos quais se analisa o respectivo desenvolvimento na resolução dos problemas subsidiados com o uso do Tangram, bem como o modo como as Díades interagem e se comunicam. Os dados foram recolhidos por meio da observação participante, áudio-gravações e registros da comunicação oral e escrita das Díades. Algumas das principais referências que utilizamos como sustentação teórica foram Boavida et al (2008), Nasser e Sant’anna (2010), Rêgo, Rêgo e Vieira (2012), Van de Walle (2009), Fonseca (2009), Carvalho (2009), entre outros. Os resultados analisados apontam para a fragilidade que há no conhecimento de Geometria por parte dos alunos que concluem o Ensino Médio, refletindo em limitações ao resolver problemas. Além disso, revela as potencialidades que há no trabalho desenvolvido a partir da interação social, suscitando em uma comunicação progressiva que leva os alunos a refletirem por meio do desenvolvimento específico na resolução dos problemas.
Barcenas, Carolina. "Geometric tolerance verification using superquadrics." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/25603.
Повний текст джерелаLi, Yi Kapustin Anton N. "Topological sigma models and generalized geometries /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05262005-154458.
Повний текст джерелаKaltenmark, Irène. "Geometrical Growth Models for Computational Anatomy." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN049/document.
Повний текст джерелаThe Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework has proved to be highly efficient for addressing the problem of modelling and analysis of the variability of populations of shapes, allowing for the direct comparison and quantization of diffeomorphic morphometric changes. However, the analysis of medical imaging data also requires the processing of more complex changes, which especially appear during growth or aging phenomena. The observed organisms are subject to transformations over the time which are no longer diffeomorphic, at least in a biological sense. One reason might be a gradual creation of new material uncorrelated to the preexisting one. For this purpose, we offer to extend the LDDMM framework to address the problem of non diffeomorphic structural variations in longitudinal scenarios during a growth or degenerative process. We keep the geometric central concept of a group of deformations acting on a shape space. However, the shapes will be encoded by a new enriched mathematical object allowing through partial mappings an intrinsic evolution dissociated from external deformations. We focus on the specific case of the growth of animal horns.Ultimately, we integrate these growth priors into a new optimal control problem for assimilation of time-varying surface data, leading to an interesting problem in the field of the calculus of variations where the choice of the attachment term on the data, current or varifold, plays an unexpected role
Liu, Yang, and 劉洋. "Optimization and differential geometry for geometric modeling." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.
Повний текст джерелаPortugal, Ricardo Filipe Marques. "Modelo de Minkwoski para a Geometria de Laguerre." Master's thesis, Universidade da Beira Interior, 2010. http://hdl.handle.net/10400.6/1848.
Повний текст джерелаFranceschiello, Benedetta. "Cortical based mathematical models of geometric optical illusions." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066131/document.
Повний текст джерелаThis thesis presents mathematical models for visual perception and deals with such phenomena in which there is a visible gap between what is represented and what we perceive. A phenomenon which drew the interest most is amodal completion, consisting in perceiving a completion of a partially occluded object, in contrast with the modal completion, where we perceive an object even though its boundaries are not present [Gestalt theory, 99]. Such boundaries reconstructed by our visual system are called illusory contours, and their neural processing is performed by the primary visual cortices (V1/V2), [93]. Geometric models of the functional architecture of primary visual areas date back to Hoffman [86]. In [139] Petitot proposed a model of single boundaries completion through constraint minimization, neural counterpart of the model of Mumford [125]. In this setting Citti and Sarti introduced a cortical based model [28], which justifies the illusions at a neural level and provides a neurogeometrical model for V1. Another class of phenomena are Geometric optical illusions (GOIs), discovered in the XIX century [83, 190], arising in presence of a mismatch of geometrical properties between an item in object space and its associated percept. The fundamental idea developed here is these phenomena arise due to a polarization of the connectivity of V1/V2, responsible for the misperception. Starting from [28] in which the connectivity building contours in V1 is modeled as a sub-Riemannian metric, we extend it claiming that in GOIs the cortical response to the stimulus modulates the connectivity of the cortex, becoming a coefficient for the metric. GOIs will be tested through this model
Smith, Robert Frederick. "Geometric models of the stenosed human carotid bifurcation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32510.pdf.
Повний текст джерелаJarnagin, Andrew B. "Effective digital exchange of three dimensional geometric models." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16442.
Повний текст джерелаEl-Berry, S. E. M. "Some geometric and negative binomial time series models." Thesis, University of Strathclyde, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381119.
Повний текст джерелаNill, Scott T. (Scott Thomas). "Aerospace composite manufacturing cost models as geometric programs." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118731.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 108-110).
The introduction of large, composite transport aircraft, such as the Airbus A350 and the Boeing 787, has been fraught with billions of dollars of production cost overruns. This research develops a novel approach to manufacturing cost modeling during the conceptual design phase using Geometric Programming (GP). A new formulation of a closed queuing network as a GP is presented to capture the crucial cost trade-offs between capacity and inventory. Additionally, GP models are presented for modeling unit processes in composite manufacturing and for modeling cost accounting metrics. Applied to the challenges of conceptual design for composite aircraft, the cost models can be used as a tool to help inform decisions about which manufacturing process to use and what type of supply chain should be deployed. The special sensitivity-analysis properties of the GP solutions can be exploited to explain how different aspects of the design drive manufacturing costs and to find highly sensitive areas of the trade-space that would have a large impact on cost if the design needed to be altered. The framework is demonstrated for fast but informative analyses of process trade-offs in composite fuselage fabrication.
by Scott T. Nill.
Ph. D.
Robertson, Duncan Paul. "Recovering geometric models from photographs of architectural scenes." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616042.
Повний текст джерелаYang, Baofen. "Geometric deformable models using the level set method." Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/4664.
Повний текст джерелаFerro, Dennis Eduardo Zavaleta [UNESP]. "Some geometric aspects of non-linear sigma models." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/151647.
Повний текст джерелаApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T19:20:32Z (GMT) No. of bitstreams: 1 ferro_dez_me_ift.pdf: 505892 bytes, checksum: c724040eff49813a08ac27d82fce286b (MD5)
Made available in DSpace on 2017-09-19T19:20:32Z (GMT). No. of bitstreams: 1 ferro_dez_me_ift.pdf: 505892 bytes, checksum: c724040eff49813a08ac27d82fce286b (MD5) Previous issue date: 2016-08-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
We review some relevant examples for String Theory of non-linear sigma models. These are bosonic strings propagating in curved background, the Wess-Zumino-Witten model and superstrings in flat and AdS superspace. The mathematical tools required for the study of these models (e.g. topological quantization, Cartan geometry, Lie superalgebras and geometry on coset spaces) are also described. Throughout the dissertation we have focused on classical aspects of these models such as the construction of the action and its symmetries where conditions for holomorphic symmetry of the bosonic string case were found.
Nesta dissertação estudamos alguns exemplos de modelos sigma não lineares em Teoria de cordas. Estes são a corda bosónica se propagando em espaços curvos, o modelo Wess-Zumino-Witten e supercordas em superespaço plano e AdS. As ferramentas matemáticas que se precisam para o estudo destes modelos (e.g. quantização topológica, geometria de Cartan, super-álgebras de Lie e geometria em espaços coset) também são descritas. Ao longo desta dissertação focamos os aspectos clássicos destes modelos tais como a construção da ação e suas simetrias onde condições para serem estas holomorficas no caso da corda bosónica foram achadas.
Couvreur, Romain. "Geometric lattice models and irrational conformal field theories." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS062.
Повний текст джерелаIn this thesis we study several aspects of two-dimensional lattice models of statistical physics with non-unitary features. This bottom-up approach, starting from discrete lattice models, is helpful to understand the features of the associated conformal field theories. They are non-unitary and often irrational, logarithmic or even non-compact. First, we study the problem of the entanglement entropy in non-unitary spin chains and its interpretation in loop models. We discuss the role of the effective central charge, a relevant quantity to study the next problems in this thesis. We then address two problems related to the Chalker-Coddington model, an infinite-dimensional supersymmetric chain important for the study of the plateau transition in the integer quantum Hall effect. Since the model has an infinite number of degrees of freedom, it has been proposed to study it with a series of truncations. We present new results based on this approach and extend this methodology to the case of Brownian motion in its supersymmetric formulation. Next, a new model is proposed to interpolate between class A and class C. The Chalker-Coddington model is a particular realisation of class A whereas class C, describing the physics of the spin quantum Hall effect, can be related to a model of percolation. This interpolating model provides an example of a RG-flow between a non-compact CFT and compact one. The last part of this thesis deals with the problem of classifying observables in lattice models with discrete symmetries. The process is illustrated on the Potts model and its symmetry under the group of permutations and previous results are extended for non-scalar operators. This approach is important to study indecomposability of non-unitary models and can be used to study models such as percolation in higher dimensions
Mackie, Ewan Thomas Braid. "Rational term-structure models and geometric Levy martingales." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9483.
Повний текст джерелаKlíma, Ondřej. "Rekonstrukce tvaru polygonálních modelů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-412883.
Повний текст джерелаBaldwin, Elizabeth. "A Geometric Invariant Theory Construction of Moduli Spaces of Stable Maps." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487135.
Повний текст джерелаWimelaratna, Ramasinghege. "Multi dimensional geometric moduli and exterior algebra of a Banach space /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu148759830383865.
Повний текст джерелаRoper, Steven Michael. "Theoretical models for dyke geometries and trajectories." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614961.
Повний текст джерелаLeão, Rafael de Freitas 1979. "Geometria não-comutativa e o modelo de Connes-Lott." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307239.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-03T15:40:13Z (GMT). No. of bitstreams: 1 Leao_RafaeldeFreitas_M.pdf: 2910786 bytes, checksum: eab78790ca328befa1b4e84c2015771c (MD5) Previous issue date: 2003
Resumo: Nesta dissertação estudamos uma forma de generalizar, algebricamente, alguns conceitos de geometria deferencial clássica (como por exemplo os conceitos de variedade e de fibrados vetoriais sobre variedades). Além disso, construímos para estas estruturas algébricas as ferramentas usuais do cálculo integro-diferencial. Estes conceitos são a base da geometria não-comutativa, que nos permite estudar alguns espaços excluídos do tratamento geométrico usual, como por exemplo o espaço com apenas dois pontos. Em particular usamos a geometria do espaço de dois pontos juntamente com a geometria usual do espaço-tempo para estudar uma versão geométrica do conhecido modelo padrão de partículas elementares (em particular o modelo de Weinberg-Salam). Um dos grandes ganhos obtidos com essa formulação geométrica é que o boson de Higgs aparece de uma forma natural dentro do modelo como parte de uma conexão nesse espaço mais geral
Abstract: In this dissertation we studied how to generalize in an algebraic way some of the concepts of classical differential geometry (like the concepts of manifolds and vector bundles). Moreover, we developed the integral and differential calculus over these algebraic structures. These concepts are the basis of the noncom mutative geometry, which enabled us to study from a geometrical point of view some spaces (like the two point space) that are excluded from usual treatments. In particular we used the geometry of the two point space with the usual space-time geometry in order to formulate a geometrical version of the standard model of elementary particles (in particular the Weinberg-Salam model). One of the great advantages of this geometric formulation is that the Higgs boson appears in a natural way as part of a conection in this more general space
Mestrado
Mestre em Matemática
Rocha, André Rodrigues de la. "Geometria e heterogeneidade na dinâmica no modelo de Potts." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/83661.
Повний текст джерелаThe concept of domain size heterogeneity (Heq), the number of distinct domain sizes occurring in a given con guration, was recently introduced in the context of explosive percolation. Besides introducing a new scaling exponent, it was shown to be useful in other classical equilibrium statistical mechanics problems, like random percolation, and the Ising and Potts models. Here we apply and measure this quantity for out of equilibrium situations. In particular, after quenching the Ising and Potts models from a high temperature equilibrium state, T > Tc, to a critical or subcritical temperature, T Tc, we measure the time evolution of H(t). We show that the long time behavior is power law with di erent exponents for critical and subcritical coarsening. Moreover, the short time behavior also presents a surprising maximum of H(t) when the initial temperature is T0 → Ѡ. We present extensive simulation data supporting these conclusions and discuss future perspectives, in order to help understand the overall behavior of H(t).
SOUZA, Carlos Bino de. "Geometria hiperbólica : consistência do modelo de disco de Poincaré." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6695.
Повний текст джерелаMade available in DSpace on 2017-03-28T14:00:56Z (GMT). No. of bitstreams: 1 Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) Previous issue date: 2015-08-26
Euclid wrote a book in 13 volumes called Elements where systematized all the mathematical knowledge of his time. In this work, the 5 postulates of Euclidean geometry were presented. For several years, the 5th Postulate was frequently asked, this inquiries it was discovered that there are several other possible geometries, including hyperbolic geometry. Beltrimi proved that hyperbolic geometry is consistent if Euclidean geometry is consistent. Hilbert showed that Euclidean geometry is consistent if the arithmetic is consistent and presented an axiomatic system that capped the gaps in Euclid’s axiomatic system. Poincaré created a model, called the Poincaré disk, to represent the plan of hyperbolic geometry. The objective of this work is to show that the Poincaré disk model is consistent with reference Axioms Hilbert, replacing only the Axioms of Parallel to "On a point outside a line passes through the two parallel straight lines given", by constructions of Euclidean geometry.
Euclides escreveu uma obra em 13 volumes chamada de Elementos onde sistematizava todo o conhecimento matemático do seu tempo. Nesta obra, foram apresentados os 5 postulados da Geometria Euclidiana. Durante vários anos, o 5o Postulado foi muito questionado, desses questionamentos descobriu-se a existência de várias outras Geometrias possíveis, entre elas a Geometria Hiperbólica. Beltrimi provou que a Geometria Hiperbólica é consistente se a Geometria Euclidiana é consistente. Hilbert mostrou que a Geometria Euclidiana é consistente se a Aritmética é consistente e apresentou um sistema axiomático que preencheu as lacunas do sistema axiomático de Euclides. Poincaré criou um Modelo, chamado de Disco de Poincaré, para representar o plano da Geometria Hiperbólica. O objetivo deste trabalho é mostrar que o Modelo de Disco de poincaré é consistente, tomando como referência os Axiomas de Hilbert, substituindo apenas os Axiomas das Paralelas para "Por um ponto fora de uma reta passam duas retas paralelas à reta dada", através de construções da Geometria Euclidiana.
Cooper, Robert John. "Geometric parameterisation in finite element models of femoroacetabular impingement." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19210/.
Повний текст джерелаMuradali, Amirmohamed. "Geometric models to model acoustic barriers including atmospheric conditions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22643.pdf.
Повний текст джерелаVestweber, Johanna [Verfasser]. "Geometric ergodicity of multivariate stochastic volatility models / Johanna Vestweber." Ulm : Universität Ulm, 2018. http://d-nb.info/1151938378/34.
Повний текст джерелаBranda, Ewan E. (Ewan Edward) 1964. "Drawing interfaces : building geometric models with hand-drawn sketches." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/64901.
Повний текст джерелаIncludes bibliographical references (p. 49-51).
Architects work on drawings and models, not buildings. Today, in many architectural practices, drawings and models are produced in digital format using Computer-aided Design (CAD) tools. Unquestionably, digital media have changed the way in which many architects perform their day to day activities. But these changes have been limited to the more prosaic aspects of practice. To be sure, CAD systems have made the daily operations of many design offices more efficient; nevertheless, they have been of little use - and indeed are often a hindrance - in situations where the task at hand is more conjectural and speculative in nature, as it is during the early stages of a project. Well-intentioned efforts to insinuate CAD into these aspects of practice have only served to reveal the incongruities between the demands of designer and the configuration of the available tools. One of the chief attributes of design practice is that it is action performed at a distance through the agency of representations. This fundamental trait implies that we have to understand how computers help architects describe buildings if we are to understand how they might help architects design buildings. As obvious as this claim might seem, CAD programs can be almost universally characterized by a tacit denigration of visual representation. In this thesis, I examine properties of design drawings that make them useful to architects. I go on to describe a computer program that I have written that allows a designer to build geometric models using freehand sketches. This program illustrates that it is possible to design a software tool in a way that profits from, rather than negates, the power of visual representations.
by Ewan E. Branda.
M.S.