Дисертації з теми "Modification électrique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-20 дисертацій для дослідження на тему "Modification électrique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bustan, Muhammad Djoni. "Amélioration du transfert thermique entre un fluide et une paroi tubulaire par modification de l'hydrodynamique de l'écoulement." Toulouse, INPT, 1992. http://www.theses.fr/1992INPT015G.
Повний текст джерелаBigenwald, Pierre. "Modification des propriétés optiques des structures doubles puits quantiques GaAs-(Ga,In)As sous l'effet d'un champ électrique." Montpellier 2, 1995. http://www.theses.fr/1995MON20005.
Повний текст джерелаEgron, Thomas. "Modification d'un pylône de ligne aérienne de transport d'énergie pour le rehaussement des conducteurs." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5846.
Повний текст джерелаAbou, Taha Mohammad. "Reversible modification of the surface properties of silica incorporated in ultra high molecular weight polyethylene : application to batteries separators." Electronic Thesis or Diss., Lyon, 2020. http://www.theses.fr/2020LYSE1299.
Повний текст джерелаNotwithstanding the growth of the market of the new lithium-ion batteries, lead-acid batteries still offer advantages that the new ones are not able to equate especially in terms of cost, manufacturing base and the actual market need. In this context, the aim of this work is to enhance the properties of lead-acid batteries PE- separators that predominate 90% of the market of lead-acid batteries separators. These porous membranes consist mainly of precipitated silica, a backbone of ultra-high molecular weight Polyethylene (UHMWPE) and they are processed using a thermally induced phase separation process (TIPS) with naphthenic oil that is subsequently extracted. The resulting porosity is thereafter infiltrated with the electrolyte of the battery. Yet, due to the limited wettability of the pores of the membrane by the polar electrolyte, only a fraction of the available porosity is efficient. This thesis focuses on the enhancement of such wettable porosity by the electrolyte in order to reduce the electrical resistivity of the separator. The wettability of the pores is not only related to the presence of silica but also to the nature of silica surface. Paradoxically, hydrophobic silica favors the blend and the dispersion of aggregates; while hydrophilic silica promotes the wettability of the porosity by the electrolyte. To fulfill these criteria and obtain a material as homogeneous as possible with maximum accessible porosity, a reversible modification of the surface of silica was realized by physical impregnation of surfactants or by chemical modification before the blending and the dispersion in the membrane. Therefore, rheological characterization of the suspensions, contact angle and sorption isotherms and other techniques were used to evaluate the change in the surface properties of the new silica. Then, these tuned silica were dispersed in membranes and the prorosity, the structure, the electrical and mechanical properties were investigated
Messoussi, Rochdi. "Caractérisation optique, électrique et physico-chimique du sélénium polycristallin en couches minces et des interfaces métal-sélénium (M = Ni, Al, Te)." Nantes, 1990. http://www.theses.fr/1990NANT2030.
Повний текст джерелаBassi, Marion. "Résilience ajustable d'un spin de trou au bruit de charge." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY018.
Повний текст джерелаSpin quantum bits (qubits) established in group-IV semiconductor quantum dots structures (QD) embody a promising platform for large-scale quantum processors leveraging on small footprint and compatible fabrication processes with mainstream semiconductor industry. In particular, hole particles recently gained attention as spin qubit platform as they enable fast and all-electrical manipulation due to their intrinsically large spin-orbit coupling. The latter coupling however stands as a two-edged sword as it also exposes the hole spin to undesired interactions with the surrounding environment, which in turn degrade the qubit coherence time. Over the past years, many efforts have been conducted to mitigate electrical noise influence stemming from the environment thus revealing the existence of preferential points of enhanced coherence time, named ``sweetspots'', depending on magnetic field orientation.In this manuscript, the emphasis is laid on the characterization of electrical noise contributions impacting a single hole spin qubit with respect to magnetic field orientation on a P-doped natural silicon-MOS architecture. The hole particle is spatially confined in a QD defined electrostatically within the device. Spin orientation is readout by radio-frequency reflectometry based on energy-selective readout method. We experimentally demonstrate that the reported ``sweetspots'' belong in fact to continuous ``sweetlines'' wrapped around the sphere of magnetic-field polar-angle components, in agreement with theoretical predictions. We also show that, in addition to extended coherence time, sweetline operation is compatible with efficient electric-dipole spin resonance with Rabi frequencies, f_R, comfortably exceeding 10 MHz, and a qubit quality factor Q = 2 f_R T_2^R as high as 690, competing with reported values for electrons. Our study evidences ample gate-voltage control of the sweetlines position in magnetic field, an aspect particularly relevant in the purview of scalability. Finally, the experimental investigation of such optimal operation points is extended to a two qubit system as a proof of concept underscoring the importance of sweetlines tuning for spin qubit systems
Darny, Thibault. "Etude de la production des espèces réactives de l’oxygène et de l’azote par décharge Plasma Gun à pression atmosphérique pour des applications biomédicales." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2086/document.
Повний текст джерелаOver the past ten years, the cold atmospheric pressure plasma jets (CAPPJ) became useful devices for biomedical applications. Their relatively simple design and use, combine with their ability to produce reactive species (NO, OH, O, …), led to a rapid research growth in this field. A lot of studies have been devoted to quantitative diagnostics development for the reactive species production measurements in the plasma plume. However, it is difficult to compare one jet with another because of the huge variety of discharge geometries, electric power supplies or operating conditions. This thesis deals with the study of the CAPPJ developed in GREMI, the Plasma Gun (helium feeded, microsecond voltage pulse). We have studied discharge mechanisms which strongly impact the reactive species production in near target biomedical application conditions. This study is divided in three parts : the study of helium flow modifications induced by the plasma (strioscopy visualization); the study of plasma propagation inside dielectric capillary (experimental and numerical study of fast plasma propagation dynamic and electric field evolution for helium-nitrogen mixtures); the study of conductive target-plasma interaction (space and time resolved measurements inside the capillary and the plasma plume of helium metastable production, correlated with electric field evolution). The conductive target contact concerns any in vivo biomedical treatments. CAPPJ in front of such a conductive target leads to fundamentally different discharge mechanisms compare to the free jet case
Mazari, Elsa. "Microsytèmes magnétiques et électriques pour la modification spatio-temporelle de voies de signalisation biologiques." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112136/document.
Повний текст джерелаCell-fate decisions and cellular functions are dictated by the spatiotemporal dynamics of molecular signaling networks. Moreover, at the scale of an entire organism, especially during its development, complex interactions between cell groups enable the fine, dynamic, and integrated regulation of tissue specification. Understanding these phenomena necessitates new dedicated tools. In this doctoral research, we propose to implement relaxation techniques in microfluidic systems. Our goal is to be able to precisely modulate in space and time the concentration of signaling molecules and to deduce, from the response of the biological system, information on the dynamics of the scrutinized reaction networks. More exactly, microsystems are used to perturbate living systems and associated models accounting for the recorded response are validated thanks to computer simulations. We have implemented this strategy both at the cellular level and at the organism scale during two collaborative projects. On one hand, we focused on the control by magnetic fields of microtubules regulators conjugated to magnetic particles, in order to decipher the basic molecular mechanisms responsible for the assembly and regulation of the mitotic spindle. On the other hand, we proposed a device for localized electroporation of DNA constructs into mouse embryos, in order to be able to study the dynamic cellular interactions that control the growth, migration and specification of the visceral endoderm between 5 and 7 days of development. A distinctive feature of this work lies in the proposed interdisciplinary approach. Combining several states of the art techniques from Chemistry, Physics, and Biophysics, our ambition has been to demonstrate that micro/nanotechnologies can open new perspectives in Biology
Lacroix, Renaud. "Modifications chimiques des noirs de carbone : Propriétes électriques et diélectriques des mélanges polymère-noirs modifiés." Mulhouse, 1992. http://www.theses.fr/1992MULH0259.
Повний текст джерелаBourig, Ali. "Modification de la combustion en présence d'espèces excitées." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2049/document.
Повний текст джерелаNowadays it seems that the most promising method for accelerating combustion is the non-equilibrium excitation of the gas mixture components, which allows one to affect the chemical reaction kinetics. To enable more efficient excitation of the electronic and vibrational degrees of freedom, one should use short-duration (nanosecond) pulses with a high reduced electric field. The present work focuses on the application of high frequency high voltage pulse discharges capable of delivering an electric pulse of 20 kV during 20 ns with controlled voltage rise time of 5 ns and at a frequency up to 25 kHz in combustion. This study articulates around two major research axis; that of the generation of excited species and particularly the feasibility to produce excited oxygen species in its singlet electronic states O2(a1?g) and O2(b1Sg+) by a non-thermal electric discharge, at reduced pressure until atmospheric pressure and its characterization by emission spectroscopy. The second research axis concerns their use for the intensification of combustion. The experimental part of the study concerns investigation of singlet oxygen production in the application of a dielectric barrier discharge in O2/He and O2/Ar binary mixtures. The second discharge is a special crossed discharge plasma-chemical reactor that has been developed. This crossed discharge consists of a hybrid discharge in which short high voltage pulses produce ionization while a comparatively low electric field supports the electric current between ionizing pulses. The gas produced by this installation is intensively studied by emission spectroscopy. This work, indispensable to characterize the installation and to obtain initial conditions necessary for flame calculations, relies on different spectrometers and intensified camera. The first potential in the combustion field is to significantly improve combustion efficiency and reduce pollutant emissions using oxidizer “activation”. Conception and development of hybrid plasma burner prototypes, integrating crossed discharge plasma reactor allows us to validate this application by comparing with a classical flame without plasma activation. Finally, modelling of premixed flame fundamental parameters is undergone with CHEMKIN software. The promoting effect of excited oxygen on hydrogen flame has been characterized
Bech, Loïc. "Modification de surfaces polymères de type poly(téréphtalate d’éthylène) et greffage de molécules glycosylées." Paris 11, 2007. http://www.theses.fr/2007PA112183.
Повний текст джерелаThis work aimed to develop new processes for poly(ethylene terephthalate) (PET) surfaces functionalization and grafting of oligosaccharides and glycopolymers. The first strategy studied was the grafting of glycopolymers by treatments with low pressure cold plasma on PET fibers. The originality of this study rests on the use of a double plasma treatment of argon. The first argon plasma treatment carried out activates the surface. The second plasma treatment carried out after adsorption of the monomer starts the polymerization of allylic or methacrylic glycomonomers. The results show that a greater density of grafting and a higher conversion rate (up to 70%) are obtained for the 2-methacryloxyethyl glucoside. Lower values are obtained for the allyl a-D-galactose probably because of transfer reactions to the monomer. We were also interested in a chemical method in two steps in order to graft different oligosaccharides. The first step consists in functionalizing PET surfaces by primary amines by aminolysis reaction. In addition, this step generates morphological changes (porosity). Then, the amino functions allow the sugar grafting by reaction of reducing amination or amidation (this process was successfully applied to films and track-etched membranes). Another method studied consists in using the amino functions for the grafting of an initiator of atom transfer radical polymerization. Currently, styrene and tert-butyl acrylate were polymerized successfully in a way controlled on PET surfaces
Roland, Aude. "Nanostructuration et contrôle de l'interface électrode/électrolyte appliqués à des électrodes de silicium pour batteries Li-ion." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS128.
Повний текст джерелаSilicon is one of the most promising active material for the next generation lithium-ion batteries (LiB) negative electrode. Indeed, it exhibits a 10 times higher specific capacity than graphite currently commercialized in batteries. Its low working potential achieves high energy density while limiting the dendrite growth responsible for thermal runaway. Despite its advantages, its intrinsic limits such as low electronic and ionic conductivities and the large volume expansion induced by the formation of the lithiated phases still avoid its incorporation into commercial batteries. Indeed, this active material expansion causes the electrode pulverization, leading to active material electrical isolation and so a low capacity retention in cycling. The active material spraying also induces new interfaces formation in contact with the electrolyte, which induces SEI formation and limited performance. In these work, silicon nanostructuring is proposed to limit active material spraying. Different nanostructures have been studied such as nanowires, nanoparticles and nanoporous silicon materials. On-chip nanowires have been studied, their elaboration method was optimized and their battery performance were tested. Porous silicon electrodes were prepared by electrochemical etching of a Si wafer and studied in composite electrodes. The nanoparticles study, were used to optimize the electrode formulation and the general testing conditions. These parameters were then applied to study the morphological properties (modulated by heat treatment) impact on porous Si-based electrodes performance in Li-ion battery. Afterward, the study focused on the electrode / electrolyte interface, the Si surface was modified by different carbon coatings (amorphous carbon, graphene-like, pitch). The electrochemical performance of these electrodes were compared. The SEI composition and its evolution in cycling was followed. Additionally, a complete study of the pH of the aqueous formulated electrode on the performance of that one was carried out
Lacampagne, Alain. "Participation du canal calcique dans le couplage excitation-contraction des cellules cardiaques : modifications chimiques du canal et leurs effets sur le courant ionique et les mouvements de charges intramembranaires." Tours, 1995. http://www.theses.fr/1995TOUR4007.
Повний текст джерелаPasturel, Mathieu. "Modification par hydruration des propriétés structurales et physiques des intermétalliques CeTX (T = Mn, Ni, Cu ; X = Al, Ga, In, Si, Ge, Sn)." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2004. http://tel.archives-ouvertes.fr/tel-00010063.
Повний текст джерелаKosimaningrum, Widya Ernayati. "Modification of Carbon Felt for Contruction of Air-Breathing Cathode and Its Application in Microbial Fuel Cell." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS110/document.
Повний текст джерелаMicrobial fuel cell, MFC, is a bioengine that combine biochemical and electrochemical principle respectively to extract the stored electrons in organic material and to turn them into electricity. In an MFC, living electroactive microbes, with its whole enzymatic system, are employed to biocatalyze the oxidation of organic fuel; an anode is artificially introduced to divert the electrons, as resulted in the bacterial respiratory system; and oppositely a cathode drives the electron flow that further be switched to electrical power. Electroactive microbes spread out in numerous sources such as soil, compost, sludge, waste water, and so on. The feed, organic fuel and/or other nutrient, also can abundantly be present in their matrix sources and in many other priceless sources, which commonly available in daily life. Bacterial abundance and unlimited organic fuel are the two attractive reasons for the development of sustainable energy source as such as MFC, which is also drawn our attention in this research. Herein, we developed MFC, double chamber (DCMFC) and single chamber (SCMFC), which powered by garden compost as electroactive source and acetate fuel. For sustainability reason and other advantages i.e. practicability and eco-friendly, we mainly focused on SCMFC with air-breathing cathode system. The common problematic of the SCMFC is the limited power production that mainly due to the slow kinetic of oxygen reduction reaction (ORR) in the cathodic part. Therefore, it is important to developed the material of air-breathing cathode which has a proper catalysis activity toward ORR to overcome this limitation. Carbon felt (CF) is the selected support material that suitable for air-breathing cathode fabrication. While, platinum (Pt) and manganese oxide (MnOx) respectively, as supreme and runner-up catalyst’s class, has been grown on CF through a simple electrodeposition method. The resulting materials, named as ACF@Pt and ACF@MnOx, have been characterized comprehensively by electrochemical and physicochemical methods to determine their electrocatalytic performances, which support for air-breathing cathode application. Accordingly, we have developed two main types of air-breathing cathode, i.e. ACF@Pt and ACF@MnOx, which have been successfully applied in SCMFC powered by garden compost with generated power density respectively 140 mW m-2 and 110 mW m-2. Moreover, the both developed material also reveal some promising application. For instance, ACF@Pt has been applied as MFC’s anode, both in DCMFC and SCMFC, and has improved the power density up to 300 mW m-2. Interestingly, it is also shown as an excellent electrocatalyst in hydrogen evolution reaction, HER. While, the ACF@MnOx material shows a promising electrocatalyst in an electro-Fenton like system to mineralization of biorefractory material i.e. one of the hazardous pollutant constituent of wastewater
Boulet, Sabrina. "Modifications neurochimiques au sein des ganglions de la base et comportements moteurs associés lors d'une stimulation électrique du noyau subthalamique chez le rat hémiparkinsonien ou de la mise en place de la dénervation dopaminergique chez le singe." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00110256.
Повний текст джерелаDans une première partie, nous avons analysé les effets de la SHF du NST sur le comportement moteur de rats sains et 6-OHDA et nous avons établi une corrélation entre ces effets et les taux de glutamate et de GABA extracellulaire mesurés par microdialyse intracérébrale au sein de la SNr. Ces données comportementales et neurochimiques couplées à des injections pharmacologiques intranigrales suggèrent que les dyskinésies de la patte avant induites par la SHF du NST sont médiées par le glutamate et fournissent de nouveaux arguments quant aux mécanismes de la SHF du NST dans la MP.
Dans une seconde partie nous avons réalisé des microdialyses intracérébrales chez des singes normaux, puis exprimant pleinement les symptômes moteurs induits par le MPTP et enfin après récupération de ces symptômes moteurs dans le but de corréler les déficits et la récupération motrice à des changements de concentration de neurotransmetteurs présents dans deux territoires striataux : le sensori-moteur et le limbique. Notre étude s'est focalisée sur la dopamine et ses métabolites, le glutamate, le GABA et la sérotonine. Nos résultats montrent que les variations de dopamine pourraient jouer un rôle important dans les mécanismes de compensation permettant la récupération de fonctions motrices normales.
Bor, Julie. "Une nouvelle approche de la physiopathologie de la schizophrénie : imagerie des modifications cérébrales biochimiques et fonctionnelles induites par des thérapeutiques non pharmacologiques." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10147.
Повний текст джерелаDespite the development of new generation antipsychotic drugs, some symptoms of schizophrenia do not respond to these treatments. Based on the pathophysiological hypothesis underlying these symptoms, new therapies such as cognitive remediation therapy and neurostimulation techniques have been developed. This approach remained essentially clinical. In this work, the study of biological mechanisms tending benefits of these non-pharmacological treatment has allowed us to test these pathophysiological hypotheses. Functional MRI (fMRI) and magnetic resonance spectroscopy (MRS) were used to investigate the effects of cognitive remediation therapy (CRT), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We demonstrated (1) that CRT modifies cerebral activations during a working memory task in patients with schizophrenia, (2) that TMS modifies brain biochemistry of the stimulated area and of deep brain regions in a patient with schizophrenia and (3) that tDCS modifies the functional connectivity in resting state networks of healthy volunteers
Le, Gloannec Brendan. "Modifications microstructurales sous sollicitations thermomécaniques sévères : application au soudage par résistance des gaines de combustibles en aciers ODS." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0367/document.
Повний текст джерелаOxide dispersion strengthened (ODS) steels are considered as candidate materials for thedevelopment of fuel cladding for sodium-cooled fast reactors (SFR). Resistance upset welding of thecladding is studied in this work. The aim is to determine and to understand the process effects on themicrostructure of ODS steels with 9% and 14% of chromium at the scales of the grains and thenanometric oxides. An approach coupling microstructural characterization of welds, numericalsimulation and physical simulation of the process, using a thermomechanical simulator Gleeble 3500,is proposed. Resistance welding locally imposes severe thermomechanical conditions in terms of strain,strain rate and temperature. Refinement of the microstructure is noted and correspond to a dynamicrecrystallization mechanism (14 % Cr steel) or the combination of dynamic recrystallization and phasetransformations (9 % Cr steel). The conditions of occurrence of dynamic recrystallization are studied.The possibility of a transition between continuous and discontinuous dynamic recrystallization is shownfor the 14 % Cr steel according to the loading conditions. Such severe thermomechanical conditionsinduce an increase in the size of nanoscale oxides associated with a decrease of their volume fraction
Sarra-Bournet, Christian. "FONCTIONNALISATION DE SURFACE DE POLYMÈRES PAR PLASMA À LA PRESSION ATMOSPHÉRIQUE : Amination de surface et dépôt de couches minces par un procédé de décharge par barrière diélectrique." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26904/26904.pdf.
Повний текст джерелаThe objective of this thesis was to develop surface modification processes using atmospheric pressure plasma for the surface functionalization of polymers with amino groups (NH2) for biomedical applications. Developing a process working at atmospheric pressure aims to eliminate the need for a pumping system, thus obtaining a technology that would be efficient and low cost for an industrial process. The plasma generation mode chosen was a dielectric barrier discharge (DBD). Two surface modification strategies were investigated: Surface plasma amination and plasma thin film deposition. The two different types of surface modifications were characterized by X-Ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF SIMS), Fourier Transform Infrared Spectroscopy (FTIR), Contact Angle goniometry (CA), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). On one hand, surface plasma amination, results demonstrate the importance of H2 and its derived species for amino groups functionalization on the surface of polymers in an atmospheric pressure DBD in N2-H2. Moreover, the obtained knowledge allows now the possibility to control and optimize the surface density and surface modification specificity for amino groups. On the other hand, the functionalized thin films obtained in an atmosphere of N2-C2H4 reveals a highly variable nitrogen concentration as a function of the reactive gas/carrier gas (C2H4/N2) while the surface density in amino groups is constant. Sticking coefficients and/or surface mobility of the different species created as a function of time residence in the discharge lead to different coating morphologies. The addition of H2 in the discharge leads to the formation of nanoparticles and new structures, named “nanorods” that present anisotropic dimensions (100-200 nm in diameter for 1-10 m in length). Finally, atmospheric pressure DBD surface functionalization is an efficient and low cost technique for the creation of uniform surface modification with amino groups that can be later used to covalently graft various chemicals functionalities; chemical functionalities that can be used for various applications.
Meunier, Louis-Félix. "Modification of microfibrillated cellulose foams by atmospheric-pressure plasmas." Thesis, 2020. http://hdl.handle.net/1866/24373.
Повний текст джерелаLe traitement de différents polymères issus de sources renouvelables est, depuis relativement récemment, un domaine de très fort intérêt dans les communautés scientifiques. Ce travail aborde le traitement de mousses de microfibrille de cellulose, issues de biomasses forestières, dans des décharges à barrière diélectrique dans l’hélium à la pression atmosphérique. Lorsque la mousse occupe l’entièreté de l’espace inter-électrodes, nous avons montré que la décharge s’amorce et se propage à travers la mousse. L’effet de dégazer la mousse avant le traitement par plasma s’avère aussi bénéfique à la production de décharge de type « homogène ». En effet, en situation dégazée, la décharge à 60 kHz révèle une caractéristique « homogène » tandis qu’à 10 kHz elle devient filamentaire. Toutefois, nettement moins de dommage sont observés sur la mousse sujette à une décharge à 10 kHz par rapport à celle à 60 kHz. En situations non dégazées, le relâchement d’espèces issues de l’air ambiant lors de l’enclenchement de la décharge augmente considérablement la puissance injectée et dissipée dans le plasma, générant plus de dommage qu’en conditions dégazées. Ces connaissances ont ensuite été appliquées à la modification des mousses à l’aide d’un précurseur d’hexaméthyldisiloxane pour ajuster leurs mouillabilités à l’eau et à l’huile. Lorsque la mousse occupait tout l’espace inter-électrodes, le régime de décharge filamentaire produit des dépôts très inhomogènes, bien souvent localisés au voisinage des régions endommagées. Au contraire, lorsque la mousse n’occupe qu’une partie du volume inter-électrodes, une décharge homogène a été observée, induisant une défibrillation des fibres cellulosiques. Ces conditions mènent néanmoins à des surfaces hydrophobes sur les surfaces supérieure et inférieure des mousses, tout en maintenant leur caractéristique oléophile. Ces travaux semblent donc prometteurs pour la séparation efficace d’huile des eaux usées à partir de matériaux verts, biodégradables, et renouvelables.
The treatment of different polymers issued from renewable sources has recently become of high interest in today’s scientific community. This work focused on the treatment of microfibrillated cellulosic foams, issued from wood biomass, in an atmospheric pressure dielectric barrier discharge in helium. When foams occupied all of gas gap volume, we demonstrated that the discharge ignites and propagates through the foams. The act of outgassing before plasma treatment has also been shown to be highly beneficial to the production of homogeneous glow-like discharges. Indeed, it was found that, in outgassed conditions, discharges occurring at a frequency of 60 kHz were glow-like, while those at 10 kHz were filamentary. However, significantly less damage was observed on the foams subjected to a 10 kHz discharge as opposed to those subjected to a 60 kHz discharge. In non-outgassed situations, we have also shown that the release of oxidising species originating from ambient air upon plasma ignition considerably increased injected and dissipated power in the plasma, in turn producing more damage than in outgassed conditions. This knowledge was then applied to the modification of these foams using a hexamethyldisiloxane precursor for plasma deposition to adjust their wettability to water and to oil. When foams occupied all of gas gap volume, the discharge regime was filamentary, and produced inhomogeneous coating, often very localised around damaged regions. When foams took up only a portion of gas gap volume, a homogeneous glow-like discharge was observed, inducing defibrillation of the cellulosic fibers. These conditions produced hydrophobicity on both the top and bottom surfaces of the foams, all while maintaining the foam’s characteristic oleophilicity. This supports the idea of selective adsorption of oily wastewater using a green, biodegradable, and renewable cellulosic product.