Зміст
Добірка наукової літератури з теми "Modification des nanoparticules"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modification des nanoparticules".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Modification des nanoparticules"
ERKAN, Hilal, Ceren KEÇECİLER-EMİR, Cem ÖZEL, and Sevil YÜCEL. "Posaconazole Loading and Release Behavior in Surface-Modified Mesoporous Silica Nanoparticular System." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, no. 3 (December 25, 2023): 615–32. http://dx.doi.org/10.18185/erzifbed.1189339.
Повний текст джерелаMaciel, Cristiane C., Amanda de S. M. Freitas, Jennifer P. Medrades, and Marystela Ferreira. "Simultaneous Determination of Catechol and Paraquat Using a Flexible Electrode of PBAT and Graphite Modified with Gold Nanoparticles and Copper Phthalocyanine (g-PBAT/AuNP/CuTsPc) LbL Film." Journal of The Electrochemical Society 169, no. 2 (February 1, 2022): 027505. http://dx.doi.org/10.1149/1945-7111/ac4ff0.
Повний текст джерелаSiddique, Tawsif, Naba K. Dutta, and Namita Roy Choudhury. "Mixed-Matrix Membrane Fabrication for Water Treatment." Membranes 11, no. 8 (July 23, 2021): 557. http://dx.doi.org/10.3390/membranes11080557.
Повний текст джерелаZoabi, Amani, and Katherine Margulis. "Differential Interactions of Chiral Nanocapsules with DNA." International Journal of Molecular Sciences 22, no. 2 (January 8, 2021): 584. http://dx.doi.org/10.3390/ijms22020584.
Повний текст джерелаZoabi, Amani, and Katherine Margulis. "Differential Interactions of Chiral Nanocapsules with DNA." International Journal of Molecular Sciences 22, no. 2 (January 8, 2021): 584. http://dx.doi.org/10.3390/ijms22020584.
Повний текст джерелаBesnaci, Sana, Mabrouka Bouacha, Amina Chaker, Yamine Babouri, and Samira Bensoltane. "Impact of fumed silica nanoparticles SiO2 on oxidative stress in Helix aspersa." Bulletin de la Société Royale des Sciences de Liège, 2022, 11–22. http://dx.doi.org/10.25518/0037-9565.10781.
Повний текст джерелаДисертації з теми "Modification des nanoparticules"
Lenne, Quentin. "Interfaces et nano-objets fonctionnels et biomimétiques pour l'électrocatalyse." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S143.
Повний текст джерелаThe work presented in this manuscript is focused on the surface functionalization of metallic nanoparticles with a covalently-bound monolayers of calix[4]arenes. The catalytic activity of these modified systems was then studied for the activation of small fuel molecules such as oxygen, methanol, and carbon dioxide
Lassiaz, Stéphanie. "Modification de surface d'alumine et de silice en milieu aqueux par greffage d'acide alkylphosphonique." Montpellier 2, 2005. http://www.theses.fr/2005MON20057.
Повний текст джерелаThe goal of this study is the surface modification of silica nanoparticles in aqueous media by grafting alkylphosphonic acid molecules. As Si-O-P bonds are unstable toward hydrolysis, the grafting is done by aluminium species deposited on the nanoparticles surface that is to say by Si-O-Al-O-P bonds. First, a study of the grafting of alkylphosphonic acid molecules onto alumina nanoparticles surface, used as a model, has been carried out. Then two strategies have been followed to modify silica nanoparticles surface: (a) the grafting of alkylphosphonic acid molecules on the surface of nanoparticles industrially modified by aluminium surface species and (b) the surface modification of silica nanoparticles by successive additions of aluminium salt then alkylphosphonic acid. The different nanoparticles functionalised by alkyl chains obtained have been characterised by thermogravimetric analysis, NMR MAS 31P, elementary analysis, infra-red spectroscopy, nitrogen adsorption-desorption at 77 K, hexane and water adsorptions at 25 °C and by a floating test in methanol/water mixing (“methanol number”). Grafting parameters have been optimised which allow us to synthesize nanoparticles with different covering rates and thus to control their hydrophobicity and their surface polarity on a large scale
Taiariol, Ludivine. "Immunociblage bioorthogonal de nanoparticules radiosensibilisantes pour une application en radiothérapie externe." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAS024.
Повний текст джерелаIn the last few years, nanoparticles (NP) have been of growing interest in the field of oncology for enhancing the therapeutic efficacy of cancer treatment modalities. These organic or inorganic NPimprove the effectiveness of some pre-existing treatments as surgery, cancer chemotherapy andimmunotherapy. With regard to radiotherapy, one of the principal means of patient cancertreatment, it has to face the increasing number of tumors described as “radioresistant” due to lowdoses often delivered in order to limit the effect of radiation on healthy tissue. One of the mostpromising strategy relies on high atomic number NP (e.g. gold, platinum, hafnium or gadolinium)used as radiosensitizers for their capacity to enhance radiation damage once in the tumormicroenvironment. This technological advance could getting an unprecedented development if theirtumor concentration was not only based on passive targeting via the EPR effect, but on the tumorspecific targeting for potentiating the effect of ionizing radiations while limiting side effects to healthytissues and thus improving therapeutic efficacy.Thus, the work reported in this thesis concerns the development of silica NP constituted of afluorescent core of rhodamine, chelating several gadolinium atoms and able to specifically targetcancer cells with an immunopretargeting system based on SPAAC («Strain Promoted Alkyne-AzideCycloaddition ») bioorthogonal chemistry. This strategy relies on the two-step active targeting: (1) anantibody modified by an azide bioorthogonal entity would first be administered; (2) then, NPfunctionalized with complementary bioorthogonal entities (azadibenzylcyclooctyne, ADIBO) would beinjected in a second time after clearance of the modified antibody not located at the tumor site. Thespecific covalent binding NP/antibody via the SPAAC ligation (ADIBO/N3) should thus permit toimprove NP tumor concentration and potentiate their therapeutic effect.NP surface functionalization was performed according to an automated supported synthesisusing phosphoramidite chemistry. This technique allowed the surface incorporation of the ADIBObioorthogonal entities and also of the macrocycles DOTA for gadolinium chelation. Grafting of thedifferent chemical functions and molecules and their quantification were conducted by variouscharacterization techniques (fluorescence, absorption, DLS, ICP-MS). In the second part of this work,antibodies were efficiently functionalized by azide bioorthogonal entities, complementary of ADIBOfunctions according to SPAAC ligation. After quantification and validation of their reactivity by MALDI-TOF and fluorescence studies, the best immunoconjugate has been selected to perform in vitrostudies by confocal microscopy. Despite different studies carried out in this project, it has not beenyet possible to demonstrate the feasibility of this approach. Nevertheless, these NP obtained withboth bioorthogonal entities and gadolinium atoms suggests other interesting perspectives for application as theranostics
El, Malti Wassim. "Modification de surface de supports inorganiques par des groupements organiques." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20208/document.
Повний текст джерелаThe objective of this thesis is the surface modification of two inorganic supports (mesoporous silica nanoparticles, calcium carbonate) by grafting organic molecules (organosilanes and phosphonates derivatives).Mesoporous silica nanoparticles (MSN) of MCM-41 type were synthesized by direct micro-emulsion and grafted under mild conditions using isocyanatopropyltrichlorosilane. Then, the reactivity of the isocyanate function was tested by post-modification using several amino nucleophiles. Synthesis, grafting and post-modification steps have been characterized by several physicochemical methods. MSN surface functionalized with a photolabile coupling agent have also been developed and tested under UV irradiation, with a view to prepare nanovalves for photo-controlled drug-delivery.The surface modification of nanoparticles of calcium carbonate (calcite) by phosphonate monolayers was investigated. The reaction conditions were optimized to favor grafting and prevent the dissolution of calcium carbonate leading to the precipitation of calcium phosphonate phases. Dense monolayers were obtained with different phosphonic acids in organic and aqueous media. The use of phosphonic esters (diethyl esters) was also explored. The modified nanoparticles were characterized by different techniques (NMR and IR spectroscopy, XRD, elemental analysis, electron microscopy, wettability testing) to identify the nature of the surface species
Reinhardt, Nora Maria Elisabeth. "Modification chimique de surface de nanoparticules de silice pour le marquage d'ADN dans des lipoplexes." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14820/document.
Повний текст джерелаSilica nanoparticles are ideal platforms for the conception of bioimaging tools serving for the elucidation of the mechanisms of gene transfection via lipoplex structures. The purpose of the present study is the development of a chemical surface modification for the generation of quaternary ammonium groups on silica nanoparticles permitting the obtainment of highly positively charged silica colloids which strongly attract DNA by electrostatic interactions. Two modification strategies to generate quaternary ammonium groups on silica are presented a) a direct silanization using quaternary ammonium groups containing silane derivatives and b) a modification of silica nanoparticles via a first modification with an amine group containing silane derivative and a subsequent quaternization of the amine groups via an alkylation with iodomethane. Different physicochemical methods were employed (cosedimentation assays, quartz crystal microbalance with dissipation monitoring measurements, TEM and Cryo-TEM imaging) to analyze interactions between quaternized surfaces, DNA and lipids. A preliminary study was carried out which shows the capacity of the synthesized nanoparticles to label DNA in lipoplexes
Hermal, Florence. "Recouvrement et modification de nanoparticules afin d’optimiser leurs propriétés physico-chimiques pour des applications pharmaceutiques." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF058.
Повний текст джерелаThe Layer-by-Layer (LbL) technique has emerged as a simple and effective method for surface modification and functionalization, especially of nanoparticles. We have explored this coating technique to increase the resistance of conventional liposomes. We have developed a layer-by-layer formulation procedure using two biodegradable and biocompatible polyelectrolytes with opposite charges: poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA). This procedure has allowed the development of very homogeneous formulations of liposomes coated with up to 6 layers of polymers (layersomes) and liposomes coated with two layers of cross-linked polyelectrolytes. The coating was characterized by dynamic light scattering (DLS), quartz crystal microbalance technique (QCM), and energy transfer between two fluorescent molecules (FRET). Studies on the stability of formulations at 4°C in a buffered solution have shown that some structures are stable over 2 months without impacting their encapsulation capacity. The results suggest a better resistance of the coated liposomes in the presence of a non-ionic detergent (Triton™ X-100) as well as in the presence of plasma. In a second step, this procedure was adapted to coat inactivated H5N1 virus particles in order to develop a "delayed" form of the virus. Viral particles coated with up to 4 polymer layers as well as particles coated with 2 layers of cross-linked polyelectrolytes were obtained and characterized by DLS, laser diffraction (LD) as well as confocal and transmission electron microscopy. Stability studies have shown that the coating of viruses stored at 4°C is stable for at least 2 months. We showed that the LbL assembly had no impact on the immunogenicity of the viral particles and that a delayed release of the virus was likely. This work has demonstrated the adaptability of layer by layer assembly of nanoparticles for various pharmaceutical applications
Actis, Paolo. "Modification de surface et caractérisation électrochimique d'électrodes de diamant dopé bore." Grenoble INPG, 2008. http://www.theses.fr/2008INPG0055.
Повний текст джерелаExcellent mechanical properties, high chemical inertness and biocompatibility have made boron doped diamond electrodes (BDD) a promising material for applications in the biomedical field. Amine-terminated BDD interfaces were obtained through solvent free chemical grafting of diazonium salts on hydrogen terminated BDD electrodes. Next to X-ray photoelectron spectroscopy (XPS) and cyc1ic voltammetry, the presence and electrochemical behaviour of the linked functional groups were identified using Raman spectroscopy. Ln parallel, the influence of the presence of amine groups on the electronic transfer kinetics and the possibility to deposit go Id nanopartic1es was studied. Photochemical oxidized BDD allowed furthermore the linking of photoactive benzophenone molecules and the photoimmobilization of oligonuc1eotide (DNA) strands. Finally, the potential of scanning probe techniques such as scanning electrochemical microscopy (SECM) and electrochemical scanning near field optical microscopy (E-SNOM) to locally pattern BDD electrodes was demonstrated
Gotti, Guillaume. "Modification de surfaces électrochimiques par des nanoparticules d'or pour la détection de molécules impliquées dans le stress oxydant." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2229/.
Повний текст джерелаOxidative stress is a biological phenomenon resulting from an imbalance between oxidant and antioxidant species which can be involved in the early stages of many pathologies such as cancer or neurodegenerative diseases. The detection of molecules involved in the oxidative stress is a major issue in terms of public health. Due to its simplicity, fast-response time and low cost, electrochemistry is a method of interest for the detection of dissolved oxygen and hydrogen peroxide, two precursors of more deleterious reactive species in a biological medium. In this work a study of the electrochemical behavior of O2 and H2O2 under neutral conditions was performed by cyclic and steady-state voltammetries, first on bulk unmodified materials (glassy carbon and gold). In order to be further used as a reference and fill a lack in the literature, the charge transfer coefficients were determined for O2 reduction and H2O2 oxidation using Tafel and Koutecky-Levich methods and were compared to those obtained in acidic and basic media. In a second part, gold nanoparticles functionalized glassy carbon electrodes were prepared by two ways: direct electrodeposition from a gold precursor and deposition by adsorption of colloidal gold solution synthesized in aqueous medium. To demonstrate the electrocatalytic properties of those gold nanoparticles, the charge transfer coefficients were determined for O2 reduction and H2O2 oxidation and compared with those obtained on bulk materials. From the different materials used, separate calibrations were made for the two target molecules, and then a simultaneous detection was proposed by cyclic voltammetry to achieve the proof of concept for future sensor
Mornet, Stéphane. "Synthèse et modification chimique de la surface de nanoparticules de maghémite à des fins d'applications biomédicales." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2002. http://tel.archives-ouvertes.fr/tel-00128139.
Повний текст джерелаmodifiées en surface par des agents de couplage silaniques organofonctionnels suivi du greffage covalent des macromolécules. Les nanovecteurs, ont ensuite été marqués par des sondes fluorescentes pour réaliser des
tests in vitro de double marquage (IRM, fluorescence) de microglies humaines (HEMC5).
Koch, Susanne Julia. "Dendritic surface modification of photocatalytic nanoparticles for tumour therapy." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0687/document.
Повний текст джерелаThe occurrence of field cancerization is characteristic for tumours of the head and neck region. Due to these widespread premalignant and malignant alterations, it is frequently not possible to entirely remove the tumour by surgery. This results in a high risk of tumour recurrence. Therefore, this PhD research aimed to develop photocatalytic nanoparticles (NPs) as completion of the traditional tumour therapy. These NPs are supposed to be incorporated by tumour cells and to induce photocatalytic cell death by UV light activation. TiO2 with convincing photocatalytic properties and an average size smaller than 20 nm should therefore be synthesized. NP biocompatibility, their uptake into cells and an efficient tumour targeting should be guaranteed by surface modification of the particles with dendritic organic molecules that allow a precise control of the surface charge of the particles as well as antibody coupling.A further objective was the combination of therapeutic and diagnostic properties within the NPsystem realized for example via introduction of a luminescent dye. This research was carried out at the University of Bordeaux (synthesis of organic molecules for particle functionalization) in cooperation with the Fraunhofer Institute for Silicate Research ISC in Würzburg, Germany (nanoparticle synthesis)
Книги з теми "Modification des nanoparticules"
Müller, Rainer H. Colloidal carriers for controlled drug delivery and targeting: Modification, characterization, and in vivo distribution. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1991.
Знайти повний текст джерелаAdvanced polymer nanoparticles: Synthesis and surface modifications. Boca Raton: Taylor & Francis, 2011.
Знайти повний текст джерела