Добірка наукової літератури з теми "Modélisation océan/glace/biogéochimie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modélisation océan/glace/biogéochimie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Modélisation océan/glace/biogéochimie"

1

Occhietti, Serge. "Dynamique de l’Inlandsis laurentidien du Sangamonien à l’Holocène." Géographie physique et Quaternaire 41, no. 2 (January 15, 2008): 301–13. http://dx.doi.org/10.7202/032685ar.

Повний текст джерела
Анотація:
RÉSUMÉ Les études de terrain de la dernière décennie ont complètement bouleversé la conception de l'Inlandsis laurentidien du dernier étage glaciaire. Le glacier continental est composé de trois principaux secteurs interdépendants; Keewatin, Baffin et Labrador. Chaque secteur est constitué de plusieurs dômes, calottes satellites et axes de partage glaciaire dont l'emplacement peut varier dans le temps. Chaque secteur a une dynamique relativement distincte pendant les phases de création et de fonte des masses glaciaires. La modélisation récente établie en fonction surtout du seuil de plasticité à la base du glacier et des limites atteintes au Wisconsinien supérieur, vérifie et précise ce modèle d'inlandsis multidome. Elle confirme également qu'en dehors des phases d'englacement généralisé, de nombreuses crues glaciaires et fluctuations de lobes expriment avant tout la dynamique d'écoulement et de rééquilibration des masses de glace et, de façon très équivoque, les fluctuations climatiques. L'Inlandsis laurentidien est un système ouvert. Il enregistre avec sa dynamique propre (dissymétrie, rétroaction, inertie, rééquilibration) les variations complexes du système climatique global atmosphère-océan-glaciers engendrées par la contrainte énergétique astronomique. Cette dernière peut être calculée et exprimée par la variation de la quantité d'insolation en fonction de la latitude et du temps. Modulée par le système climatique terrestre, elle est la cause première des disparités latitudinales et longitudinales de l'inlandsis dans le temps.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Modélisation océan/glace/biogéochimie"

1

Bertin, Clément. "The role of the Mackenzie River in the carbon biogeochemistry of the Beaufort Sea coastal waters (Arctic Ocean)." Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS007.

Повний текст джерела
Анотація:
Cinq des plus grands fleuves mondiaux sont en Arctique et transportent des quantités importantes de carbone dissous organique (COD) et inorganique (CID) dans l’Océan Arctique (OA). La réponse de l’océan côtier à ces apports est encore incertaine, ce qui est un frein à l’estimation des flux air/mer de CO2 dans cette région. Dans un contexte de réchauffement climatique et de changement rapide de l’environnement arctique, il est donc important de mieux comprendre l’effet de ces apports de carbone terrigène sur les flux de CO2 dans les panaches fluviaux. Le modèle couplé océan/glace/biogéochimie ECCO-Darwin est utilisé afin d’étudier la réponse du sud-est de la mer de Beaufort aux apports de carbone dissout du fleuve Mackenzie des échelles synoptiques à interannuelles. Ce modèle régional intègre le tout premier forçage interannuel journalier de COD terrigène provenant du Mackenzie estimé grâce à la fusion de données in situ et de données satellites acquis aux trois embouchures principales du delta. Nous observons que la variabilité interannuelle du débit du Mackenzie module localement les flux air/mer de CO2 dans le panache fluvial côtier. Le CID terrigène contribue deux fois plus que le COD terrigène au dégazage du panache. Avec le dégel du pergélisol, les incertitudes sur la dégradation du COD terrigène dans les panaches fluviaux sont nombreuses. La variabilité des flux air/mer de CO2 liée à la dégradation bactérienne est estimée à ±0.39 TgC yr−1 en 2009. D’autres processus biophysiques contribuent également à cette variabilité comme la floculation du COD terrigène (+0.14 TgC yr−1 absorbé par l’océan) et la stratification verticale induite par le panache (+0.35 TgC yr−1 rejeté par l’océan). Ce travail de thèse met en lumière l’importance d’inclure une représentation réaliste du continuum terre/mer dans les modèles régionaux arctiques afin d’améliorer les estimés de flux de carbone dans cet océan changeant et fortement altéré par les modifications de ses bassins versants
About 10 % of atmospheric carbon dioxide is sequestered in the ocean above 60°N, half of which is in coastal seas where 10 % of the global riverine freshwater volume flows in. Five of the world’s largest rivers convey in the Arctic Ocean (AO) huge quantities of dissolved carbon in the organic (DOC) and inorganic (DIC) form. The response of the coastal ocean to this supply is still highly uncertain, which makes the assessment of air-sea CO2fluxes challenging in this remote region. It is thus timely to gain a better understanding of the impact of terrestrial carbon released by watersheds on air-sea CO2 fluxes in Arctic rivers plumes, especially in a context of global warming. In the present PhD thesis, the ECCO-Darwin ocean-sea ice-biogeochemical model is used to investigate the synoptic to interannual response of the South eastern Beaufort Sea (Western AO) to the Mackenzie River’s carbon exports. The model includes the very first daily terrestrial DOC (tDOC) runoff forcing estimated through merging riverine in situ measurements and coastal remotely sensed data at three major delta outlets, over the last two decades (2000-2019). We find that interannual variability in river discharge modulates localized air-sea CO2flux in the coastal plume with riverine DIC contributing twice as much as riverine DOC to CO2 outgassing. As current knowledge on tDOC remineralization in Arctic plume regions is still uncertain, the range of air-sea CO2 flux variability due to microbial remineralization is estimated to ±0.39 TgC yr−1 in 2009. Other biophysical processes also contribute to the high CO2 flux variability, such as tDOC flocculation (+0.14 TgC yr−1 in gassing) and enhanced plume stratification (+0.35 TgC yr−1 outgassing). To conclude, the work presented here intends to pave the way toward a better representation of the land-to-ocean continuum (LOAC) in regional Arctic models with the aim to improve the simulated carbon cycle in rapidly changing Arctic watersheds and coastal seas
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jourdain, Nicolas. "Simulations climatiques régionales couplées atmosphère - océan - glace de mer en Antarctique." Phd thesis, Université Joseph Fourier (Grenoble), 2007. http://tel.archives-ouvertes.fr/tel-00266564.

Повний текст джерела
Анотація:
Dans le cadre du réchauffement climatique, la prédiction de la hausse du niveau des mers est un défit majeur. La contribution du bilan de masse de surface de l'Antarctique constituerait la seule contribution négative à la hausse du niveau des mers. D'un autre côté, la dynamique de la calotte pourrait réagir de façon non linéaire au changement climatique, et entrainer une accélération et un amincissement de certains glaciers (Meehl et al. 2007). Pour ces deux raisons, il convient de connaître précisément le climat de l'Antarctique. Les Modèles de climat globaux reproduisent mal certain aspects du climat Antarctique : les précipitations sont surestimées à cause de la topographie côtière trop lisse ; le bilan d'énergie en surface est mal représenté car les processus physiques impliquant la neige sont représentés de façon trop grossière. C'est pourquoi nous nous intéressons à la modélisation régionale, qui offre une meilleure résolution et une meilleure représentation des processus physiques.

Le climat de l'Antarctique implique la glace de mer, dont l'extension modifie par exemple l'humidité diponible pour l'atmosphère. Mais l'ensemble de l'océan joue également un rôle, car la formation d'eau dense près des côtes engendre des échanges relativement rapides entre la surface et l'océan profond. C'est pourquoi nous avons choisi de créer un modèle régional couplé atmosphère - glace de mer - océan. Le but de cette thèse est uniquement de développer et d'évaluer un tel modèle.

Pour l'atmosphère, nous utilisons le Modèle Atmosphérique Régional (MAR, Gallee et al. 2005). Ce modèle a été spécialement développé pour les régions polaires. Il se distingue des autres modèles climatiques régionaux par sa représentation élaborée de la neige, et par une représentation interactive de la neige soufflée par le vent. Pour l'océan et la glace de mer, nous utilisons NEMO (Nucleus for European Modeling of the Ocean), constitué de OPA-9 (Océan PArallélisé, Madec 2007) et de LIM-2 (Louvain Ice Model, Fichefet 1997). Le modèle d'océan utilise une paramétrisation élaborée de la diffusion turbulente le long des isopycnes et de la diffusion verticale. Le modèle de glace de mer utilise un modèle thermodynamique à trois couches, des équations dynamiques basées sur la rhéologie visco-plastique. Enfin, MAR et NEMO sont couplés grâce au logiciel OASIS-3 (Valcke et al. 2003). Le modèle résultant est appelé TANGO, pour Triade Atmosphère-Neige, Glace de mer, Océan.

Avant d'analyser des simulations de TANGO, il convient de connaître précisément le comportement de chacun des modèles lorsqu'ils sont forcés par des données. Dans un premier temps, nous testons la sensibilité de MAR à la représentation de la rugosité orographique. En simulant un cas de la littérature, nous montrons que MAR est capable de simuler des cyclones de méso-échelle ; nous montrons ensuite que le rôle des vents catabatiques côtiers dans la cyclogenèse est faible devant le rôle de l'écoulement synoptique, contrairement à ce que conjecturaient les travaux précédents. Comme les vents catabatiques côtiers dépendent fortement de la rugosité orographique des Montagnes Transantarctiques, les polynies de TANGO pourraient en dépendre ; c'est pourquoi nous avons réglé ce paramètre de façon à avoir des vents côtiers en accord avec les relevés des stations météorologiques. Enfin, nous montrons que la fraction de glace de mer a peu d'influence sur la circulation atmosphérique, probablement parce que notre méthode ne modifie pas la position des fronts de glace.

Estimer l'apport du couplage s'avère compliqué, car une partie du comportement de TANGO vient effectivement des rétroactions physiques permises par le couplage, mais une autre partie vient du changement de "forçages". En effet, MAR voit habituellement la glace de mer se SSM/I, et NEMO voit habituellement des champs atmosphériques issus des réanalyses ERA-40 ; dans TANGO, MAR voit donc les défauts de NEMO, et inversement. Pour évaluer la capacité de TANGO à représenter des rétroactions physiques, nous avons donc réalisé un jeu de simulations dans lequel MAR est forcé par les champs de surface de NEMO, et NEMO est forcé par les champs de surface de MAR. Les comparaisons entre ces simulations et les simulations couplées montrent que la couverture de glace de mer de TANGO diffère de celle de NEMO forcé par MAR, ce qui prouve que des rétroactions sont représentées. Dans le détail, nous identifions également une rétroaction impliquant la glace produite dans une polynie à l'automne, et une rétroaction impliquant les précipitations et la température de surface de l'océan.

Finalement, l'ensemble des évaluations de MAR sur l'océan ont permis des améliorations très récentes de MAR : H. Gallée a ainsi amélioré la prise en compte des nuages aux frontières, et les flocons de neige ont été introduits dans le schéma radiatif de façon à mieux simuler les températures de la couche limite sur la calotte. Ceci améliore également le comportement de TANGO. Cette étude souligne également l'importance du couplage, puisque la solution couplée diffère de la solution forcée, toutes paramétrisations étant égales. Nous concluons donc qu'il est nécessaire de poursuivre l'utilisation de TANGO.

Ces travaux ouvrent d'abord des perspectives à court terme, puisqu'il faudra analyser le détail des rétroactions mises en \oe uvre de façon à tenter de mieux comprendre le climat de l'Antarctique. Ensuite, TANGO pourra être utilisé à petite échelle et haute résolution pour l'analyse des polynies et des formations des masses d'eau dense impliquées dans les circulations océaniques profondes. Une autre possibilité sera d'utiliser TANGO à l'échelle de la calotte, de façon à travailler sur la régionalisation du changement climatique en Antarctique. Enfin, à plus long terme, il sera nécessaire de travailler sur le représentation des cavités sous les plate-formes glaciaires dans TANGO.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khodri-Chouchou, Myriam. "Modélisation couplée Océan-Atmosphère-Glace de mer de la réponse climatique aux changements d'insolation du dernier interglaciaire." Paris 6, 2002. http://www.theses.fr/2002PA066420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Merino, Nacho. "Interactions calotte polaire/océan : vers la mise en place d'une modélisation couplée." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAU051/document.

Повний текст джерела
Анотація:
Les prochaines modèles climatiques comprendront un modèle de calotte polaire afin de tenir en compte la dynamique de la glace et les interactions glace-océans dans ses projections. D'une part, l'océan Austral (SO) pilote l'accélération des glaciers de l'Antarctique via une augmentation de la fonte basale des ice shelves. D'autre part, l'accélération de la décharge de glace de l'Antarctic Ice Sheet (AIS) contribue à la montée du niveau de la mer et est susceptible de devenir le plus grand contributeur de la cryosphère d'ici la fin du siècle. En outre, l'adoucissement relié, peut avoir des répercussions importantes sur la glace de mer et sur la formation des eaux profondes. Cependant, on ne sait pas encore comment les modèles d'océan et de calotte polaire des futurs systèmes couplés vont représenter les interactions glace-océan, causes et conséquences du déséquilibre de masse de AIS. Ici, dans ce travail, les différents aspects des modèles de océan et calotte polaire ont été étudiés. Une première étape de cette thèse a été concentrée à la représentation des flux d'eau douce glaciaires dans les modèles océaniques actuels. Basé dans estimations glaciologiques, la fonte basal des ice shelves a été répartie dans une grille de ORCA025, et les taux de production d'icebergs ont été appliqués dans une version améliorée du modèle d'iceberg NEMO-ICB. Cette étude préliminaire a été utilisé pour produire une climatologie d'eau de fonte provenant des icebergs, valable pour forcer les modèles de océan actuels. Ce travail montre l'importance de représenter les flux d'eau de fonte des icebergs lors de la modélisation de la glace de mer, qui peut être obtenu en utilisant notre climatologie. Ces améliorations ont été pris en compte dans l'étude de la réponse du modèle de océan a la perte de masse de AIS. Cette étude considère une perturbation réaliste de l'eau douce glaciaire aussi près que possible de sa représentation dans les futurs modèles couplés ice-sheet/océan. Selon nos résultats, jusqu'à 50% des changements récents de volume de la glace de mer pourrait être causée par le bilan masse de l'AIS. Le forçage en eau douce glaciaire semble être cruciale pour représenter correctement les interactions glace-océan et projeter la glace de mer dans les futurs systèmes couplés. Cependant, l'estimation de l'apport d'eau douce glaciaire dans les modèles climatiques futurs sera fortement affecté par la capacité des modèles de calotte polaire de reproduire les migrations de grounding line des glacières de "marine ice sheets". Les modèles de calotte polaire actuels présentent grandes incertitudes liées aux différents réglages. Dans le contexte des futurs modèles climatiques, nous avons étudié la sensibilité des retraites de la grounding line produites par l'océan à l'application de deux lois de frottement différentes et deux différentes approximations du stress glacier. Les modèle réagit de façon presque similaire aux approximations SSA ou SSA *. Par contre, les différences dans la contribution du glacier à l'élévation du niveau de la mer peuvent être jusqu'à 50% en fonction de la loi de frottement considéré. La loi de friction Schoof, la plus physique, est nettement plus réactif aux perturbations océaniques que la loi Weertman, et devrait être pris en compte dans les systèmes couplés futurs. Ce travail souligne que les incertitudes liées aux estimations des modèles de la calotte glaciaire de migrations de grounding line peuvent contribuer non seulement à des incertitudes du futur niveau de la mer, mais aussi de la glace de mer à travers des interactions glace-océan dans les futures models climatiques. Tel conclusion suggère la nécessité d'améliorer la représentation de la fonte basal des ice shelves et le frottement du glacier, afin d'améliorer les projections climatiques des modèles climatiques, dans lequel la distribution spatiale et saisonnière des eau douce glaciaires peut jouer un rôle important en établir la glace de mer
The next generation of climate models will include an ice-sheet model in order to improve the ice sheet mass balance projections by accounting for the ice dynamics and ice-oceans interactions. On the one hand, the Southern Ocean (SO) is indeed driving the acceleration of the Antarctic outlet glaciers via an increase in the basal melting of the ice shelves. On the other hand, the increasing ice discharge from Antarctic Ice Sheet (AIS) contributes to the current sea level rise and is likely to become the largest cryospheric contributor to sea level rise by the end of the current century. In addition, the related freshening may have significant implications on future sea-ice cover and on bottom water formation. However, it is not clear yet how the ocean and ice-sheet components of future coupled systems will account for the ice-ocean interactions, which are both causes and consequences of the AIS mass imbalance. Here in this work, different aspects of the standalone ocean and ice-sheet components have been investigated. A first step of this thesis has been focused in the representation of the glacial freshwater fluxes in current ocean models. Based on recent glaciological estimates, the ice shelf basal melting fluxes have been spatially distributed in an ORCA025 grid, and the calving rates have been applied into an improved version of the NEMO-ICB iceberg model. This preliminary study has been used to produce a monthly iceberg meltwater climatology, to be used to force current ocean models. This work shows the importance of representing the iceberg meltwater fluxes when modeling sea ice, which can be inexpensively achieve by using our climatology. The improvements in the representation of the glacial freshwater fluxes have been considered in the study of the ocean model response to the Antarctic mass imbalance. This study considers a realistic perturbation in the glacial freshwater forcing as close as possible as it will be represented in future ice-sheet/ocean models. According to our results, up to 50% of the recent Antarctic sea ice volume changes might be caused by the observed decadal AIS mass imbalance rate. Glacial freshwater forcing appears to be crucial to correctly represent the ice-ocean interactions and projecting sea ice cover of future coupled systems. However, the estimation of the glacial freshwater input in future climate models will be strongly dependent upon the capacity of ice-sheet models to reproduce the grounding line migrations of marine ice sheet glaciers. Current ice-sheet models present large uncertainties related to different parametrizations. In the context of the future climate models, we have studied the sensitivity of ocean-driven grounding line retreats to the application of two different friction laws and two different englacial stress approximations. The model responses almost indistinctively to either the SSA or the SSA* englacial stress approximations. However, differences in the contribution of the glacier to the sea level rise can be up to 50% depending on the friction law considered. The more physically constrained Schoof friction law is significantly more reactive to the ocean perturbations than Weertman law and should be considered in future coupled systems. This work underlines that uncertainties related to the ice sheet model estimates of grounding line migrations may not only contribute to uncertainties in sea level projections, but also the sea ice cover through the ice-ocean interaction in future ocean models.This conclusion suggests the need for improving the representation of both the ice shelf basal melting and the glacier interaction with the bedrock, in order to improve the climate projections of future climate models, in which the spatial and seasonal distribution of the glacial freshwater fluxes may play an important role in setting the sea ice cover
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bourgeois, Timothée. "Effets des perturbations anthropiques sur la biogéochimie dans l'océan côtier à l'échelle globale." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV015/document.

Повний текст джерела
Анотація:
L'océan côtier subit la convergence de nombreuses perturbations anthropiques, avec le changement climatique en première ligne. Le réchauffement, l'acidification de l'océan, l'eutrophisation et la désoxygénation se combinent en menaçant les écosystèmes côtiers et les activités humaines associées. Malheureusement, la très forte hétérogénéité spatiale et temporelle de l'océan côtier limite la compréhension des processus biogéochimiques impliqués et leurs réponses face aux perturbations anthropiques. Les bases de données actuelles d'observations côtières sont encore insuffisantes et les modèles biogéochimiques océaniques globaux ont longtemps été inadaptés à l'étude de l'océan côtier global. En effet, la résolution spatiale de ces modèles était trop grossière pour résoudre de manière pertinente les processus de petites échelles. L'augmentation de la puissance de calcul des supercalculateurs permet l'utilisation de grilles de modèle plus fines adaptées à l'étude de l'océan côtier. Dans cette thèse, nous proposons d'étudier l'évolution au cours des dernières décennies de la biogéochimie de l'océan côtier à l'échelle globale à l'aide du modèle couplé physique-biogéochimie NEMO-PISCES. Après une évaluation de la représentation globale de la biogéochimie côtière et du cycle du carbone côtier dans notre modèle océanique, nous estimons le rôle actuel de l'océan côtier dans l'absorption océanique de carbone anthropique et nous étudions l'impact de la perturbation anthropique des apports fluviaux sur la biogéochimie côtière. En utilisant 3 grilles de résolutions spatiales différentes (200 km, 50 km et 25 km), il a été estimé que l'utilisation de la grille de 50 km représente le meilleur compromis entre les trois résolutions testées et que le passage à 25 km ne montre pas d'améliorations significatives des champs biogéochimiques côtiers évalués. Après cette première évaluation, le puits de carbone anthropique de l'océan côtier a été estimé pour la première fois à partir d'un modèle 3D global. L'océan côtier absorberait ainsi seulement 4,5 % du carbone anthropique absorbé par l'océan global pour la période 1993-2012 alors qu'il représente 7,5 % de la surface océanique globale. L'absorption côtière est réduite par l'export limité du carbone anthropique vers l'océan ouvert ne permettant pas de réduire la concentration moyenne de carbone anthropique des eaux côtières au niveau de celle de la couche de mélange de l'océan ouvert. Enfin, les effets de la perturbation anthropique des apports fluviaux sur la biogéochimie côtière ont été jugés limités quant intégrés à l'échelle côtière globale. Cependant, ces perturbations sont très contrastées régionalement. La mer du Nord présente des variations biogéochimiques mineures du fait de la tendance locale modérée appliquée aux apports fluviaux en nutriments, comparée à la mer de Chine de l'Est où la forte augmentation des apports fluviaux provoque d'importants phénomènes de désoxygénation et d'acidification
The coastal ocean suffers from the convergence of multiple anthropogenic stressors with climate change at the forefront. Combined stresses from global warming, ocean acidification, eutrophication and deoxygenation threaten coastal ecosystems and thus their services that humans rely on. Unfortunately, the coastal ocean's large spatiotemporal heterogeneity limits our understanding of the biogeochemical processes involved and their responses to anthropogenic perturbations. The current database of coastal observations remains insufficient, and global biogeochemical ocean models have long been inadequate to the study of the global coastal ocean. Indeed, the spatial resolution of these models has been too coarse to resolve key small-scale coastal processes. However, continual improvements in computational resources now allow global simulations to be made with sufficiently high model resolution that begins to be suitable for coastal ocean studies. In this thesis, we propose to study the evolution of the coastal ocean biogeochemistry at the global scale over recent decades using higher resolution versions of the global physical-biogeochemical model NEMO-PISCES. After evaluating of the global representation of the coastal biogeochemistry in this ocean model, we estimate the current role of the coastal ocean in the ocean uptake of anthropogenic carbon and we study the impact of the anthropogenically driven changes in riverine inputs on the coastal biogeochemistry. From simulations made at 3 different spatial resolutions (200 km, 50 km, 25 km), we esteem that the 50-km model grid offers the best compromise between quality of results and computational cost. The upgrade to 25 km does not appear to provide significant improvement in model skill of simulating coastal biogeochemical fields. After evaluating the model, we provide an estimate of the coastal-ocean sink of anthropogenic carbon, the first study to do so with a global 3-D model. In our simulation, the coastal zone absorbs only 4.5% of the anthropogenic carbon taken up by the global ocean during 1993-2012, less than the 7.5% proportion of coastal-to-global-ocean surface areas. Coastal uptake is weakened due to a bottleneck in offshore transport, which is inadequate to reduce the mean anthropogenic carbon concentration of coastal waters to the average level found in the open-ocean mixed layer. Finally, the anthropogenic perturbation in riverine delivery of nutrients to the ocean has limited impact on the coastal carbon cycle when integrated across all coastal regions, but locally it can induce sharp biogeochemical contrasts. For example, the North Sea shows minor biogeochemical changes following the moderate local trend in nutrient riverine inputs, which is in dramatic contrast to the East China Sea where extensive deoxygenation and acidification are driven by sharp increases in riverine nutrient inputs
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maraldi, Claire. "Modélisation de la dynamique barotrope de l'océan Indien Austral : application à l'altimétrie." Toulouse 3, 2008. http://www.theses.fr/2008TOU30168.

Повний текст джерела
Анотація:
L'avènement de l'altimétrie satellitaire au cours de ces dernières décennies a permis d'observer l'océan global avec des couvertures spatiales et temporelles uniques. Ces données sont d'une très grande richesse pour l'étude de l'océan Austral, qui reste l'océan le moins connu de la planète. Pour permettre une exploitation précise des observations altimétriques, la contribution de l'ensemble de la dynamique haute fréquence de l'océan doit en être préalablement corrigée. Nous utilisons le modèle hydrodynamique aux éléments finis MOG2D/T-UGOm pour simuler la dynamique barotrope de l'océan Indien Austral en réponse à la marée d'une part et aux forçages atmosphériques d'autre part. Un travail préliminaire important de reconstruction de la bathymétrie, élément clef de la modélisation, a été effectué. En particulier, nous avons appliqué une méthode originale combinant des données de sondages sismiques, des mesures d'élévation et la modélisation de la marée pour redéfinir la bathymétrie sous la plate-forme de glace d'Amery. Les deux modèles de réponse barotrope de l'océan ont été validés à l'aide de mesures {\it in situ} et satellitaires d'élévation et de données de courant. La comparaison de nos solutions avec des modèles globaux a permis de mettre en évidence l'apport de la modélisation régionale en région côtière et sous la plate-forme d'Amery. Les modèles développés ont ensuite été étudiés. L'analyse de la simulation de marée a permis d'examiner et de comprendre la dynamique de la marée dans la région d'étude. Nous avons ensuite effectué un bilan d'énergie afin d'évaluer la consistance du modèle et de distinguer les régions de forte dissipation. Par ailleurs, grâce aux résultats de la modélisation avec le forçage météorologique, nous avons pu étudier la circulation barotrope de l'océan Indien Austral, caractériser ses modes de variabilités et quantifier l'impact des forçages mis en jeu. Enfin, l'analyse conjointe des vitesses de ces deux simulations, des courants géostrophiques baroclines et des courants d'Ekman a permis d'estimer le mélange latéral sur le plateau Kerguelen. Nous avons mis en évidence que ce mélange, principalement dû aux vitesses de marée, pouvait expliquer les limites de l'extension de la croissance phytoplanctonnique observée chaque année sur le Nord du plateau. Les modèles de la dynamique haute fréquence ont finalement été appliqués à l'étude des signaux altimétriques. Ils ont d'abord été utilisés en tant qu'indicateur pour connaître les régions de génération de marée interne. L'analyse des mesures altimétriques dans ces régions a permis de caractériser la signature de surface de ces ondes et d'estimer l'énergie dissipée par ce processus. Les solutions barotropes ont également servi à corriger les mesures altimétriques des processus haute-fréquence aliasés. L'impact des corrections régionales a été quantifié dans les régions côtières et sur la plate-forme de glace d'Amery. Les mesures altimétriques corrigées nous ont alors permis d'étudier la dynamique océanique locale autour des îles Kerguelen ainsi qu'un amincissement de la plate-forme de glace d'Amery en son milieu pendant la période d'acquisition ENVISAT
Seismic soundings, ice shelf elevation measurements and barotropic tide modelling, has been applied to estimate the bathymetry beneath the Amery Ice Shelf more accurately. The barotropic models have been validated by comparison with in situ and altimetric elevation measurements and current meter data. The comparison of our solutions with global models reveals the important role of regional modelling in coastal areas and beneath the floating ice shelves. The hydrodynamic model outputs have then been analysed. Further analysis of our regional tidal simulation has allowed us to examine and understand the tidal dynamics in the study region. We have then computed the energy budget to assess the model consistency and distinguish high dissipation sub-regions. In addition, using ECMWF atmospheric forced modelling, we could study barotropic circulation in the Southern Indian Ocean, characterize its modes of variability and quantify the impact of various forcing terms brought into play. Finally, the joint analysis of current velocities from the two simulations, baroclinic geostrophic and Ekman currents, has allowed us to estimate lateral mixing over the Kerguelen Plateau. Predominantly due to tidal velocities, this mixing explained the horizontal extension limits of the annual phytoplanktonic bloom observed over the northern plateau. Models of high frequency dynamics have also been applied to study altimetric signals. Firstly, they have been used as indicators to define regions of internal tide generation. By analysing altimetric measurements in these regions, we have characterized the sea surface signature of those waves, and estimated the energy dissipated through this process. The regional barotropic solutions have then served to correct altimetric measurements from aliased high frequency processes. The impact of these corrections has been quantified in coastal regions and beneath the Amery Ice Shelf. The corrected altimetric measurements have allowed us to study the local oceanic dynamics around the Kerguelen Islands. Over the Amery Ice Shelf, it has allowed us to observe a thinning of the floating shelf over its central part during the ENVISAT period
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lebrun, Marion. "De l'interaction entre banquise, lumière et phytoplancton arctique." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS524.

Повний текст джерела
Анотація:
Une des sources majeures d'incertitudes à propos de nos connaissances sur les mécanismes gouvernant la croissance du phytoplancton dans les régions englacées arctiques est liée aux interactions entre banquise, lumière et phytoplancton arctique. L'objectif de cette thèse est de mieux comprendre ces interactions et de révéler les sources principales d'incertitude dans les modèles du système Terre. Je montre d'abord que la période d'eau libre arctique est majoritairement contrôlée par le cycle solaire et par les échanges thermodynamiques entre océan et atmosphère durant l'été. Selon les projections climatiques, elle devrait augmenter et se décaler vers l'automne. J'évalue ensuite le schéma de transfert radiatif du modèle d'océan, NEMO, dans la zone de banquise arctique. Je montre que le rayonnement transmis sous la banquise est aujourd'hui fortement sous-estimé, en raison notamment d'une surestimation de l'atténuation par la neige et par les premiers centimètres de l'océan couvert de banquise. Je définis, enfin, un diagnostic pour décrire le cycle saisonnier de la lumière disponible dans la zone de glace, et j'étudie son impact sur le phytoplancton simulé par le modèle biogéochimique, PISCES. Il reste néanmoins, de larges incertitudes pour comprendre la relation entre ce diagnostic et la croissance du phytoplancton
Large weaknesses remain considering our understanding of the drivers of phytoplankton growth in Arctic sea ice zone, especially due to large uncertainties in the interactions between sea ice, light and phytoplankton.The aim of this PhD thesis is to better understand these interactions and to highlight the main uncertainties considering these interactions in Earth System Models. I first show that the ice-free period is mainly led by the solar irradiance cycle and by the ocean-atmosphere thermodynamic exchanges during summer. It is consequently projected to extend into fall in the future. Then, I evaluate the radiative transfer scheme in the ocean model NEMO, in arctic sea ice zone. I show that NEMO largely underestimates the transmitted shortwave radiation in ice-covered waters, especially due to the overestimation of the snow and the first level of the ocean attenuation. I finally define a diagnostic to describe available light seasonality in the sea ice zone and I study the impact of this diagnostic on simulated phytoplankton in the bio-geochemistry model PISCES. However, large uncertainties remain in the study of the relation between this diagnostic and the phytoplankton growth. This is especially due to the non-linearity between available light and phytoplankton growth and also due to the lake of knowledge about the phytoplankton physiology
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dumont, Isabelle. "Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210300.

Повний текст джерела
Анотація:

The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of phytoplanktonic blooms at time of ice melting.

The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense.

The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae.

Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice.

In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10 µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community.

Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./


L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace.

Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés :la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été.

La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur, températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons.

De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques.

Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.


Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dulaquais, Gabriel. "Cycle biogéochimique du cobalt en domaines océaniques contrastés : l'Atlantique Ouest, la Mer Méditerranée et la Mer Noire." Thesis, Brest, 2014. http://www.theses.fr/2014BRES0035/document.

Повний текст джерела
Анотація:
Le cobalt est un métal de transition essentiel pour la croissance du phytoplancton, et en particulier pour les cyanobactéries qui ont un besoin absolu pour cet élément. En étant l'atome central de la cobalamine (vitamine B12), le cobalt est aussi indirectement essentiel aux eucaryotes marins qui ne synthétisent pas cette vitamine. Cet élément peut se substituer au zinc et au cadmium au sein de la carbonique anhydrase, l’enzyme permettant la fixation du dioxyde de carbone dans la cellule phytoplanctonique. Il pourrait intervenir également dans l’activation de l’alcaline phosphatase. De par ses implications biologiques, le cobalt pourrait jouer un rôle important dans le cycle océanique du carbone. Cependant, les connaissances du cycle biogéochimique du cobalt en milieu marin sont encore largement limitées. Ce travail de thèse de doctorat s’inscrit dans le cadre du programme international GEOTRACES au sein duquel le cobalt y est désigné comme un élément clé de la biogéochimie marine. Au cours de ces travaux, l’un des plus larges jeux de données, rapporté à ce jour, incluant les différentes fractions du cobalt (soluble, dissous, particulaire, spéciation organique) a été produit. Les données recueillies proviennent d’échantillons collectés au sein de domaines océaniques contrastés. Une stratégie de prélèvement à haute résolution et à grande échelle a été mise en place dans diverses régions océaniques du monde lors de campagnes à la mer. Ainsi pour la première fois, une cartographie du cobalt dissous (DCo) et particulaire (PCo) a pu être définie pour l’ensemble de l’Atlantique Ouest, ainsi que des bassins Méditerranéens et de la Mer Noire. Ce jeu de données a pu être produit par l’utilisation de différentes techniques d’analyses (Flow-Injection-Analysis and Chemiluminescence detection ; Voltamétrie, SF-ICP-MS) aux limites de détections basses permettant la détermination de cet élément, présent dans l’eau de mer à des concentrations de l’ordre du pico-molaire (10-12 M). Le cobalt est en effet l’un des micro-nutritifs le moins abondant dans l’eau de mer. Les concentrations les plus faibles en DCo ont été observées dans les eaux oligotrophes de l’Atlantique Ouest (< 15 pM) alors que les plus élevées sont enregistrées dans la couche supérieure des eaux sulfidiques de la Mer Noire (> 5 nM). La distribution verticale du cobalt dissous variait selon les systèmes biogéochimiques. Ainsi, le profil vertical est de type nutritif comme les phosphates dans les eaux de surface de l’océan Atlantique. Les concentrations y augmentent avec la profondeur, jusqu’à un maximum relatif dans les eaux intermédiaires, puis décroissent dans l’océan profond. Ce comportement contraste avec le profil observé pour l’ensemble des bassins de la Mer Méditerranée. Dans cette mer, les fortes concentrations en DCo mesurées en surface (100-300 pM) diminuent en effet avec la profondeur. En Mer Noire, la distribution verticale varie selon les conditions d’oxygénation des eaux. Les concentrations y sont extrêmement élevées par comparaison aux autres systèmes marins. […]
No
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barton, Benjamin I. "Climate change in the Barents Sea : ice-ocean interactions, water mass formation and variability." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0053.

Повний текст джерела
Анотація:
L’étendue hivernale de la banquise en mer de Barents n’a cessé de diminuer, et un certain nombre d’études suggèrent que cette diminution pourrait coïncider avec des hivers très froids en Europe et Asie. L’eau Atlantique (AW) transportée vers la mer de Barents, se réchauffe. En mer de Barents, l’AW se transforme en Barents Sea Water (BSW), plus froide et moins salée. Etudier cette dernière nous permet d’en savoir plus sur l’influence de la saisonnalité de la banquise Arctique sur la stratification et la circulation de l’océan.Tout d’abord, nous utilisons des observations satellites pour localiser le Front Polaire (PF) qui matérialise la limite entre la BSW et l’eau Arctique. Nous établissons que l’étendue de la banquise était indépendante du PF jusqu’au milieu des années 2000, jusqu’à ce que le réchauffement de l’AW commence à limiter l’extension de la banquise hivernale au sud du front. Ensuite, en combinant données satellites et in situ, nous montrons que l’on peut surveiller ‘à distance’ les propriétés de la BSW : les variations de la température de surface de l’océan sont ainsi corrélées à celles du contenu en chaleur de la mer de Barents qui, associées à celles de la hauteur stérique, permettent également d’estimer son contenu en eau douce.Pour finir, nous utilisons un modèle à haute résolution pour calculer les bilans de volume, transport et flux des masses d’eau. Le volume de la BSW atteint un minimum en 1990 et 2004 : l’étendue de glace de mer hivernale ayant fondue l’été suivant était alors conséquente, résultant notamment d’une masse d’AW plus froide. L’événement de 2004 a permis une entrée massive d’AW, de plus en plus chaude, dans la mer de Barents
Winter sea ice has declined in the Barents Sea and there is growing evidence that the low sea ice here coincides with cold, winter surface air temperature in Europe and Asia. Atlantic Water (AW) transported into the Barents Sea is warming and its temperature variability is correlated with variability in sea ice extent. As AW extends into the Barents Sea it is modified into a cooler, fresher water mass called BarentsSea Water (BSW). There are limited observations of BSW despite its importance in the Arctic Ocean system, leading to the question, how does the seasonal sea ice impact ocean stratification and mean flow?First, satellite observations are used to find the Polar Front, a water mass boundary between BSW and fresher Arctic Water to the north. The sea ice extent was found to be independent of the Polar Front until the mid-2000s when warming AW prevented the extension of winter sea ice south of the front.Second, by combining satellite and in situ data, it is shown that sea surface temperature can approximate heat content in the Barents Sea. Using heat content with satellite steric height, freshwater content can also be estimated, showing the potential for remote monitoring of BSW properties.Third, a high-resolution model is used to calculate the volume, transport and flux budgets within the AW and BSW domain south of the Polar Front. The model shows BSW volume minimum years in 1990 and2004. Both events were preceded by extensive winter sea ice and substantial summer sea ice melt, a result of preceding, cool AW. The event in 2004 was more extreme and allowed warming AW a greater volume in the Barents Sea
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії