Добірка наукової літератури з теми "Modeling of hydroacoustic signals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modeling of hydroacoustic signals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Modeling of hydroacoustic signals"

1

Nejevenko, E. S., and A. A. Sotnikov. "Adaptive modeling for hydroacoustic signal processing." Pattern Recognition and Image Analysis 16, no. 1 (January 2006): 5–8. http://dx.doi.org/10.1134/s1054661806010020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuznetsov, Mikhail Yu, and Yury A. Kuznetsov. "Hydroacoustic methods and tools for fish stock assessment and fishery maintenance Part 2. Methods and tools of fishery biohydroacoustics." Izvestiya TINRO 184, no. 1 (March 30, 2016): 264–94. http://dx.doi.org/10.26428/1606-9919-2016-184-264-294.

Повний текст джерела
Анотація:
Studies on influence of hydroacoustic fields on behaviour of commercial species and using of hydroacoustic tools for management of fish and squids behavior to increase the fishing efficiency are overviewed. The methods and means of fisheries biohydroacoustics are considered critically and the reasons of their unsatisfactory using in fishery are analyzed. Sounds with a certain spectrum and level are still applied for influence on fish behaviour without sufficient scientific and technical substantiation, so a complex approach to development of effective hydroacoustic tools for remote control of fish movement is necessary. Results of studies on acoustic reception and acoustic activity for schooling physostomous fishes are presented. Spectral-power and temporal parameters of the sounds and their frequency differentiation by fish size are determined. Sound-generating mechanisms of fish are considered and signal significances of the sounds radiated by fish are recognized. Stereotypes of acoustic behaviour are revealed for toothed whales during their hunting upon fish: these predatory cetaceans have special acoustic manipulators able to generate signals for concentration and holding the fish, adapted for hearing system of the prey. Results of hydrobionic modelling of organs and mechanisms for sound generation of marine animals and their technical realization in hydroacoustic devices are presented. The developed devices allow to generate underwater pulse sound signals simulating biological signals of certain physostomous fish species and predatory cetaceans (dolphins and killer whales). Efficiency of these simulating signals influence on behaviour of fish is proved by behavioral experiments and fishing tests. Applications of these devices for various fisheries are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kryukov, Yu S., and E. O. Cherepanov. "SOFTWARE FOR PROCESSING HYDROACOUSTIC SIGNALS, MODELING AND REMOTE EVALUATION OF THE COORDINATES OF THE TRIGGERING OF UNDERWATER PULSED SOURCES." Journal of Oceanological Research 46, no. 2 (October 18, 2018): 37–46. http://dx.doi.org/10.29006/1564-2291.jor-2018.46(2).4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamama, Islam, Masa-yuki Yamamoto, Mohamed N. ElGabry, Noha Ismail Medhat, Hany S. Elbehiri, Adel Sami Othman, Mona Abdelazim, Ahmed Lethy, Sherif M. El-hady, and Hesham Hussein. "Investigation of near-surface chemical explosions effects using seismo-acoustic and synthetic aperture radar analyses." Journal of the Acoustical Society of America 151, no. 3 (March 2022): 1575–92. http://dx.doi.org/10.1121/10.0009406.

Повний текст джерела
Анотація:
Chemical explosions are ground truth events that provide data, which, in turn, can enhance the understanding of wave propagation, damage assessment, and yield estimation. On 4 August 2020, Beirut, Lebanon was shocked by a catastrophic explosion, which caused devastating damage to the Mediterranean city. A second strong chemical explosion took place at the Xiangshui, China chemical plant on 21 March 2019. Both events generated shock waves that transitioned to infrasound waves, seismic waves, as well as hydroacoustic signals with accompanying T-phases in the case of the Beirut event. In this work, the seismo-acoustic signatures, yields, and associated damage of the two events are investigated. The differentiainterferometry synthetic aperture radar analysis quantified the surface damage and the estimated yield range, equivalent to 2,4,6-trinitrotoluene [C7H5(NO2)3] (TNT), through a “boom” relation of the peak overpressure was evaluated. Infrasound propagation modeling identified a strong duct in the stratosphere with the propagation to the west in the case of the Beirut-Port explosion. In the case of the Xiangshui explosion, the modeling supports the tropospheric propagation toward the Kochi University of Technology (KUT) sensor network in Japan. Although the Beirut yield (202–270 ± 100 tons) was slightly larger than the Xiangshui yield (201 ± 83.5 tons), the near-source damage areas are almost the same based on the distribution of damaged buildings surrounding the explosions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ZAITSEVA, Irina N. "ERROR ESTIMATION OF THE ALGORITHM FOR THE PHASE SHIFT DEFINITION OF HARMONIC SIGNALS IN THE TIMELESS THAN THE SIGNAL PERIOD USING STOCHASTIC SAMPLING." Periódico Tchê Química 17, no. 36 (December 20, 2020): 213–22. http://dx.doi.org/10.52571/ptq.v17.n36.2020.229_periodico36_pgs_213_222.pdf.

Повний текст джерела
Анотація:
Determining the parameters of a harmonic signal is one of the most common types of measurements in radio engineering, communication engineering, electronics and automation systems. The research and development of new methods for measuring the harmonic signal parameters are relevant. This work studied algorithm errors for determining the phase shift of harmonic signals using stochastic sampling. The relevance of this study is dictated by increasing requirements for the accuracy and speed of measuring equipment, the reduction of time it takes to decide on the presence of a signal while searching for it, that make it necessary to use statistically optimal methods for measuring signal parameters. The work aimed to develop an algorithm and estimate its errors for the possibility of practical implementation of the algorithm for processing infra-lowfrequency radio signals during stochastic sampling. According to the uniform distribution law, the instantaneous values in each sample of the signals under investigation are based on stochastic sampling in time. Mathematical modeling of algorithm errors for determining the phase shift of signals with harmonics, and depending on harmonics compared to the first (main) harmonic of the signal under investigation during the sampling by real analog-to-digital converters have been carried out. The obtained values of the algorithm errors for determining the phase shift of the main harmonic are within an acceptable range (30%); at harmonics amplitudes (up to the 3rd harmonic) within 20%. The computing experiment results for estimating the algorithm errors confirm the possibility of obtaining high accuracy in determining the phase shift of harmonic signals. This algorithm can be used for processing infra-low-frequency radio signals with sufficient accuracy in acoustics, hydroacoustics, seismic acoustics, underwater, and underground communication.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alexandrov, V., A. Buyanov, L. Markova, and M. Sivers. "Researching Digital Methods of Generation Signals of Hydroacoustic Phased Antenna Grids." Proceedings of Telecommunication Universities 7, no. 1 (March 31, 2021): 42–53. http://dx.doi.org/10.31854/1813-324x-2021-7-1-42-53.

Повний текст джерела
Анотація:
Solving tasks of creation, correction and parametric control of signals excitation hydroacoustic phased antenna grids is actual problem of creating multichannel generated devices, based on switch-mode amplifiers with pulse-width modulation. In this article were reviewed correction methods output signals of hydroacoustic transmission paths, periodic pulse sequence creation and parametric voltage level control of excitation channels of phased antenna grid with abrupt decrease impedance of hydroacoustic converters. Was shown the perspective implementation digital technologies for improvement parameters modes of hydrolocation with deterministic library of signals. Presented digital control methods of output signals in hydroacoustic transmission paths are characterized by scientific novelty and originality of the proposed technical decisions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kasatkin, B. A., N. V. Zlobina, S. B. Kasatkin, and G. V. Kosarev. "Spectral-Correlation Signal Processing in the Infrasonic Frequency Range." IOP Conference Series: Earth and Environmental Science 988, no. 3 (February 1, 2022): 032065. http://dx.doi.org/10.1088/1755-1315/988/3/032065.

Повний текст джерела
Анотація:
Abstract The article discusses hydroacoustic receiving systems, consisting of combined receivers, and the processing of the received hydroacoustic signals. Each module of the sonar system has four channels for receiving information. Spectral processing was carried out using sixteen information parameters, which made it possible to achieve the maximum noise immunity of the receiving system. Correlation processing of signals confirmed the high correlation of signals on the elements of the receiving hydroacoustic system.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Butyrskiy, Evgeniy, N. V. Mercachev, and Vitaliy Rahuba. "Spectral method of forming complex hydroacoustic signals." National Security and Strategic Planning, no. 2 (August 15, 2021): 38–51. http://dx.doi.org/10.37468/2307-1400-2021-2-38-51.

Повний текст джерела
Анотація:
The article discusses the problem of synthesis of complex broadband signals in the spectral area. It is shown that the formation of complex broadband signals in the spectral area allows to determine the classes of signals that have good resolution in range and speed. Mathematical models of uncertainty functions for polyharmonic and strip signals are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seletkov, V. L. "Methods of spectral identification of hydroacoustic signals." Radioelectronics and Communications Systems 51, no. 6 (June 2008): 335–38. http://dx.doi.org/10.3103/s0735272708060083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sknarya, Anatoly V., Anatoly A. Razin, Sergey A. Toshchov, and Aleksey I. Demidov. "ULTRA WIDEBAND SOUNDING SIGNALS IN HYDROACOUSTIC SYSTEMS." Radioelectronics. Nanosystems. Information Technologies 10, no. 2 (October 2018): 209–12. http://dx.doi.org/10.17725/rensit.2018.10.209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Modeling of hydroacoustic signals"

1

Дудко, Андрій Володимирович. "Модуль генерації гідроакустичного сигналу в плоско-паралельному хвилеводі". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/28408.

Повний текст джерела
Анотація:
Метою дипломної роботи є створення програмного продукту для генерації гідроакустичного сигналу в плоско-паралельному хвилеводі променевим методом. Об’єктом дослідження є способи та алгоритми моделювання сигналів. Було виконано огляд існуючих програмних застосунків для моделювання сигналів та ознайомитися із проблемами моделювання гідроакустичних сигналів, розроблено програмний продукт для генерації гідроакустичних сигналів, який реалізовано методом уявних джерел для розрахунку поля тиску в плоско-паралельному хвилеводі, даний метод відноситься до променевих моделей. Створена програмний продукт може бути використаний, як частина системи для моделювання гідроакустичних об’єктів та для наукових досліджень. Загальний обсяг роботи: 67 сторінок, 19 ілюстрацій, 17 бібліографічних посилань та 3 додатки.
The purpose of the thesis is to create a program product for generating a hydroacoustic signal in a plane-parallel waveguide beam method. The objects of research are the methods and algorithms of signal simulation. An overview of the existing software applications for simulation of signals and the problems of modeling of hydroacoustic signals was performed, the program software of generation hydroacoustic signals, implemented by the imaginary sources for calculating the field of pressure in a plane-parallel waveguide, was implemented, this method belongs to beam models. The created program product can be used as part of the system for modeling hydroacoustic objects and for scientific research. Total volume of work: 67 pages, 19 illustrations, 17 bibliographic references and 3 attachments.
Целью дипломной работы является создание программного продукта для генерации гидроакустических сигналов в плоско-параллельном волноводе лучевым методом. Объектом исследования являются способы и алгоритмы моделирования сигналов. Было выполнено обзор существующих программных приложений для моделирования сигналов и ознакомиться с проблемами моделирования гидроакустических сигналов, разработано программный продукт для генерации гидроакустических сигналов, который реализован методом мнимых источников для расчета поля давления в плоско-параллельном волноводе, данный метод относится к лучевым моделям. Созданная программа может быть использована как часть системы для моделирования гидроакустических объектов и для научных исследований.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Тимофеева, М. А., Віктор Васильович Авраменко, Виктор Васильевич Авраменко та Viktor Vasylovych Avramenko. "Разработка компьютерной системы распознавания гидроакустических сигналов и моделирование ее работы". Thesis, Изд-во СумГУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/20932.

Повний текст джерела
Анотація:
Разработан алгоритм и компьютерная программа для распознавания судна по текущему значению анализируемого гидроакустического сигнала. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/20932
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Starzl, Ravi. "Computational Modeling of Immune Signals." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/339.

Повний текст джерела
Анотація:
The primary obstacle to enabling wide spread adoption of composite tissue transplantation, as well as to improving long term solid organ transplant outcomes, is establishing a personalized medication regimen optimizing the balance between immunosuppression and immune function the individual minimum effective level of immunosuppression. Presently, the clinical gold standard for monitoring immune function is histologic inspection of biopsy for tissue damage, or monitoring blood chemistry for signs of organ failure. These trailing indicators reflect damage that has already accumulated, and are of little use in proactively determining the immunologic state of a patient. Samples collected from small animal surgical models were used to quantify the amount of immune signaling protein present (cytokines and chemokines) under various experimental conditions. Patterns in protein expression that reliably discriminate amongst the groups were then investigated with statistical inference methods such as the logistic classifier, decision tree, and random forest, operating in both the original feature space and in transformed feature spaces. This work demonstrates computational methods are effective in elucidating and classifying cytokine profiles, allowing the detection of rejection in composite tissue allografts well in advance of the current clinical gold standard, and shows that the methods can be effective in solid organ contexts as well. This work further determines that cytokine patterns of inflammation associated with rejection are specific to the structure and composition of the tissue in which they occur, and can be distinguished from immune signaling patterns associated with unspecific inflammation, wound healing, or immunosuppressed tissue. Clinical translation of these findings may provide novel computational tools that enable physicians to design personalized immunosuppression strategies for patients. The methods described in this work also provide information that can be used to investigate the biological basis for the observed immune signaling patterns. Further development may provide a computational framework for identifying novel therapeutic strategies in other pathologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

VanDerKamp, Martha M. "Modeling and classification of biological signals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1992. http://edocs.nps.edu/npspubs/scholarly/theses/1992/Dec/92Dec_VanDerKamp.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marrow, Marcus. "Detection and modeling of 2-dimensional signals /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3137227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xu, Zhen. "Modeling SAR signals and sensors using VHDL." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06112009-063128/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Aiping. "Brain connectivity network modeling using fMRI signals." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58126.

Повний текст джерела
Анотація:
Functional magnetic resonance imaging (fMRI) is one of the most popular non-invasive neuroimaging technologies, which examines human brain at relatively good spatial resolution in both normal and disease states. In addition to the investigation of local neural activity in isolated brain regions, brain connectivity estimated from fMRI has provided a system-level view of brain functions. Despite recent progress on brain connectivity inference, there are still several challenges. Specifically, this thesis focuses on developing novel brain connectivity modeling approaches that can deal with particular challenges of real biomedical applications, including group pattern extraction from a population, false discovery rate control, incorporation of prior knowledge and time-varying brain connectivity network modeling. First, we propose a multi-subject, exploratory brain connectivity modeling approach that allows incorporation of prior knowledge of connectivity and determination of the dominant brain connectivity patterns among a group of subjects. Furthermore, to integrate the genetic information at the population level, a framework for genetically-informed group brain connectivity modeling is developed. We then focus on estimating the time-varying brain connectivity networks. The temporal dynamics of brain connectivity assess the brain in the additional temporal dimension and provide a new perspective to the understanding of brain functions. In this thesis, we develop a sticky weighted time-varying model to investigate the time-dependent brain connectivity networks. As the brain must strike a balance between stability and flexibility, purely assuming that brain connectivity is static or dynamic may be unrealistic. We therefore further propose making joint inference of time-invariant connections and time-varying coupling patterns by employing a multitask learning model. The above proposed methods have been applied to real fMRI data sets, and the disease induced changes on the brain connectivity networks have been observed. The brain connectivity study is able to provide deeper insights into neurological diseases, complementing the traditional symptom-based diagnostic methods. Results reported in this thesis suggest that brain connectivity patterns may serve as potential disease biomarkers in Parkinson's Disease.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Velasco, Solano Carlos Hernando. "ARMA modeling of signals in the time domain." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23820.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
This thesis develops an iterative algorithm for the design of ARMA models of signals in the time domain. The algorithm is based on optimization techniques, particularly a gradient technique known as the restricted step method is used. The new algorithm is called the iterative Prony method, and the results obtained using this new method are compared to those obtained using the iterative prefiltering algorithm. The thesis shows that the performance of the iterative Prony method is in most of the cases comparable or superior to that of the iterative prefiltering algorithm.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lam, Warren Michael. "Modeling algorithms for a class of fractal signals." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/31034.

Повний текст джерела
Анотація:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1992.
Includes bibliographical references (leaves 86-87).
by Warren Michael Lam.
M.S.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Waghray, Rasagnya. "EXPLORING REDUCED TRAFFIC SIGNALS USING AGENT BASED MODELING." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/372.

Повний текст джерела
Анотація:
The need for measures to reduce congestion in metropolitan traffic has been a pressing concern as citizens' cluster in larger cities with the immediate side effect of an increase in traffic demand. A functioning society depends on the mobility provided by the transportation network to enable its members to participate in essential activities such as production, consumption, communication, and recreation. However, it is necessary for a society to introduce congestion-relief measures for improved quality of life, the environment, and maintained safety of the citizens. The project has three components: 1. An interface, which models a road network and tools to describe data supplied to the network. 2. A simulation interface to observe the model run through time and produce suitable results for the naked streets and to find an improved traffic simulation for the cities. 3. Mathematical modeling for assessment of the pedestrian accident risk and their safety. The traffic is designed and implemented using agent-based modeling (ABM) techniques and I have used NetLogo as my testbed (Wilensky, 2003). Shared Space is not defined by the design or configuration of the environment. Design and detailing are important, but only as a catalyst for changing the way in which people interact within the public spaces. Design standards are not adequate. Even if you follow all design guidelines, it does not guarantee that the space will meet the requirements. Departing from established practice requires determination, careful thought and observation, and the courage to explore and refine novel solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Modeling of hydroacoustic signals"

1

VanDerKamp, Martha M. Modeling and classification of biological signals. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

I︠A︡roshchuk, I. O. Metod statisticheskogo modelirovani︠i︡a v zadachakh gidroakustiki =: Statistical modeling method for hydroacoustic problems. Vladivostok: Dalʹnauka, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Solano, Carlos Hernando Velasco. ARMA modeling of signals in the time domain. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Devasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling. 2nd ed. Boston, MA: Springer US, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Philippe, Müllhaupt, and SpringerLink (Online service), eds. Advances in the Theory of Control, Signals and Systems with Physical Modeling. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Devasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3531-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lévine, Jean, and Philippe Müllhaupt, eds. Advances in the Theory of Control, Signals and Systems with Physical Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16135-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Devasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling. Boston, MA: Springer US, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Signals and systems in biomedical engineering: Signal processing and physiological systems modeling. New York: Kluwer Academic/Plenum Publishers, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Feliu, Sebastián. Modelado e identificación de procesos de corrosión: Análisis de la respuesta a señales eléctricas = Modeling and identification of corrosion processes : response to electric signals. Madrid: Consejo Superior de Investigaciones Científicas, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Modeling of hydroacoustic signals"

1

Narandžić, M., A. Hong, W. Kotterman, R. S. Thomä, L. Reichardt, T. Fügen, and T. Zwick. "Channel Modeling." In Signals and Communication Technology, 15–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17496-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ali, Syed Riffat. "Hardware Reliability Modeling." In Signals and Communication Technology, 29–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01647-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salam, Abdul, and Usman Raza. "Wireless Underground Channel Modeling." In Signals in the Soil, 61–121. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50861-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Watanabe, Kento, and Masataka Goto. "Atypical Lyrics Completion Considering Musical Audio Signals." In MultiMedia Modeling, 174–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67832-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cohen Tenoudji, Frédéric. "Parametric Modeling of Random Signals." In Modern Acoustics and Signal Processing, 529–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42382-1_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Healy, Graham F., Cathal Gurrin, and Alan F. Smeaton. "Informed Perspectives on Human Annotation Using Neural Signals." In MultiMedia Modeling, 315–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27674-8_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kovačević, Branko, Milan Milosavljević, Mladen Veinović, and Milan Marković. "Speech Signal Modeling." In Robust Digital Processing of Speech Signals, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53613-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gruhn, Rainer E., Wolfgang Minker, and Satoshi Nakamura. "Pronunciation Variation Modeling in the Literature." In Signals and Communication Technology, 25–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19586-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Oestges, Claude, Nicolai Czink, Philippe De Doncker, Vittorio Degli-Esposti, Katsuyuki Haneda, Wout Joseph, Martine Liénard, et al. "Radio Channel Modeling for 4G Networks." In Signals and Communication Technology, 67–147. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2315-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, En-Bing, Megan Haske, Marilyn Smith, and Darren Sowards. "Wavelet Analysis of ECG Signals." In Multiscale Signal Analysis and Modeling, 233–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4145-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Modeling of hydroacoustic signals"

1

Dushin, Sergey V. "Modeling of a High-Frequency Hydroacoustic Communication Channel in Shallow Water of the Black Sea." In 2020 22th International Conference on Digital Signal Processing and its Applications (DSPA). IEEE, 2020. http://dx.doi.org/10.1109/dspa48919.2020.9213278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burdinsky, I. N., I. V. Karabanov, and A. S. Mironov. "Hydroacoustic signals of AUV data measuring systems." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mironov, A. S., and E. S. Fomina. "Processing Hydroacoustic Signals in Systems for Sonar Surveying." In 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2018. http://dx.doi.org/10.1109/fareastcon.2018.8602891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Falco, Anatoly I., and Maxim S. Shushnov. "Reception of Signals with Code Division in Hydroacoustic Channels." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Klionskiy, D. M., D. I. Kaplun, V. V. Gulvanskiy, D. V. Bogaevskiy, S. A. Romanov, and S. V. Kalincev. "Application of harmonic wavelets to processing oscillating hydroacoustic signals." In 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). IEEE, 2017. http://dx.doi.org/10.1109/piers-fall.2017.8293563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Burdinskiy, Igor N., Andrey S. Mironov, and Anton V. Myagotin. "Measuring system for the registration of pseudo-noise hydroacoustic signals." In 2008 9th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE). IEEE, 2008. http://dx.doi.org/10.1109/apeie.2008.4897059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Burdinskiy, I. N., A. S. Mironov, and A. V. Myagotin. "Measuring system for the registration of pseudo-noise hydroacoustic signals." In 2008 9th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE). IEEE, 2008. http://dx.doi.org/10.1109/apeie.2008.4897134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pisarev, Ivan A., Elena E. Kotova, Andrei S. Pisarev, and Natalia V. Stash. "Structure of knowledge base of methods for processing hydroacoustic signals." In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2018. http://dx.doi.org/10.1109/eiconrus.2018.8317290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Klionskiy, D. M., D. I. Kaplun, V. V. Geppener, and A. S. Voznesenskiy. "Simulator of Hydroacoustic Signals for a Complex System of Underwater Environment." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhi-Bin, Xu, and Lin Xue-Yuan. "Modeling Study of Hydroacoustic Channel Based on Ray Model." In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Modeling of hydroacoustic signals"

1

Tolstoy, M., and D. Bohnenstiehl. Location, Characterization and Quantification of Hydroacoustic Signals in the Indian Ocean. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Steer, M. Advanced Modeling of Mixed Signals Systems. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada457819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barrios, Amalia E., Veena Gadwal, and Richard Sprague. Modeling RF Digital Signals for Communications Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Margoliash, Daniel. Modeling Temporal Dynamics in the Classification of Auditory Signals. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada267472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kohlmorgen, L. R., S. Coers, K. Bischof, I. Kröncke, and A. Bartholoma. Differences in hydroacoustic backscatter signals and epifauna growth in a stony and coarse grain habitat ("Helgolaender Steingrund", German Bight, North Sea). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Larmat, Carene, Marcel Remillieux, Lucie Rolland, and Philippe Lognonne. W15_ionisphere “3D modeling and inversion of ionospheric signals driven from below by earthquakes and tsunami". Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Delgado, Jaime Fernando, and Müjdat Çetin. Modeling differences in the time-frequency representation of EEG signals through HMM’s for classification of imaginary motor tasks. Sabanci University, May 2011. http://dx.doi.org/10.5900/su_fens_wp.2011.16498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Breton, Daniel. A study on the Delta-Bullington irregular terrain radiofrequency propagation model : assessing model suitability for use in decision support tools. Engineer Research and Development Center (U.S.), January 2022. http://dx.doi.org/10.21079/11681/42780.

Повний текст джерела
Анотація:
Modeling the propagation of radiofrequency signals over irregular terrain is both challenging and critically important in numerous Army applications. One application of particular importance is the performance and radio connectivity of sensors deployed in scenarios where the terrain and the environment significantly impact signal propagation. This report investigates both the performance of and the algorithms and assumptions underlying the Delta-Bullington irregular terrain radiofrequency propagation model discussed in International Telecommunications Union Recommendation P.526-15. The aim is to determine its suitability for use within sensor-planning decision support tools. After reviewing free-space, spherical earth diffraction, and terrain obstacle diffraction losses, the report dis-cusses several important tests of the model, including reciprocity and geographic continuity of propagation loss over large areas of rugged terrain. Overall, the Delta-Bullington model performed well, providing reasonably rapid and geographically continuous propagation loss estimates with computational demands appropriate for operational use.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Elbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.

Повний текст джерела
Анотація:
Objectives: The overall goal of the project was to build an ultrastructural model of the Agrobacterium tumefaciens type IV secretion system (T4SS) based on electron microscopy, genetics, and immunolocalization of its components. There were four original aims: Aim 1: Define the contributions of contact-dependent and -independent plant signals to formation of novel morphological changes at the A. tumefaciens polar membrane. Aim 2: Genetic basis for morphological changes at the A. tumefaciens polar membrane. Aim 3: Immuno-localization of VirB proteins Aim 4: Structural definition of the substrate translocation route. There were no major revisions to the aims, and the work focused on the above questions. Background: Agrobacterium presents a unique example of inter-kingdom gene transfer. The process involves cell to cell transfer of both protein and DNA substrates via a contact-dependent mechanism akin to bacterial conjugation. Transfer is mediated by a T4SS. Intensive study of the Agrobacterium T4SS has made it an archetypal model for the genetics and biochemistry. The channel is assembled from eleven protein components encoded on the B operon in the virulence region of the tumor-inducing plasmid, plus an additional coupling protein, VirD4. During the course of our project two structural studies were published presenting X-ray crystallography and three-dimensional reconstruction from electron microscopy of a core complex of the channel assembled in vitro from homologous proteins of E. coli, representing VirB7, VirB9, and VirB10. Another study was published claiming that the secretion channels in Agrobacterium appear on helical arrays around the membrane perimeter and along the entire length of the bacterium. Helical arrangements in bacterial membranes have since fallen from favor however, and that finding was partially retracted in a second publication. Overall, the localization of the T4SS within the bacterial membranes remains enigmatic in the literature, and we believe that our results from this project make a significant advance. Summary of achievements : We found that polar inflations and other membrane disturbances relate to the activation conditions rather than to virulence protein expression. Activation requires low pH and nutrient-poor medium. These stress conditions are also reflected in DNA condensation to varying degrees. Nonetheless, they must be considered in modeling the T4SS as they represent the relevant conditions for its expression and activity. We identified the T4SS core component VirB7 at native expression levels using state of the art super-resolution light microscopy. This marker of the secretion system was found almost exclusively at the cell poles, and typically one pole. Immuno-electron microscopy identified the protein at the inner membrane, rather than at bridges across the inner and outer membranes. This suggests a rare or transient assembly of the secretion-competent channel, or alternatively a two-step secretion involving an intermediate step in the periplasmic space. We followed the expression of the major secreted effector, VirE2. This is a single-stranded DNA binding protein that forms a capsid around the transferred oligonucleotide, adapting the bacterial conjugation to the eukaryotic host. We found that over-expressed VirE2 forms filamentous complexes in the bacterial cytoplasm that could be observed both by conventional fluorescence microscopy and by correlative electron cryo-tomography. Using a non-retentive mutant we observed secretion of VirE2 from bacterial poles. We labeled the secreted substrates in vivo in order detect their secretion and appearance in the plant cells. However the low transfer efficiency and significant background signal have so far hampered this approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії