Статті в журналах з теми "Modèle intestinal in vitro"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Modèle intestinal in vitro.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Modèle intestinal in vitro".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Uriot, O., C. Deschamps, M. Brun, M. Pouget, L. Etienne-Mesmin, M. Alric, C. Chaudemanche, Y. Boirie, and S. Blanquet-Diot. "Développement et validation d’un modèle colique in vitro de dysbiose du microbiote intestinal humain associé à l’obésité." Nutrition Clinique et Métabolisme 37, no. 2 (May 2023): e20. http://dx.doi.org/10.1016/j.nupar.2023.03.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Amamou, A., L. Yaker, C. Bôle-Feysot, G. Savoye, and R. Marion-Letellier. "Étude de l’interaction entre des dérivés du tryptophane et le récepteur aryl hydrocarbone dans un modèle in vitro de fibrose intestinale." Nutrition Clinique et Métabolisme 33, no. 1 (March 2019): 100. http://dx.doi.org/10.1016/j.nupar.2019.01.412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vergères, Guy, Biljana Bogicevic, Caroline Buri, Sandro Carrara, Magali Chollet, Linda Corbino-Giunta, Lotti Egger, et al. "The NutriChip project – translating technology into nutritional knowledge." British Journal of Nutrition 108, no. 5 (July 11, 2012): 762–68. http://dx.doi.org/10.1017/s0007114512002693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advice.
4

Jackson, Tim R., Miniver Oliver, Daniel Appledorn, Tim Dale, and Kalpana Barnes. "Abstract 3084: Label-free, real-time live cell assays for 3D organoids embedded in Matrigel®." Cancer Research 82, no. 12_Supplement (June 15, 2022): 3084. http://dx.doi.org/10.1158/1538-7445.am2022-3084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Organoid technologies are increasingly being used as in-vitro models of human development and disease as they exhibit structural, morphogenetic, and functional properties that recapitulate in vivo pathophysiology. To successfully use these models across a variety of research disciplines and applications, approaches that reduce variability and technology pipelines to image & quantify these complex cell models are required. Here, we demonstrate simple, robust workflows for monitoring and automatically quantifying features, such as morphology, growth and death of organoids using real time live cell analysis. To quantitatively optimize and characterize organoid cultures in-vitro, mouse hepatic, intestinal and pancreatic organoids were embedded in Matrigel® domes (50% or 100%) in 24-well plates and imaged over time in an Incucyte® Live Cell System. Organoid growth, differentiation, and maturation was measured using Incucyte’ s automated Organoid Software Analysis Module, which tracks changes in size and morphology. Integrated metrics enabled objective determination of cell-type specific growth conditions and passaging regimes. To illustrate the utility of the Incucyte® Organoid Analysis Software Module to track organoid growth and death in 96-well plates, intestinal and hepatic organoid fragments were embedded in Matrigel® (50%) for 3 days prior to treatment with protein kinase inhibitor staurosporine (1 µM, STP). Vehicle treated organoids increased in size (10-fold; intestinal or 3-fold; hepatic) over time while marked reduction was observed in the presence of STP. Using label-free size and morphology metrics we could distinguish between cytotoxic and cytostatic mechanisms of action (MoA) of known chemotherapeutic compounds. STP, cisplatin (CIS, DNA synthesis inhibitor) or fluorouracil (5-FU, thymidylate synthetase inhibitor) exhibited concentration dependent inhibition of hepatic organoid growth, yielding IC50 values of 3 nM for STP, 9.7 µM for CIS and 0.78 µM for 5-FU. Whilst attenuation of size was observed across all compounds, increases in eccentricity and darkness indictive of 3D structure disruption and cell death respectively were only observed in CIS and STP-treated organoids (cytotoxic MoA). Differences between the size and morphology readouts illustrated the cytostatic mechanism of 5-FU. Use of this approach was extended to visualize and quantify CFTR function. Following forskolin stimulation, a concentration-dependent increase in intestinal organoid size was observed. In the presence of CFTR inhibitor CFTRinh-172 the maximal response was reduced by >50% (~150% at 10 µM) illustrating that swelling was CFTR-dependent. These data demonstrate the capability to kinetically visualize and quantify distinct organoid morphologies, assess drug-induced cellular changes label-free and illustrates the amenability of this approach across a range of disease areas. Citation Format: Tim R. Jackson, Miniver Oliver, Daniel Appledorn, Tim Dale, Kalpana Barnes. Label-free, real-time live cell assays for 3D organoids embedded in Matrigel® [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3084.
5

Losa, Marco, Michael Field, Lauren Collen, Jared Barends, Amit Ringel, Mairead Bresnahan, Jessica Yang, et al. "BIOACTIVE INTERLEUKIN-1 DETECTED IN IBD PATIENT INTESTINAL BIOPSIES IS A HALLMARK OF ULCERS AND CORRELATES WITH TRANSCRIPTOMIC ASSESSMENTS, INCLUDING AN ULCER-ASSOCIATED GENE MODULE." Inflammatory Bowel Diseases 30, Supplement_1 (January 25, 2024): S00. http://dx.doi.org/10.1093/ibd/izae020.117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract BACKGROUND Interleukin (IL)-1 and its post-translationally modified and released forms, IL-1α and IL-1β, have been identified as key molecules to maintain mucosal homeostasis and to drive inflammatory bowel disease (IBD). Deep cellular phenotypic, transcriptional, and in vitro data highlight the importance of IL-1-associated cytokine networks and IL-1 producing cells in severe and anti-TNF non-responsive IBD. Nevertheless, little is known about the presence of bioactive IL-1 proteins within the cell-free gastrointestinal (GI) mucosal environment and associated function in severe IBD and ulceration. METHODS We established a highly sensitive functional assay (~500-fold greater than ELISA) to assess bioactive extracellular IL-1 protein from previously cryopreserved GI biopsies. We performed an ex vivo study in a cohort of Crohn’s disease (CD, n=23), ulcerative colitis (UC, n=18) and non-IBD (n=17) patients, with biopsies from paired inflamed and uninflamed intestinal regions per patient (primarily colon but also ileal). We assessed differential IL-1 bioactivity, including IL-1α vs IL-1β contributions, and performed RNA-seq of the matched cellular compartments of the samples. An ulcer-associated gene signature derived from RNA-seq analysis was evaluated in a single-cell RNA-seq cohort (n=42) of very early onset IBD including monogenic disorders. RESULTS The extent of bioactive intestinal mucosal IL-1α and IL-1β corresponded with disease and ulcer severity in both CD and UC. The most extreme signals were seen in select CD patients with deep ulceration. Bioactive IL-1α was the predominant contributor to total IL-1 signal in most patients although several with ulcers displayed an IL-1β-predominant signal. Matched RNA-seq analysis demonstrated enhanced IL-1 transcripts, correlating with IL-1 bioactivity, and a weighted gene co-expression network analysis (WGCNA) revealed a compelling ulcer-specific module enriched in IL-1 signaling genes and wound repair. We validated our findings in several published (e.g., RISK cohort of ileal CD) as well as unpublished independent adult and pediatric datasets from our group. Deconvolution of the ulcer-specific gene module and projection onto an unpublished single-cell RNA-seq cohort of very early onset IBD patients (including IBD-causative mutations such as IL-10R deficiency characterized by deep ulceration) implicated specific stromal and myeloid populations in ulcer biology. CONCLUSION Mucosal ulceration in IBD is associated with bioactive IL-1α and IL-1β proteins, and transcriptomic evaluation of the same correlates with bioactive signal. An ulcer-associated gene module, validated in other datasets, sheds light on IL-1 biology in intestinal epithelial repair. Results strongly suggest the IL-1 signaling pathway being an attractive and precision-based therapeutic target in subsets of IBD patients.
6

Rashid, Md Harun Or, and Feng Lin. "Magnetically Driven Biopsy Capsule Robot with Spring Mechanism." Micromachines 15, no. 2 (February 18, 2024): 287. http://dx.doi.org/10.3390/mi15020287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, capsule endoscopes (CEs) have appeared as an advanced technology for the diagnosis of gastrointestinal diseases. However, only capturing the images limits the advanced diagnostic procedures and so on in CE’s applications. Herein, considering other extended functions like tissue sampling, a novel wireless biopsy CE has been presented employing active locomotion. Two permanent magnets (PMs) have been placed into the robots, which control the actuation of the capsule robot (CR) and biopsy mechanism by employing an external electromagnetic actuation (EMA) system. A spring has been attached to the biopsy mechanism to retract the biopsy tool after tissue collection. A camera module has also been attached to the front side of the CR to detect the target point and observe the biopsy process on the lesion. A prototype of CR was fabricated with a diameter of 12 mm and a length of 32 mm. A spring mechanism with a biopsy needle was placed inside the CR and sprang out around 5 mm. An in vitro experiment was conducted, which demonstrated the precise control translation (2 mm/s and 3 mm/s in the x and y directions, respectively) and desired extrusion of the biopsy mechanism (~5 mm) for sampling the tissue. A needle-based biopsy capsule robot (NBBCR) has been designed to perform the desired controlled locomotion and biopsy function by external force. This proposed active locomoted untethered NBBCR can be wirelessly controlled to perform extended function precisely, advancing the intestinal CE technique for clinical applications.
7

Dupont, C., M. E. Bougnoux, J. Matéo, P. Saulnier, D. Payen, and M. H. Nicolas-Chanoine. "Diagnostic des candidoses profondes par PCR modèle in vitro et modèle animal." La Revue de Médecine Interne 17 (January 1996): 356s. http://dx.doi.org/10.1016/s0248-8663(97)80878-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dupont, C., M. E. Bougnoux, J. Mateo, P. Saulnier, D. Payen, and M. H. Nicolas-Chanoine. "Diagnostic des candidoses profondes par PCR. Modèle in vitro et modèle animal." Médecine et Maladies Infectieuses 27 (November 1997): 1005. http://dx.doi.org/10.1016/s0399-077x(97)80272-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Durix, A., L. Alves de Oliveira, S. Komizarczuck-Bony, M. Carcelen, and C. Jean-Blain. "Caractéristiques fermentaires d'un modèle d'acidose in vitro (RUSITEC)." Annales de Zootechnie 43, Suppl. 1 (1994): 26s. http://dx.doi.org/10.1051/animres:19940530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Breton, J., P. Tirelle, S. Hasanat, A. Pernot, C. L’Huillier, J. C. do Rego, P. Déchelotte, M. Coëffier, L. B. Bindels, and D. Ribet. "Altérations du microbiote intestinal dans un modèle murin d’Anorexie mentale." Nutrition Clinique et Métabolisme 34, no. 1 (April 2020): 37–38. http://dx.doi.org/10.1016/j.nupar.2020.02.238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Le Pape, P. "Persistance fongique et granulome : nouveau modèle d’étude in vitro." Journal de Mycologie Médicale 23, no. 1 (March 2013): 71–72. http://dx.doi.org/10.1016/j.mycmed.2012.12.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bonnin, Alain, and Frédéric Dalle. "Importance des micromycètes dans le microbiote intestinal : le modèle Candida albicans." Bulletin de l'Académie Nationale de Médecine 202, no. 7 (September 2018): 1401–12. http://dx.doi.org/10.1016/s0001-4079(19)30206-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chopra, Dharam P., Alan A. Dombkowski, Paul M. Stemmer, and Graham C. Parker. "Intestinal Epithelial Cells In Vitro." Stem Cells and Development 19, no. 1 (January 2010): 131–42. http://dx.doi.org/10.1089/scd.2009.0109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Barranco, Caroline. "Intestinal tissue generated in vitro." Nature Reviews Gastroenterology & Hepatology 8, no. 2 (February 2011): 63. http://dx.doi.org/10.1038/nrgastro.2010.226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Längst, Emmanuel, David Crettaz, Manon Bardyn, Jean-Daniel Tissot, and Michel Prudent. "Modèle de transfusion in vitro pour étudier les globules rouges." Transfusion Clinique et Biologique 28, no. 4 (November 2021): S105. http://dx.doi.org/10.1016/j.tracli.2021.08.308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Riethorst, Danny, Joachim Brouwers, Jens Motmans, and Patrick Augustijns. "Human intestinal fluid factors affecting intestinal drug permeation in vitro." European Journal of Pharmaceutical Sciences 121 (August 2018): 338–46. http://dx.doi.org/10.1016/j.ejps.2018.06.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Baldolli, A., F. Vincent, B. Bienvenu, W. Figgett, and F. Mackay. "Rôle du microbiote intestinal dans un modèle murin de lupus transgénique pour BAFF." La Revue de Médecine Interne 36 (December 2015): A82—A83. http://dx.doi.org/10.1016/j.revmed.2015.10.312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Rahmani, Sara, Natalia M. Breyner, Hsuan-Ming Su, Elena F. Verdu, and Tohid F. Didar. "Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro." Biomaterials 194 (February 2019): 195–214. http://dx.doi.org/10.1016/j.biomaterials.2018.12.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Fair, Kathryn L., Jennifer Colquhoun, and Nicholas R. F. Hannan. "Intestinal organoids for modelling intestinal development and disease." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1750 (May 21, 2018): 20170217. http://dx.doi.org/10.1098/rstb.2017.0217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gastrointestinal diseases are becoming increasingly prevalent in developed countries. Immortalized cells and animal models have delivered important but limited insight into the mechanisms that initiate and propagate these diseases. Human-specific models of intestinal development and disease are desperately needed that can recapitulate structure and function of the gut in vitro . Advances in pluripotent stem cells and primary tissue culture techniques have made it possible to culture intestinal epithelial cells in three dimensions that self-assemble to form ‘intestinal organoids'. These organoids allow for new, human-specific models that can be used to gain insight into gastrointestinal disease and potentially deliver new therapies to treat them. Here we review current in vitro models of intestinal development and disease, considering where improvements could be made and potential future applications in the fields of developmental modelling, drug/toxicity testing and therapeutic uses. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you'.
20

Alno, Nora, Franck Jegoux, Pascal Pellen-Mussi, Sylvie Tricot-Doleux, Guy Cathelineau, and Gilbert De Mello. "Mise au point d’un modèle tridimensionnel pour l’évaluation des biosubstituts osseuxin vitro." Médecine Buccale Chirurgie Buccale 16, no. 4 (November 2010): 199–208. http://dx.doi.org/10.1051/mbcb/2010039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Alno, Nora, Franck Jegoux, Pascal Pellen-Mussi, Sylvie Tricot-Doleux, Guy Cathelineau, and Gilbert De Mello. "Mise au point d’un modèle tridimensionnel pour l’évaluation des biosubstituts osseuxin vitro." Médecine Buccale Chirurgie Buccale 17, no. 1 (December 24, 2010): 71–81. http://dx.doi.org/10.1051/mbcb/2010041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Drugeon, H. B., and R. Garraffo. "Pharmacocinétique et pouvoir bactéricide du céfuroxime axétil : modèle in vitro/ex vivo." Médecine et Maladies Infectieuses 21 (September 1991): 56–60. http://dx.doi.org/10.1016/s0399-077x(05)80475-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gailloud, P., J. R. Pray, M. Muster, M. Piotin, J. H. D. Fasel, and D. A. Rüfenacht. "Un modèle anatomiquein vitro des artères cérébrales humaines avec anévrysmes artériels sacciformes." Surgical and Radiologic Anatomy 19, S2 (March 1997): 28–29. http://dx.doi.org/10.1007/bf01642141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Faway, E., L. Cambier, C. Lambert de Rouvroit, B. Mignon, and Y. Poumay. "Développement et analyse d’un modèle in vitro d’infection épidermique par dermatophytes anthropophiles." Annales de Dermatologie et de Vénéréologie 142, no. 6-7 (June 2015): S285. http://dx.doi.org/10.1016/j.annder.2015.04.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Panthier, F., P. Lapouge, S. Doizi, L. Dragos, L. Berthe, and O. Traxer. "Analyse in vitro de l’efficacité de la lithotritie laser : quel modèle utiliser ?" Progrès en Urologie 30, no. 13 (November 2020): 709–10. http://dx.doi.org/10.1016/j.purol.2020.07.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hamilton, I., I. Cobden, and A. T. Axon. "In vitro determination of small intestinal permeability." Gut 26, no. 3 (March 1, 1985): 322–24. http://dx.doi.org/10.1136/gut.26.3.322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mayer, Robert M., Carleton R. Treadwell, Linda L. Gallo, and George V. Vahouny. "Intestinal mucins and cholesterol uptake in vitro." Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 833, no. 1 (January 1985): 34–43. http://dx.doi.org/10.1016/0005-2760(85)90250-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lamberti, Gaetano, Sara Cascone, Margherita Iannaccone, and Giuseppe Titomanlio. "In vitro simulation of drug intestinal absorption." International Journal of Pharmaceutics 439, no. 1-2 (December 2012): 165–68. http://dx.doi.org/10.1016/j.ijpharm.2012.10.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Krueger, Dagmar, Klaus Michel, Florian Zeller, Ihsan E. Demir, Güralp O. Ceyhan, Julia Slotta-Huspenina, and Michael Schemann. "Neural influences on human intestinal epitheliumin vitro." Journal of Physiology 594, no. 2 (November 23, 2015): 357–72. http://dx.doi.org/10.1113/jp271493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Stelzner, Matthias, Michael Helmrath, James C. Y. Dunn, Susan J. Henning, Courtney W. Houchen, Calvin Kuo, John Lynch, et al. "A nomenclature for intestinal in vitro cultures." American Journal of Physiology-Gastrointestinal and Liver Physiology 302, no. 12 (June 15, 2012): G1359—G1363. http://dx.doi.org/10.1152/ajpgi.00493.2011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many advances have been reported in the long-term culture of intestinal mucosal cells in recent years. A significant number of publications have described new culture media, cell formations, and growth patterns. Furthermore, it is now possible to study, e.g., the capabilities of isolated stem cells or the interactions between stem cells and mesenchyme. However, at the moment there is significant variation in the way these structures are described and named. A standardized nomenclature would benefit the ability to communicate and compare findings from different laboratories using the different culture systems. To address this issue, members of the NIH Intestinal Stem Cell Consortium herein propose a systematic nomenclature for in vitro cultures of the small and large intestine. We begin by describing the structures that are generated by preparative steps. We then define and describe structures produced in vitro, specifically: enterosphere, enteroid, reconstituted intestinal organoid, induced intestinal organoid, colonosphere, colonoid, and colonic organoid.
31

Bertero, Alessia, Paola Fossati, Doriana Eurosia Angela Tedesco, and Francesca Caloni. "Beauvericin and Enniatins: In Vitro Intestinal Effects." Toxins 12, no. 11 (October 29, 2020): 686. http://dx.doi.org/10.3390/toxins12110686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
32

Alcorn, Caroline J., Robert J. Simpson, David Leahy, and Timothy J. Peters. "In vitro studies of intestinal drug absorption." Biochemical Pharmacology 42, no. 12 (November 1991): 2259–64. http://dx.doi.org/10.1016/0006-2952(91)90228-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Casadei, G., E. Grilli, and A. Piva. "Pediocin A modulates intestinal microflora metabolism in swine in vitro intestinal fermentations." Journal of Animal Science 87, no. 6 (June 1, 2009): 2020–28. http://dx.doi.org/10.2527/jas.2008-1438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Subramanian, U., and A. E. Ahmed. "Intestinal Toxicity of Acrylonitrile: In Vitro Metabolism by Intestinal Cytochrome P450 2E1." Toxicology and Applied Pharmacology 135, no. 1 (November 1995): 1–8. http://dx.doi.org/10.1006/taap.1995.1202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Forsyth, Christopher B., Robin M. Voigt, Maliha Shaikh, Yueming Tang, Arthur I. Cederbaum, Fred W. Turek, and Ali Keshavarzian. "Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability." American Journal of Physiology-Gastrointestinal and Liver Physiology 305, no. 2 (July 15, 2013): G185—G195. http://dx.doi.org/10.1152/ajpgi.00354.2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression ( Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H2O2 with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H2O2-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2.
36

Hosni, H., A. Salama, A. Abudunia, Y. Cherrah, A. Ibrahimi, and K. Alaoui. "Toxicité aiguë, cytotoxicité et effet antiradicalaire de l’extrait méthanolique des feuilles de l’asphodèle, Asphodelus microcarpus." Phytothérapie 18, no. 5 (July 2, 2019): 284–90. http://dx.doi.org/10.3166/phyto-2019-0136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Asphodelus microcarpus(A.m.) est une plante largement utilisée en médecine traditionnelle marocaine pour ses propriétés médicinales qui restent variées et générales. Une extraction des principes actifs contenus dans les feuilles d’A.m. a été réalisée par macération à froid au méthanol. L’extrait obtenu a fait l’objet d’une étude in vitro de cytotoxicité qui a révélé un effet cytotoxique sur un modèle de cellules myéloïdes d’origine humaine (IC50 = 7,81 μg/ml). Par ailleurs, l’évaluation de l’extrait quant à son activité antioxydante par la méthode du réactif DPPH s’est révélée positive (IC50 = 310 μg/ml), et l’étude de sa toxicité aiguë in vivo sur un modèle animal (souris Swiss) lui confère une totale innocuité (DL50 > 5 000 mg/kg). Ces études ont été complétées par un criblage phytochimique afin de mettre en évidence les familles de métabolites secondaires majoritaires identifiées ici comme des anthracénosides, tannins et phénols ; les alcaloïdes sont peu présents. Ainsi, la faible toxicité in vivo et l’éventuel pouvoir antiprolifératif de l’extrait fixe d’A.m. in vitro justifieraient son évaluation future sur différents modèles tumoraux.
37

Tirelle, P., J. Breton, A. Kauffmann, W. Balhouli, C. L’Huillier, E. Salameh, A. Amamou, et al. "La déplétion du microbiote intestinal induit une réponse sexe-dépendante au modèle d’activity-based anorexia." Nutrition Clinique et Métabolisme 34, no. 1 (April 2020): 36. http://dx.doi.org/10.1016/j.nupar.2020.02.235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Xiang, Yunqing, Hui Wen, Yue Yu, Mingqiang Li, Xiongfei Fu, and Shuqiang Huang. "Gut-on-chip: Recreating human intestine in vitro." Journal of Tissue Engineering 11 (January 2020): 204173142096531. http://dx.doi.org/10.1177/2041731420965318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The human gut is important for food digestion and absorption, as well as a venue for a large number of microorganisms that coexist with the host. Although numerous in vitro models have been proposed to study intestinal pathology or interactions between intestinal microbes and host, they are far from recapitulating the real intestinal microenvironment in vivo. To assist researchers in further understanding gut physiology, the intestinal microbiome, and disease processes, a novel technology primarily based on microfluidics and cell biology, called “gut-on-chip,” was developed to simulate the structure, function, and microenvironment of the human gut. In this review, we first introduce various types of gut-on-chip systems, then highlight their applications in drug pharmacokinetics, host–gut microbiota crosstalk, and nutrition metabolism. Finally, we discuss challenges in this field and prospects for better understanding interactions between intestinal flora and human hosts, and then provide guidance for clinical treatment of related diseases.
39

Creff, Justine, Laurent Malaquin, and Arnaud Besson. "In vitro models of intestinal epithelium: Toward bioengineered systems." Journal of Tissue Engineering 12 (January 2021): 204173142098520. http://dx.doi.org/10.1177/2041731420985202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The intestinal epithelium, the fastest renewing tissue in human, is a complex tissue hosting multiple cell types with a dynamic and multiparametric microenvironment, making it particularly challenging to recreate in vitro. Convergence of recent advances in cellular biology and microfabrication technologies have led to the development of various bioengineered systems to model and study the intestinal epithelium. Theses microfabricated in vitro models may constitute an alternative to current approaches for studying the fundamental mechanisms governing intestinal homeostasis and pathologies, as well as for in vitro drug screening and testing. Herein, we review the recent advances in bioengineered in vitro intestinal models.
40

Larsen, Christian-Jacques. "Sphéroïdes : le modèle de référence pour la culture in vitro des tumeurs solides ?" Bulletin du Cancer 105, no. 1 (January 2018): 25–34. http://dx.doi.org/10.1016/j.bulcan.2017.09.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Blank, U., and N. Varin-Blank. "La lignée mastocytaire RBL : modèle expérimental in vitro et application en pharmacologie clinique." Revue Française d'Allergologie et d'Immunologie Clinique 44, no. 1 (January 2004): 51–56. http://dx.doi.org/10.1016/j.allerg.2003.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Seko, Yoshiyuki, Masako Takahashi, Tatsuya Hasegawa, and Teiji Miura. "Intestinal Absorption of Mercury in Vitro from Intestinal Contents of Methylmercury Administered Mice." JOURNAL OF HEALTH SCIENCE 47, no. 5 (2001): 508–11. http://dx.doi.org/10.1248/jhs.47.508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

van de Kerkhof, Esther, Inge de Graaf, and Geny Groothuis. "In Vitro Methods to Study Intestinal Drug Metabolism." Current Drug Metabolism 8, no. 7 (October 1, 2007): 658–75. http://dx.doi.org/10.2174/138920007782109742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Sardelli, Lorenzo, Daniela Peneda Pacheco, Anna Ziccarelli, Marta Tunesi, Omar Caspani, Andrea Fusari, Francesco Briatico Vangosa, Carmen Giordano, and Paola Petrini. "Towards bioinspired in vitro models of intestinal mucus." RSC Advances 9, no. 28 (2019): 15887–99. http://dx.doi.org/10.1039/c9ra02368b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Roth-Goldbrunner, R., MK Herbert, P. Holzer, and N. Roewer. "Clonidine concentration-dependently inhibits intestinal peristalsis in vitro." Critical Care 4, Suppl 1 (2000): P164. http://dx.doi.org/10.1186/cc884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bakke, Olav M. "Degradation of DOPA by Intestinal Microorganisms in Vitro." Acta Pharmacologica et Toxicologica 30, no. 1-2 (March 13, 2009): 115–21. http://dx.doi.org/10.1111/j.1600-0773.1971.tb00640.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Cario, E., A. Becker, H. Goebell, and A. U. Dignass. "Zinc (ZnSO4) stimulates intestinal epithelial restitution In vitro." Gastroenterology 114 (April 1998): A1132. http://dx.doi.org/10.1016/s0016-5085(98)84604-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Simon-Assmann, P., N. Turck, M. Sidhoum-Jenny, G. Gradwohl, and M. Kedinger. "In vitro models of intestinal epithelial cell differentiation." Cell Biology and Toxicology 23, no. 4 (December 12, 2006): 241–56. http://dx.doi.org/10.1007/s10565-006-0175-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Niwa, Toshio, Shin-ichiro Yokoyama, Mika Mochizuki, and Toshihiko Osawa. "Curcumin metabolism by human intestinal bacteria in vitro." Journal of Functional Foods 61 (October 2019): 103463. http://dx.doi.org/10.1016/j.jff.2019.103463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Testolin, Giulio, Salvatore Ciappellano, Ambrogina Alberio, Francesco Piccinini, Luisa Paracchini, and Andrea Jotti. "Intestinal Absorption of Manganese: An in vitro Study." Annals of Nutrition and Metabolism 37, no. 6 (1993): 289–94. http://dx.doi.org/10.1159/000177779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії