Дисертації з теми "Modèle hiérarchique bayésien"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-32 дисертацій для дослідження на тему "Modèle hiérarchique bayésien".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sodjo, Jessica. "Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0152/document.
Повний текст джерелаThis work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation
Minois, Nathan. "Etude de consistance et applications du modèle Poisson-gamma : modélisation d'une dynamique de recrutement multicentrique." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30396/document.
Повний текст джерелаA clinical trial is a biomedical research which aims to consolidate and improve the biological and medical knowledges. The number of patients required il the minimal number of patients to include in the trial in order to insure a given statistical power of a predefined test. The constitution of this patients' database is one of the fundamental issues of a clinical trial. To do so several investigation centres are opened. The duration between the first opening of a centre and the last recruitment of the needed number of patients is called the recruitemtn duration that we aim to model. The fisrt model goes back 50 years ago with the work of Lee, Williford et al. and Morgan with the idea to model the recruitment dynamic using Poisson processes. One problem emerge, that is the lack of caracterisation of the variabliity of recruitment between centers that is mixed with the mean of the recruitment rates. The most effective model is called the Poisson-gamma model which is based on Poisson processes with random rates (Cox process) with gamma distribution. This model is at the very heart of this project. Different objectives have motivated the realisation of this thesis. First of all the validity of the Poisson-gamma model is established asymptotically. A simulation study that we made permits to give precise informations on the model validity in specific cases (function of the number of centers, the recruitement duration and the mean rates). By studying database, one can observe that there can be breaks during the recruitment dynamic. A question that arise is : How and must we take into account this phenomenon for the prediction of the recruitment duration. The study made tends to show that it is not necessary to take them into account when they are random but their law is stable in time. It also veered around to measure the impact of these breaks on the estimations of the model, that do not impact its validity under some stability hypothesis. An other issue inherent to a patient recruitment dynamic is the phenomenon of screening failure. An empirical Bayesian technique analogue to the one of the recruitment process is used to model the screening failure issue. This hierarchical Bayesian model permit to estimate the duartion of recruitment with screening failure consideration as weel as the probability to drop out from the study using the data at some interim time of analysis, giving predictions on the randomisation dynamic. The recruitment dynamic can be studied in many different ways than just the duration of recruitment. These fundamental aspects coupled with the Poisson-gamma model give relevant indicators for the study follow-up. Multiples applications in this sense are computed. It is therefore possible to adjust the number of centers according to predefined objectives, to model the drug's supply chain per region or center and to predict the effect of the randomisation on the power of the test's study. It also allows to model the folow-up period of the patients by means of transversal or longitudinal methods, that can serve to adjust the number of patients if too many quit during the foloww-up period, or to stop the study if dangerous side effects or no effects are observed on interim data. The problematic of the recruitment dynamic can also be coupled with the dynamic of the study itself when it is longitudinal. The independance between these two processes allows easy estimations of the different parameters. The result is a global model of the patient pathway in the trail. Two key examples of such situations are survival data - the model permit to estimate the duration of the trail when the stopping criterion is the number of events observed, and the Markov model - the model permit to estimate the number of patients in a certain state for a given duartion of analysis
Clertant, Matthieu. "Semi-parametric bayesian model, applications in dose finding studies." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066230/document.
Повний текст джерелаPhase I clinical trials is an area in which statisticians have much to contribute. For over 30 years, this field has benefited from increasing interest on the part of statisticians and clinicians alike and several methods have been proposed to manage the sequential inclusion of patients to a study. The main purpose is to evaluate the occurrence of dose limiting toxicities for a selected group of patients with, typically, life threatening disease. The goal is to maximize the potential for therapeutic success in a situation where toxic side effects are inevitable and increase with increasing dose. From a range of given doses, we aim to determine the dose with a rate of toxicity as close as possible to some threshold chosen by the investigators. This dose is called the MTD (maximum tolerated dose). The standard situation is where we have a finite range of doses ordered with respect to the probability of toxicity at each dose. In this thesis we introduce a very general approach to modeling the problem - SPM (semi-parametric methods) - and these include a large class of methods. The viewpoint of SPM allows us to see things in, arguably, more relevant terms and to provide answers to questions such as asymptotic behavior. What kind of behavior should we be aiming for? For instance, can we consistently estimate the MTD? How, and under which conditions? Different parametrizations of SPM are considered and studied theoretically and via simulations. The obtained performances are comparable, and often better, to those of currently established methods. We extend the findings to the case of partial ordering in which more than one drug is under study and we do not necessarily know how all drug pairs are ordered. The SPM model structure leans on a hierarchical set-up whereby certain parameters are linearly constrained. The theoretical aspects of this structure are outlined for the case of distributions with discrete support. In this setting the great majority of laws can be easily considered and this enables us to avoid over restrictive specifications than can results in poor behavior
Li, Shuxian. "Modélisation spatio-temporelle pour l'esca de la vigne à l'échelle de la parcelle." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0313/document.
Повний текст джерелаEsca grapevine disease is one of the incurable dieback disease with the etiology not completely elucidated. It represents one of the major threats for viticulture around the world. To better understand the underlying process of esca spread and the risk factors of this disease, we carried out quantitative analyses of the spatio-temporal development of esca at vineyard scale. In order to detect the spatial correlation among the diseased vines, the non-parametric statistical tests were applied to the spatio-temporal data of esca foliar symptom expression for 15 vineyards in Bordeaux region. Among vineyards, a large range of spatial patterns, from random to strongly structured, were found. In the vineyards with strongly aggregated patterns, no significant increase in the size of cluster and local spread from symptomatic vines was shown, suggesting an effect of the environment in the explanation of this aggregation. To model the foliar symptom occurrence, we developed hierarchical logistic regression models by integrating exogenous covariates, covariates of neighboring symptomatic vines already diseased, and also a latent process with spatio-temporal auto-correlation. The Bayesian inferences of these models were performed by INLA (Inverse Nested Laplace Approximation) approach. The results confirmed the effect of environmental factors on the occurrence risk of esca symptom. The secondary locally spread of esca from symptomatic vines located on the same row or out of row was not shown. A two-step centered auto-logistic regression model, which explicitly integrated the spatio-temporal neighboring structure, was also developed. At last, a geostatistical method was proposed to interpolate data with a particular anisotropic structure. It allowed interpolating the ancillary variable, electrical resistivity of soil, which were used to estimate the available soil water content at vine-scale. These geostatistical methods and spatio-temporal statistical methods developed in this thesis offered outlook to identify risk factors, and thereafter to predict the development of esca grapevine disease in different agronomical contexts
Papoutsis, Panayotis. "Potentiel et prévision des temps d'attente pour le covoiturage sur un territoire." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0059.
Повний текст джерелаThis thesis focuses on the potential and prediction of carpooling waiting times in a territory using statistical learning methods. Five main themes are covered in this manuscript. The first presents quantile regression techniques to predict waiting times. The second details the construction of a workflow based on Geographic Information Systems (GIS) tools in order to fully leverage the carpooling data. In a third part we develop a hierarchical bayesian model in order to predict traffic flows and waiting times. In the fourth part, we propose a methodology for constructing an informative prior by bayesian transfer to improve the prediction of waiting times for a short dataset situation. Lastly, the final theme focuses on the production and industrial exploitation of the bayesian hierarchical model
Decelle, Aurélien. "Statistical physics of disordered networks - Spin Glasses on hierarchical lattices and community inference on random graphs." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00653375.
Повний текст джерелаDobigeon, Nicolas. "Modèles bayésiens hiérarchiques pour le traitement multi-capteur." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2007. http://tel.archives-ouvertes.fr/tel-00189738.
Повний текст джерелаDiard, Julien. "La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile." Phd thesis, Grenoble INPG, 2003. http://tel.archives-ouvertes.fr/tel-00004369.
Повний текст джерелаcomportement ? Qu'est-ce-que naviguer, se localiser et prédire, pour un
robot mobile devant accomplir une tâche donnée ?
Ces questions n'ont pas de réponses uniques ou évidentes à ce jour, et
restent centrales à de nombreux domaines de recherches.
La robotique, par exemple, souhaite y répondre en vue de la synthèse de
systèmes sensori-moteurs performants. Les sciences cognitives placent ces
questions comme essentielles à la compréhension des êtres vivants, de leurs
compétences, et au-delà, de leurs intelligences.
Notre étude se situe à la croisée de ces disciplines. Nous étudions tout
d'abord les méthodes probabilistes classiques (Localisation Markovienne,
PDMPOs, MMCs, etc.), puis certaines approches dites "bio-inspirées"
(Berthoz, Franz, Kuipers). Nous analysons les avantages et inconvénients
respectifs de ces approches en les replaçant dans un cadre général de
programmation des robots basé sur l'inférence bayésienne (PBR).
Nous proposons un formalisme original de modélisation probabiliste de
l'interaction entre un robot et son environnement : la carte bayésienne.
Dans ce cadre, définir une carte revient à spécifier une distribution de
probabilités particulière. Certaines des questions évoquées ci-dessus se
ramènent alors à la résolution de problèmes d'inférence probabiliste.
Nous définissons des opérateurs d'assemblage de cartes bayésiennes,
replaçant ainsi les notions de "hiérarchie de cartes" et de développement
incrémental comme éléments centraux de notre approche, en accord avec les
données biologiques. En appuyant l'ensemble de notre travail sur le
formalisme bayésien, nous profitons d'une part d'une capacité de traitement
unifié des incertitudes, et d'autre part, de fondations mathématiques
claires et rigoureuses. Notre formalisme est illustré par des exemples
implantés sur un robot mobile Koala.
Belhadj, Jihane. "Modèles paramétriques pour la tomographie sismique bayésienne." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM073/document.
Повний текст джерелаFirst arrival time tomography aims at inferring the seismic wave propagation velocity using experimental first arrival times. In our study, we rely on a Bayesian approach to estimate the wave velocity and the associated uncertainties. This approach incorporates the information provided by the data and the prior knowledge of the velocity model. Bayesian tomography allows for a better estimation of wave velocity as well asassociated uncertainties. However, this approach remains fairly expensive, and MCMC algorithms that are used to sample the posterior distribution are efficient only as long as the number of parameters remains within reason. Hence, their use requires a careful reflection both on the parameterization of the velocity model, in order to reduce the problem's dimension, and on the definition of the prior distribution of the parameters. In this thesis, we introduce new parsimonious parameterizations enabling to accurately reproduce the wave velocity field with the associated uncertainties.The first parametric model that we propose uses a random Johnson-Mehl tessellation, a variation of the Voronoï tessellation. The second one uses Gaussian kernels as basis functions. It is especially adapted to the detection of seismic wave velocity anomalies. Each anomaly isconsidered to be a linear combination of these basis functions localized at the realization of a Poisson point process. We first illustrate the tomography results with a synthetic velocity model, which contains two small anomalies. We then apply our methodology to a more advanced and more realistic synthetic model that serves as a benchmark in the oil industry. The tomography results reveal the ability of our algorithm to map the velocity heterogeneitieswith precision using few parameters. Finally, we propose a new parametric model based on the compressed sensing techniques. The first results are encouraging. However, the model still has some weakness related to the uncertainties estimation.In addition, we analyse real data in the context of induced microseismicity. In this context, we develop a trans-dimensional and hierarchical approach in order to deal with the full complexity of the layered model
Chagneau, Pierrette. "Modélisation bayésienne hiérarchique pour la prédiction multivariée de processus spatiaux non gaussiens et processus ponctuels hétérogènes d'intensité liée à une variable prédite : application à la prédiction de la régénération en forêt tropicale humide." Montpellier 2, 2009. http://www.theses.fr/2009MON20157.
Повний текст джерелаOne of the weak points of forest dynamics models is the recruitment. Classically, ecologists make the assumption that recruitment mainly depends on both spatial pattern of mature trees and environment. A detailed inventory of the stand and the environmental conditions enabled them to show the effects of these two factors on the local density of seedlings. In practice, such information is not available: only a part of seedlings is sampled and the environment is partially observed. The aim of the paper is to propose an approach in order to predict the spatial distribution and the seedlings genotype on the basis of a reasonable sampling of seedling, mature trees and environmental conditions. The spatial pattern of the seedlings is assumed to be a realization of a marked point process. The intensity of the process is not only related to the seed and pollen dispersal but also to the sapling survival. The sapling survival depends on the environment; so the environment must be predicted on the whole study area. The environment is characterized through spatial variables of different nature and predictions are obtained using a spatial hierarchical model. Unlike the existing models which assume the environmental covariables as exactly known, the recruitment model we propose takes into account the error related to the prediction of the environment. The prediction of seedling recruitment in tropical rainforest in French Guiana illustrates our approach
Mignotte, Max. "Segmentation d'images sonar par approche markovienne hiérarchique non supervisée et classification d'ombres portées par modèles statistiques." Brest, 1998. http://www.theses.fr/1998BRES2017.
Повний текст джерелаFaires, Hafedh. "Modèles hiérarchiques de Dirichlet à temps continu." Phd thesis, Université d'Orléans, 2008. http://tel.archives-ouvertes.fr/tel-00466503.
Повний текст джерелаAncelet, Sophie. "Exploiter l'approche hiérarchique bayésienne pour la modélisation statistique de structures spatiales: application en écologie des populations." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004396.
Повний текст джерелаPasanisi, Alberto. "Aide à la décision dans la gestion des parcs de compteurs d'eau potable." Phd thesis, ENGREF (AgroParisTech), 2004. http://pastel.archives-ouvertes.fr/pastel-00000935.
Повний текст джерелаDaunizeau, Jean. "Localisation et dynamique des sources d'activité cérébrale par fusion d'informations multimodales EEG/IRMf." Paris 11, 2005. http://www.theses.fr/2005PA112204.
Повний текст джерелаCombining electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) should enable better characterization of brain activity in both space and time. To do so, the potential decoupling between haemodynamic and bioelectric must be accounted for. Therefore, we proposed three graphical and hierarchical models, associated with Bayesian inference processes:-Compared fusion: an EEG data generative model that introduces all available and physiologically plausible information about the expected structure of bioelectric activity. The extended sources mixing model provides a specific feature that can be compared with fMRI activation maps: the spatial profile of the bioelectric sources. -Constrained fusion: a method to assess the relevance of any informative fMRI-derived prior that is to be included in the resolution of the EEG inverse problem. By quantifying the adequacy between EEG data and fMRI active sources, this approach allows us to decide whether the fMRI-based informative prior should, or not, be introduced in the resolution of the EEG inverse problem. -Symmetrical fusion: a joint EEG/fMRI data generative model, which defines spatially concordant (bioelectric and haemodynamic) responses. Based on the spatio-temporal decomposition of the extended sources mixing model, this approach defines the spatial substrate common to EEG and fMRI activity sources. This extends both previous approaches, and allows us to identify the areas of strong coupling between bioelectric and haemodynamic activities. The three approaches were extensively evaluated on simulated data and validated on real patient data in the context of epileptogenic network characterization
Piffady, Jérémy. "Etude des réponses des assemblages de poissons aux variations de l'environnement par modélisation hiérarchique bayésienne : Application aux juvéniles de cyprinidés du Haut-Rhône." Phd thesis, AgroParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00566444.
Повний текст джерелаViaud, Gautier. "Méthodes statistiques pour la différenciation génotypique des plantes à l’aide des modèles de croissance." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC020/document.
Повний текст джерелаPlant growth models can be used in order to predict quantities of interest or assess the genotypic variability of a population of plants; this dual use is emphasized throughout this work.Three plant growth models are therefore considered (LNAS for sugar beet and wheat, GreenLab for Arabidopsis thaliana) within the mathematical framework of general state space models.A new generic computing platform for modelling and statistical inference (ADJUSTIN’) has been developed in Julia, allowing to simulate the plant growth models considered as well as the use of state-of-the-art estimation techniques such as Markov chain Monte Carlo and sequential Monte Carlo methods.Statistical inference within plant growth models is of primary importance for concrete applications such as yield prediction, parameter and state estimation methods within general state-space models in a Bayesian framework were first studied and several case studies for the plants considered are then investigated in the case of an individual plant.The characterization of the variability of a population of plants is envisioned through the distributions of parameters using Bayesian hierarchical models. This approach requiring the acquisition of numerous data for each individual, a segmentation-tracking algorithm for the analysis of images of Arabidopsis thaliana, obtained thanks to the Phenoscope, a high-throughput phenotyping platform of INRA Versailles, is proposed.Finally, the interest of using Bayesian hierarchical models to evidence the variability of a population of plants is discussed. First through the study of different scenarios on simulated data, and then by using the experimental data acquired via image analysis for the population of Arabidopsis thaliana comprising 48 individuals
Eckert, Nicolas. "Couplage données historiques - modélisation numérique pour la prédétermination des avalanches : une approche bayésienne." Phd thesis, AgroParisTech, 2007. http://pastel.archives-ouvertes.fr/pastel-00003404.
Повний текст джерелаRose-Andrieux, Raphaël. "Modèle probabiliste hérarchique de la locomotion bipède." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE031/document.
Повний текст джерелаHumanoid robots have always fascinated due to the vast possibilities they encompass.Indeed, a robot with the same sensorimotor features as a human could theoretically carry out the same tasks. However, a first obstacle in the development of these robots is the stability of a bipedal gait. Bipedal walkers are inherently unstable systems experiencing highly dynamic and uncertain situations. Uncertainty arises from many sources, including intrinsic limitations of a particular model of the world, the noise and perceptual limitations in a robot's sensor measurements, and the internal mechanical imperfection of the system.In this thesis, we focus on foot placement to control the position and velocity of the body's center of mass. We start from a deterministic strategy, and develop a probabilistic strategy around it that includes uncertainties. A probability distribution can express simultaneously an estimation of a variable, and the uncertainty associated. We use a Bayesian model to define relevant variables and integrate them in the global frame.Another benefit of this model is that our objective is also represented as a probability distribution. It can be used to express both a deterministic objective and the tolerance around it. Using this representation one can easily combine multiple objectives and adapt them to external constraints. Moreover, the output of the model is also a probabilistic distribution which fits well in a hierarchical context: the input comes from the level above and the output is given as objective to the lower level.In this work, we will review multiple ways to keep balance and compare them to the results of a preliminary experiment done with humans. We will then extend one strategy to walking using foot placement to keep balance. Finally, we will develop a probabilistic model around that strategy and test it in simulation to measure its benefits in different contexts : integrating uncertainties, fusing multiple objectives and hierarchy
Dumitru, Mircea. "Approche bayésienne de l'estimation des composantes périodiques des signaux en chronobiologie." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS104/document.
Повний текст джерелаThe toxicity and efficacy of more than 30 anticancer agents presents very high variations, depending on the dosing time. Therefore the biologists studying the circadian rhythm require a very precise method for estimating the Periodic Components (PC) vector of chronobiological signals. Moreover, in recent developments not only the dominant period or the PC vector present a crucial interest, but also their stability or variability. In cancer treatment experiments the recorded signals corresponding to different phases of treatment are short, from seven days for the synchronization segment to two or three days for the after treatment segment. When studying the stability of the dominant period we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier Transform (FT) methods are inefficient (i.e. lack of precision) considering the particularities of the data (i.e. the short length). In this thesis we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in the cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer all the unknowns of our model, i.e. the PC vector but also the hyperparameters
Jay, Flora. "Méthodes bayésiennes en génétique des populations : relations entre structure génétique des populations et environnement." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENS026/document.
Повний текст джерелаWe introduce a new method to study the relationships between population genetic structure and environment. This method is based on Bayesian hierarchical models which use both multi-loci genetic data, and spatial, environmental, and/or cultural data. Our method provides the inference of population genetic structure, the evaluation of the relationships between the structure and non-genetic covariates, and the prediction of population genetic structure based on these covariates. We present two applications of our Bayesian method. First, we used human genetic data to evaluate the role of geography and languages in shaping Native American population structure. Second, we studied the population genetic structure of 20 Alpine plant species and we forecasted intra-specific changes in response to global warming. STAR
Valmy, Larissa. "Modèles hiérarchiques et processus ponctuels spatio-temporels - Applications en épidémiologie et en sismologie." Phd thesis, Université des Antilles-Guyane, 2012. http://tel.archives-ouvertes.fr/tel-00841146.
Повний текст джерелаGarreta, Vincent. "Approche bayésienne de la reconstruction des paléoclimats à partir du pollen : Vers la modélisation des mécanismes écologiques." Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2010. http://tel.archives-ouvertes.fr/tel-00495890.
Повний текст джерелаGuin, Ophélie. "Méthodes bayésiennes semi-paramétriques d'extraction et de sélection de variables dans le cadre de la dendroclimatologie." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00636704.
Повний текст джерелаCombrexelle, Sébastien. "Multifractal analysis for multivariate data with application to remote sensing." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/16477/1/Combrexelle.pdf.
Повний текст джерелаJay, Flora. "Méthodes bayésiennes pour la génétique des populations : relations entre structure génétique des populations et environnement." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00648601.
Повний текст джерелаCommeau, Natalie. "Modélisation de la contamination par Listeria monocytogenes pour l'amélioration de la surveillance dans les industries agro-alimentaires." Phd thesis, AgroParisTech, 2012. http://pastel.archives-ouvertes.fr/pastel-00770790.
Повний текст джерелаLaunay, Tristan. "Méthodes Bayésiennes pour la prévision de consommation d’électricité." Nantes, 2012. http://www.theses.fr/2012NANT2074.
Повний текст джерелаIn this manuscript, we develop Bayesian statistics tools to forecast the French electricity load. We first prove the asymptotic normality of the posterior distribution (Bernstein-von Mises theorem) for the piecewise linear regression model used to describe the heating effect and the consistency of the Bayes estimator. We then build a a hierarchical informative prior to help improve the quality of the predictions for a high dimension model with a short dataset. We typically show, with two examples involving the non metered EDF customers, that the method we propose allows a more robust estimation of the model with regard to the lack of data. Finally, we study a new nonlinear dynamic model to predict the electricity load online. We develop a particle filter algorithm to estimate the model et compare the predictions obtained with operationnal predictions from EDF
Seiler, Christof. "Trees on Geometrical Deformations to Model the Statistical Variability of Organs in Medical Images." Phd thesis, Université de Nice Sophia-Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00844610.
Повний текст джерелаHivert, Valentin. "Analyse de la différenciation génétique à l'ère des nouvelles technologies de séquençage." Electronic Thesis or Diss., Montpellier, SupAgro, 2018. http://www.theses.fr/2018NSAM0061.
Повний текст джерелаThe advent of high throughput sequencing and genotyping technologies allows the comparison of patterns of polymorphisms at a very large number of genetic markers. The analysis of genetic differentiation between populations at a whole-genome scale makes it possible to characterize genomic regions involved in the local adaptation of organisms to their environment. In this thesis, we followed two complementary approaches to characterize differentiation from high-throughput genotyping data. First, we developed an unbiased estimator of the parameter FST for individuals sequenced in pools (Pool-seq). Deriving this estimator, in an analysis-of-variance framework, required to properly account for the different sampling steps: individual genes from the pool, and sequence reads from these genes. We show that it outperforms previously proposed estimators. Second, we developed a method to analyze genetic differentiation at a whole-genome scale in a hierarchical bayesian framework, in order to untangle the effect of demography from that of selection. To this end, we implemented different extensions to the SelEstim model, aimed at leveraging the information from linkage disequilibrium between markers. A first approach consisted in analyzing multiallelic data derived from the local clustering of SNPs into haplotype blocks. An alternative strategy consisted in including a smoothing model, which accounts for the spatial dependency between neighboring markers. This strategy relies on the analysis of biallelic data, and can be used both with individual genotype data or Pool-seq data. We discuss the relative benefits of these different approaches, based on the analysis of simulated data sets
Chagra, Djamila. "Sélection de modèle d'imputation à partir de modèles bayésiens hiérarchiques linéaires multivariés." Thèse, 2009. http://hdl.handle.net/1866/3936.
Повний текст джерелаAbstract The technique known as multiple imputation seems to be the most suitable technique for solving the problem of non-response. The literature mentions methods that models the nature and structure of missing values. One of the most popular methods is the PAN algorithm of Schafer and Yucel (2002). The imputations yielded by this method are based on a multivariate linear mixed-effects model for the response variable. A Bayesian hierarchical clustered and more flexible extension of PAN is given by the BHLC model of Murua et al. (2005). The main goal of this work is to study the problem of model selection for multiple imputation in terms of efficiency and accuracy of missing-value predictions. We propose a measure of performance linked to the prediction of missing values. The measure is a mean squared error, and hence in addition to the variance associated to the multiple imputations, it includes a measure of bias in the prediction. We show that this measure is more objective than the most common variance measure of Rubin. Our measure is computed by incrementing by a small proportion the number of missing values in the data and supposing that those values are also missing. The performance of the imputation model is then assessed through the prediction error associated to these pseudo missing values. In order to study the problem objectively, we have devised several simulations. Data were generated according to different explicit models that assumed particular error structures. Several missing-value prior distributions as well as error-term distributions are then hypothesized. Our study investigates if the true error structure of the data has an effect on the performance of the different hypothesized choices for the imputation model. We concluded that the answer is yes. Moreover, the choice of missing-value prior distribution seems to be the most important factor for accuracy of predictions. In general, the most effective choices for good imputations are a t-Student distribution with different cluster variances for the error-term, and a missing-value Normal prior with data-driven mean and variance, or a missing-value regularizing Normal prior with large variance (a ridge-regression-like prior). Finally, we have applied our ideas to a real problem dealing with health outcome observations associated to a large number of countries around the world. Keywords: Missing values, multiple imputation, Bayesian hierarchical linear model, mixed effects model.
Les logiciels utilisés sont Splus et R.
Faubet, Pierre. "METHODES STATISTIQUES POUR L'ETUDE DE LA STRUCTURATION SPATIALE DE LA DIVERSITE GENETIQUE." Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00606630.
Повний текст джерела