Добірка наукової літератури з теми "Modèle hiérarchique bayésien"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modèle hiérarchique bayésien".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Modèle hiérarchique bayésien"
Hedhli, Ihsen, Gabriele Moser, and Josiane Zerubia. "Nouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution." Revue Française de Photogrammétrie et de Télédétection, no. 216 (April 19, 2018): 3–17. http://dx.doi.org/10.52638/rfpt.2018.301.
Повний текст джерелаRasmussen, P. F., B. Bobée, and J. Bernier. "Une méthodologie générale de comparaison de modèles d'estimation régionale de crue." Revue des sciences de l'eau 7, no. 1 (April 12, 2005): 23–41. http://dx.doi.org/10.7202/705187ar.
Повний текст джерелаДисертації з теми "Modèle hiérarchique bayésien"
Sodjo, Jessica. "Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0152/document.
Повний текст джерелаThis work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation
Minois, Nathan. "Etude de consistance et applications du modèle Poisson-gamma : modélisation d'une dynamique de recrutement multicentrique." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30396/document.
Повний текст джерелаA clinical trial is a biomedical research which aims to consolidate and improve the biological and medical knowledges. The number of patients required il the minimal number of patients to include in the trial in order to insure a given statistical power of a predefined test. The constitution of this patients' database is one of the fundamental issues of a clinical trial. To do so several investigation centres are opened. The duration between the first opening of a centre and the last recruitment of the needed number of patients is called the recruitemtn duration that we aim to model. The fisrt model goes back 50 years ago with the work of Lee, Williford et al. and Morgan with the idea to model the recruitment dynamic using Poisson processes. One problem emerge, that is the lack of caracterisation of the variabliity of recruitment between centers that is mixed with the mean of the recruitment rates. The most effective model is called the Poisson-gamma model which is based on Poisson processes with random rates (Cox process) with gamma distribution. This model is at the very heart of this project. Different objectives have motivated the realisation of this thesis. First of all the validity of the Poisson-gamma model is established asymptotically. A simulation study that we made permits to give precise informations on the model validity in specific cases (function of the number of centers, the recruitement duration and the mean rates). By studying database, one can observe that there can be breaks during the recruitment dynamic. A question that arise is : How and must we take into account this phenomenon for the prediction of the recruitment duration. The study made tends to show that it is not necessary to take them into account when they are random but their law is stable in time. It also veered around to measure the impact of these breaks on the estimations of the model, that do not impact its validity under some stability hypothesis. An other issue inherent to a patient recruitment dynamic is the phenomenon of screening failure. An empirical Bayesian technique analogue to the one of the recruitment process is used to model the screening failure issue. This hierarchical Bayesian model permit to estimate the duartion of recruitment with screening failure consideration as weel as the probability to drop out from the study using the data at some interim time of analysis, giving predictions on the randomisation dynamic. The recruitment dynamic can be studied in many different ways than just the duration of recruitment. These fundamental aspects coupled with the Poisson-gamma model give relevant indicators for the study follow-up. Multiples applications in this sense are computed. It is therefore possible to adjust the number of centers according to predefined objectives, to model the drug's supply chain per region or center and to predict the effect of the randomisation on the power of the test's study. It also allows to model the folow-up period of the patients by means of transversal or longitudinal methods, that can serve to adjust the number of patients if too many quit during the foloww-up period, or to stop the study if dangerous side effects or no effects are observed on interim data. The problematic of the recruitment dynamic can also be coupled with the dynamic of the study itself when it is longitudinal. The independance between these two processes allows easy estimations of the different parameters. The result is a global model of the patient pathway in the trail. Two key examples of such situations are survival data - the model permit to estimate the duration of the trail when the stopping criterion is the number of events observed, and the Markov model - the model permit to estimate the number of patients in a certain state for a given duartion of analysis
Clertant, Matthieu. "Semi-parametric bayesian model, applications in dose finding studies." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066230/document.
Повний текст джерелаPhase I clinical trials is an area in which statisticians have much to contribute. For over 30 years, this field has benefited from increasing interest on the part of statisticians and clinicians alike and several methods have been proposed to manage the sequential inclusion of patients to a study. The main purpose is to evaluate the occurrence of dose limiting toxicities for a selected group of patients with, typically, life threatening disease. The goal is to maximize the potential for therapeutic success in a situation where toxic side effects are inevitable and increase with increasing dose. From a range of given doses, we aim to determine the dose with a rate of toxicity as close as possible to some threshold chosen by the investigators. This dose is called the MTD (maximum tolerated dose). The standard situation is where we have a finite range of doses ordered with respect to the probability of toxicity at each dose. In this thesis we introduce a very general approach to modeling the problem - SPM (semi-parametric methods) - and these include a large class of methods. The viewpoint of SPM allows us to see things in, arguably, more relevant terms and to provide answers to questions such as asymptotic behavior. What kind of behavior should we be aiming for? For instance, can we consistently estimate the MTD? How, and under which conditions? Different parametrizations of SPM are considered and studied theoretically and via simulations. The obtained performances are comparable, and often better, to those of currently established methods. We extend the findings to the case of partial ordering in which more than one drug is under study and we do not necessarily know how all drug pairs are ordered. The SPM model structure leans on a hierarchical set-up whereby certain parameters are linearly constrained. The theoretical aspects of this structure are outlined for the case of distributions with discrete support. In this setting the great majority of laws can be easily considered and this enables us to avoid over restrictive specifications than can results in poor behavior
Li, Shuxian. "Modélisation spatio-temporelle pour l'esca de la vigne à l'échelle de la parcelle." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0313/document.
Повний текст джерелаEsca grapevine disease is one of the incurable dieback disease with the etiology not completely elucidated. It represents one of the major threats for viticulture around the world. To better understand the underlying process of esca spread and the risk factors of this disease, we carried out quantitative analyses of the spatio-temporal development of esca at vineyard scale. In order to detect the spatial correlation among the diseased vines, the non-parametric statistical tests were applied to the spatio-temporal data of esca foliar symptom expression for 15 vineyards in Bordeaux region. Among vineyards, a large range of spatial patterns, from random to strongly structured, were found. In the vineyards with strongly aggregated patterns, no significant increase in the size of cluster and local spread from symptomatic vines was shown, suggesting an effect of the environment in the explanation of this aggregation. To model the foliar symptom occurrence, we developed hierarchical logistic regression models by integrating exogenous covariates, covariates of neighboring symptomatic vines already diseased, and also a latent process with spatio-temporal auto-correlation. The Bayesian inferences of these models were performed by INLA (Inverse Nested Laplace Approximation) approach. The results confirmed the effect of environmental factors on the occurrence risk of esca symptom. The secondary locally spread of esca from symptomatic vines located on the same row or out of row was not shown. A two-step centered auto-logistic regression model, which explicitly integrated the spatio-temporal neighboring structure, was also developed. At last, a geostatistical method was proposed to interpolate data with a particular anisotropic structure. It allowed interpolating the ancillary variable, electrical resistivity of soil, which were used to estimate the available soil water content at vine-scale. These geostatistical methods and spatio-temporal statistical methods developed in this thesis offered outlook to identify risk factors, and thereafter to predict the development of esca grapevine disease in different agronomical contexts
Papoutsis, Panayotis. "Potentiel et prévision des temps d'attente pour le covoiturage sur un territoire." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0059.
Повний текст джерелаThis thesis focuses on the potential and prediction of carpooling waiting times in a territory using statistical learning methods. Five main themes are covered in this manuscript. The first presents quantile regression techniques to predict waiting times. The second details the construction of a workflow based on Geographic Information Systems (GIS) tools in order to fully leverage the carpooling data. In a third part we develop a hierarchical bayesian model in order to predict traffic flows and waiting times. In the fourth part, we propose a methodology for constructing an informative prior by bayesian transfer to improve the prediction of waiting times for a short dataset situation. Lastly, the final theme focuses on the production and industrial exploitation of the bayesian hierarchical model
Decelle, Aurélien. "Statistical physics of disordered networks - Spin Glasses on hierarchical lattices and community inference on random graphs." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00653375.
Повний текст джерелаDobigeon, Nicolas. "Modèles bayésiens hiérarchiques pour le traitement multi-capteur." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2007. http://tel.archives-ouvertes.fr/tel-00189738.
Повний текст джерелаDiard, Julien. "La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile." Phd thesis, Grenoble INPG, 2003. http://tel.archives-ouvertes.fr/tel-00004369.
Повний текст джерелаcomportement ? Qu'est-ce-que naviguer, se localiser et prédire, pour un
robot mobile devant accomplir une tâche donnée ?
Ces questions n'ont pas de réponses uniques ou évidentes à ce jour, et
restent centrales à de nombreux domaines de recherches.
La robotique, par exemple, souhaite y répondre en vue de la synthèse de
systèmes sensori-moteurs performants. Les sciences cognitives placent ces
questions comme essentielles à la compréhension des êtres vivants, de leurs
compétences, et au-delà, de leurs intelligences.
Notre étude se situe à la croisée de ces disciplines. Nous étudions tout
d'abord les méthodes probabilistes classiques (Localisation Markovienne,
PDMPOs, MMCs, etc.), puis certaines approches dites "bio-inspirées"
(Berthoz, Franz, Kuipers). Nous analysons les avantages et inconvénients
respectifs de ces approches en les replaçant dans un cadre général de
programmation des robots basé sur l'inférence bayésienne (PBR).
Nous proposons un formalisme original de modélisation probabiliste de
l'interaction entre un robot et son environnement : la carte bayésienne.
Dans ce cadre, définir une carte revient à spécifier une distribution de
probabilités particulière. Certaines des questions évoquées ci-dessus se
ramènent alors à la résolution de problèmes d'inférence probabiliste.
Nous définissons des opérateurs d'assemblage de cartes bayésiennes,
replaçant ainsi les notions de "hiérarchie de cartes" et de développement
incrémental comme éléments centraux de notre approche, en accord avec les
données biologiques. En appuyant l'ensemble de notre travail sur le
formalisme bayésien, nous profitons d'une part d'une capacité de traitement
unifié des incertitudes, et d'autre part, de fondations mathématiques
claires et rigoureuses. Notre formalisme est illustré par des exemples
implantés sur un robot mobile Koala.
Belhadj, Jihane. "Modèles paramétriques pour la tomographie sismique bayésienne." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM073/document.
Повний текст джерелаFirst arrival time tomography aims at inferring the seismic wave propagation velocity using experimental first arrival times. In our study, we rely on a Bayesian approach to estimate the wave velocity and the associated uncertainties. This approach incorporates the information provided by the data and the prior knowledge of the velocity model. Bayesian tomography allows for a better estimation of wave velocity as well asassociated uncertainties. However, this approach remains fairly expensive, and MCMC algorithms that are used to sample the posterior distribution are efficient only as long as the number of parameters remains within reason. Hence, their use requires a careful reflection both on the parameterization of the velocity model, in order to reduce the problem's dimension, and on the definition of the prior distribution of the parameters. In this thesis, we introduce new parsimonious parameterizations enabling to accurately reproduce the wave velocity field with the associated uncertainties.The first parametric model that we propose uses a random Johnson-Mehl tessellation, a variation of the Voronoï tessellation. The second one uses Gaussian kernels as basis functions. It is especially adapted to the detection of seismic wave velocity anomalies. Each anomaly isconsidered to be a linear combination of these basis functions localized at the realization of a Poisson point process. We first illustrate the tomography results with a synthetic velocity model, which contains two small anomalies. We then apply our methodology to a more advanced and more realistic synthetic model that serves as a benchmark in the oil industry. The tomography results reveal the ability of our algorithm to map the velocity heterogeneitieswith precision using few parameters. Finally, we propose a new parametric model based on the compressed sensing techniques. The first results are encouraging. However, the model still has some weakness related to the uncertainties estimation.In addition, we analyse real data in the context of induced microseismicity. In this context, we develop a trans-dimensional and hierarchical approach in order to deal with the full complexity of the layered model
Chagneau, Pierrette. "Modélisation bayésienne hiérarchique pour la prédiction multivariée de processus spatiaux non gaussiens et processus ponctuels hétérogènes d'intensité liée à une variable prédite : application à la prédiction de la régénération en forêt tropicale humide." Montpellier 2, 2009. http://www.theses.fr/2009MON20157.
Повний текст джерелаOne of the weak points of forest dynamics models is the recruitment. Classically, ecologists make the assumption that recruitment mainly depends on both spatial pattern of mature trees and environment. A detailed inventory of the stand and the environmental conditions enabled them to show the effects of these two factors on the local density of seedlings. In practice, such information is not available: only a part of seedlings is sampled and the environment is partially observed. The aim of the paper is to propose an approach in order to predict the spatial distribution and the seedlings genotype on the basis of a reasonable sampling of seedling, mature trees and environmental conditions. The spatial pattern of the seedlings is assumed to be a realization of a marked point process. The intensity of the process is not only related to the seed and pollen dispersal but also to the sapling survival. The sapling survival depends on the environment; so the environment must be predicted on the whole study area. The environment is characterized through spatial variables of different nature and predictions are obtained using a spatial hierarchical model. Unlike the existing models which assume the environmental covariables as exactly known, the recruitment model we propose takes into account the error related to the prediction of the environment. The prediction of seedling recruitment in tropical rainforest in French Guiana illustrates our approach
Звіти організацій з теми "Modèle hiérarchique bayésien"
Boreux, J. J. Dévelopement d'un modèle hiérarchique Bayésien appliqué aux épaisseurs de cernes. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328077.
Повний текст джерела