Добірка наукової літератури з теми "Mobile laser scanner (MLS)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mobile laser scanner (MLS)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mobile laser scanner (MLS)"
Yamamoto, K., T. Chen, and N. Yabuki. "A CALIBRATION METHOD OF TWO MOBILE LASER SCANNING SYSTEM UNITS FOR RAILWAY MEASUREMENT." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020 (August 6, 2020): 277–83. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-277-2020.
Повний текст джерелаOude Elberink, S. J. "SMART FUSION OF MOBILE LASER SCANNER DATA WITH LARGE SCALE TOPOGRAPHIC MAPS." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2020 (August 3, 2020): 251–58. http://dx.doi.org/10.5194/isprs-annals-v-2-2020-251-2020.
Повний текст джерелаNikoohemat, S., M. Peter, S. Oude Elberink, and G. Vosselman. "EXPLOITING INDOOR MOBILE LASER SCANNER TRAJECTORIES FOR SEMANTIC INTERPRETATION OF POINT CLOUDS." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W4 (September 14, 2017): 355–62. http://dx.doi.org/10.5194/isprs-annals-iv-2-w4-355-2017.
Повний текст джерелаHartley, Robin J. L., Sadeepa Jayathunga, Peter D. Massam, Dilshan De Silva, Honey Jane Estarija, Sam J. Davidson, Adedamola Wuraola, and Grant D. Pearse. "Assessing the Potential of Backpack-Mounted Mobile Laser Scanning Systems for Tree Phenotyping." Remote Sensing 14, no. 14 (July 11, 2022): 3344. http://dx.doi.org/10.3390/rs14143344.
Повний текст джерелаGonzalez-Barbosa, Jose-Joel, Karen Lizbeth Flores-Rodrıguez, Francisco Javier Ornelas-Rodrıguez, Felipe Trujillo-Romero, Erick Alejandro Gonzalez-Barbosa, and Juan B. Hurtado-Ramos. "Using mobile laser scanner and imagery for urban management applications." IAES International Journal of Robotics and Automation (IJRA) 11, no. 2 (June 1, 2022): 89. http://dx.doi.org/10.11591/ijra.v11i2.pp89-110.
Повний текст джерелаKaasalainen, S., H. Kaartinen, A. Kukko, K. Anttila, and A. Krooks. "Brief communication "Application of mobile laser scanning in snow cover profiling"." Cryosphere Discussions 4, no. 4 (November 30, 2010): 2513–22. http://dx.doi.org/10.5194/tcd-4-2513-2010.
Повний текст джерелаKaasalainen, S., H. Kaartinen, A. Kukko, K. Anttila, and A. Krooks. "Brief communication "Application of mobile laser scanning in snow cover profiling"." Cryosphere 5, no. 1 (March 1, 2011): 135–38. http://dx.doi.org/10.5194/tc-5-135-2011.
Повний текст джерелаRahmadiansyah, Megan, and Muhammad Iqbal Taftazani. "Pemanfaatan Data Pengukuran Mobile Laser Scanner untuk Analisis Perubahan Elevasi Ruas Tol." Journal of Geospatial Science and Technology 2, no. 1 (July 29, 2024): 12–18. http://dx.doi.org/10.22146/jgst.v2i1.6097.
Повний текст джерелаNikoohemat, Shayan, Michael Peter, Sander Oude Elberink, and George Vosselman. "Semantic Interpretation of Mobile Laser Scanner Point Clouds in Indoor Scenes Using Trajectories." Remote Sensing 10, no. 11 (November 7, 2018): 1754. http://dx.doi.org/10.3390/rs10111754.
Повний текст джерелаMitka, Bartosz, Przemysław Klapa, and Pelagia Gawronek. "Laboratory Tests of Metrological Characteristics of a Non-Repetitive Low-Cost Mobile Handheld Laser Scanner." Sensors 24, no. 18 (September 17, 2024): 6010. http://dx.doi.org/10.3390/s24186010.
Повний текст джерелаДисертації з теми "Mobile laser scanner (MLS)"
Gourguechon, Camille. "Création et mise à jour de maquettes numériques de bâtiments (BIM) à partir de nuages de points issus de scanners laser dynamiques . : focus sur les environnements intérieurs." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD019.
Повний текст джерелаDriven by the need for more efficient and sustainable design and management, BIM (Building Information Modelling) is expanding across the entire building industry. However, despite the advent of laser scanners for indoor surveys, the adoption of BIM in existing buildings is hampered by the difficulties of creating and updating models, which are tedious and time-consuming tasks performed mainly manually. This is the background to this thesis, which aims to automate the process of modelling buildings using point clouds and detecting geometric changes in existing digital models. The challenge is twofold, in considering in particular the point clouds from dynamic laser scanners, which are reputed more complex to deal with than those from static scanners but are also increasingly common due to the wide adoption of these sensors by professionals
Nalani, Hetti Arachchige. "Automatic Reconstruction of Urban Objects from Mobile Laser Scanner Data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159872.
Повний текст джерелаUp-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds. The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models. Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree. The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned
Colaço, André Freitas. "Mobile terrestrial laser scanner for site-specific management in orange crop." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/.
Повний текст джерелаSensores baseados em tecnologia LiDAR (Light Detection and Ranging) têm o potencial de fornecer modelos tridimensionais de árvores, provendo informações como o volume e altura de copa. Essas informações podem ser utilizadas em diagnósticos e recomendações localizadas de fertilizantes e defensivos agrícolas. Este estudo teve como objetivo investigar o uso de sensores LiDAR na cultura da laranja, uma das principais culturas de porte arbóreo no Brasil. Diversas pesquisas têm desenvolvido sistemas LiDAR para culturas arbóreas. Porém, normalmente tais sistemas são empregados em plantas individuais ou em pequenas áreas. Dessa forma, diversos aspectos da aquisição e processamento de dados ainda devem ser desenvolvidos para viabilizar a aplicação em larga escala. O primeiro estudo deste documento (Capítulo 3) focou no desenvolvimento de um sistema LiDAR (Mobile Terrestrial Laser Scanner - MTLS) e nova metodologia de processamento de dados para obtenção de informações acerca da geometria das copas em pomares comerciais de laranja. Um sensor a laser e um receptor RTK-GNSS (Real Time Kinematics - Global Navigation Satellite System) foram instalados em um veículo para leituras em campo. O processamento de dados foi baseado na geração de uma nuvem de pontos, seguida dos passos de filtragem, classificação e reconstrução da superfície das copas. Um pomar comercial de laranja de 25 ha foi utilizado para a validação. O sistema de aquisição e processamento de dados foi capaz de produzir uma nuvem de pontos representativa do pomar, fornecendo informação sobre geometria das plantas em alta resolução. A escolha sobre o tipo de classificação da nuvem de pontos (em plantas individuais ou em seções transversais das fileiras) e sobre o algoritmo de reconstrução de superfície, foi discutida nesse estudo. O segundo estudo (Capítulo 4) buscou caracterizar a variabilidade espacial da geometria de copa em pomares comerciais. Entender tal variabilidade permite avaliar se a aplicação em taxas variáveis de insumos baseada em sensores LiDAR (aplicar quantias de insumos proporcionais ao tamanho das copas) é uma estratégia adequada para otimizar o uso de insumos. Cinco pomares comerciais foram avaliados com o sistema MTLS. De acordo com a variabilidade encontrada, a economia de insumos pelo uso da taxa variável foi estimada em aproximadamente 40%. O segundo objetivo desse estudo foi avaliar a relação entre a geometria de copa e diversos outros parâmetros dos pomares. Os mapas de volume e altura de copa foram comparados aos mapas de produtividade, elevação, condutividade elétrica do solo, matéria orgânica e textura do solo. As correlações entre geometria de copa e produtividade ou fatores de solo variaram de fraca até forte, dependendo do pomar. Quando os pomares foram divididos entre três classes com diferentes tamanhos de copas, o desempenho em produtividade e as características do solo foram distintas entre as três zonas, indicando que parâmetros de geometria de copa são variáveis úteis para a delimitação de unidades de gestão diferenciada em um pomar. Os resultados gerais desta pesquisa mostraram o potencial de sistemas MTLS para pomares de laranja, indicando como a geometria de copa pode ser utilizada na gestão localizada de pomares de laranja.
Vock, Dominik. "Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-141582.
Повний текст джерелаAlshawa, Majd. "Contribution à la cartographie mobile : développement et caractérisation d’un système basé sur un scanner laser terrestre." Strasbourg, 2009. https://publication-theses.unistra.fr/public/theses_doctorat/2010/ALSHAWA_Majd_2010.pdf.
Повний текст джерелаMobile mapping technology has been developing with the growing demand of three-dimensional urban and peri-urban data. This thesis approach is based on the design of a low cost terrestrial mobile mapping system with the adaptation of a Terrestrial Laser Scanner for low dynamics. Our goal is not to compete in performance with commercial systems but rather to appropriate scientific and technological skills which will help in proposing solutions in the field of mobile mapping. Necessary operational settings, such as synchronization and calibration are explained. Then, some methods based on the adjustment of polynomial models are developed according to the traveled paths. Data from various sensors (GPS/ AHRS/TLS) are filtered and tested before their integration by direct georeferencing equation in order to produce a correct point cloud. A comprehensive study on the influence of errors of each sensor on the resulting point cloud is established. The theoretical precision is compared with reference data in order to validate the error analyze. A digital calibrated camera is integrated in the system as a navigation sensor. A photogrammetric solution is proposed to improve the accuracy of the orientation and the position calculated by integrating GPS/ AHRS. At the end of this thesis, an approach towards automatic modeling is proposed to make use of the geometry and precision provided by the system. The designed prototype supplies point clouds whose precision is about 10 to15 cm at the average distance of 20 m
Rascão, Madalena da Silva Ruivo Coreixas. "Aquisição de dados LiDAR com TLS e HMLS para deteção de árvores individuais." Master's thesis, ISA, 2019. http://hdl.handle.net/10400.5/21291.
Повний текст джерелаLiDAR (Light Detection And Ranging) é um sistema baseado nos princípios de Deteção Remota que permite medir distâncias com base no tempo da trajetória da radiação laser, desde que é emitida pelo aparelho até que retorna ao recetor depois de ser refletida numa superfície sólida. A aplicabilidade deste sistema é abrangente a várias áreas da engenharia e prende-se com a capacidade que o mesmo tem de recolher e armazenar dados tridimensionais em forma de nuvens de pontos de qualquer objeto sólido sobre a superfície terrestre. No sector florestal, este sistema permite estimar características dos povoamentos e digitalizar uma extensa área de floresta, de uma forma automatizada, rápida e com detalhe na ordem dos milímetros. O objetivo do presente trabalho é avaliar a capacidade do sistema LiDAR na individualização da árvore comparando as coordenadas estimadas obtidas com dois métodos LiDAR - HMLS (Held-Hand Mobile Laser Scanner) e TLS (Terrestrial Taser Scanner) - com as coordenadas obtidas com GPS sub-métrico, pelo método tradicional de campo, num ensaio clonal de Eucalyptus globulus Labill. com 10 anos de idade. O presente estudo serviu também como primeira abordagem ao desempenho dos dois métodos LiDAR na obtenção de diâmetros às várias alturas do tronco, recorrendo aos algoritmos disponíveis no software R. Para a deteção das árvores individuais, os resultados demonstraram que, em média, o método TLS detetou 65,1% das árvores, enquanto o método HMLS detetou 44,7% das árvores, para todas as parcelas de estudo. Comprovou-se ainda que o levantamento com HMLS só é vantajoso para terrenos regulares e percursos retos. Concluiu-se que deve ser efetuada uma melhoria nos processos associados à utilização do algoritmo SLAM (Simultaneous Localization And Mapping) e salientou-se a importância de utilizar pontos de referência em campo para a obtenção de nuvens de pontos de melhor qualidade
N/A
Mulè, Leonardo. "Low-cost survey solutions to support HBIM - Two case studies: the Azurém Canteen and Paço dos Duques in Portugal." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Знайти повний текст джерелаSmearcheck, Mark A. "Investigation of Dual Airborne Laser Scanners for Detection and State Estimation of Mobile Obstacles in an Aircraft External Hazard Monitor." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1212687342.
Повний текст джерелаAchakir, Farouk. "Au delà du visible : reconstruction d'environnements par scanners laser et miroirs." Electronic Thesis or Diss., Amiens, 2021. http://www.theses.fr/2021AMIE0088.
Повний текст джерелаThis PhD work investigates automatic digitization with complete coverage of large and complex environments using a terrestrial laser scanner (TLS) or a mobile scanner. We propose an adaptive multi-objective view-planner that can operate in an unknown environment to provide in offline mode guidance for the human operator and ease the scanning task or in online mode with a scanner embedded on a mobile robot for an automatic exploration of the environment. The proposed method assumes that the laser scanner is moved on a flat surface which is common in indoor environments, urban areas, open spaces or in various cultural heritage applications. First, we propose a novel exploration strategy that is completely automated and does not require extensive computations that uses specific regions of the environment called "Conservative-Cells" to drastically reduce the number of sensing positions to achieve complete digitization of the environment. Next, we present an approach to improve the scanning process in "offline" mode, especially when using a TLS in large environments. For this purpose, we suggested combining the use of a terrestrial laser scanner with a mobile robot equipped with a planar mirror. The result is a significant reduction in the effort required by the human operator to move the scanner in the environment and improve the completeness rate of the final point cloud. Proposed methods were validated with simulated and real point clouds on both TLS and mobile robot. The proposed approaches show efficient performance in terms of coverage rate and computational time compared to other view-planning approaches as well as the results of an experienced human operator in a large, complex environment
Nalani, Hetti Arachchige [Verfasser], Hans-Gerd [Akademischer Betreuer] Maas, Eberhard [Akademischer Betreuer] Gülch, and Norbert [Akademischer Betreuer] Haala. "Automatic Reconstruction of Urban Objects from Mobile Laser Scanner Data / Hetti Arachchige Nalani. Gutachter: Hans-Gerd Maas ; Eberhard Gülch ; Norbert Haala. Betreuer: Hans-Gerd Maas." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1069093025/34.
Повний текст джерелаЧастини книг з теми "Mobile laser scanner (MLS)"
Jensen, B., G. Ramel, and R. Siegwart. "Detecting Semi-static Objects with a Laser Scanner." In Autonome Mobile Systeme 2003, 21–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-18986-9_3.
Повний текст джерелаFlores-Rodríguez, K. L., J. J. González-Barbosa, F. J. Ornelas-Rodríguez, J. B. Hurtado-Ramos, and P. A. Ramirez-Pedraza. "Road Signs Segmentation Through Mobile Laser Scanner and Imagery." In Advances in Computational Intelligence, 376–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60887-3_33.
Повний текст джерелаPhan, Anh Thu Thi, and Anh Vy Ngoc Huynh. "Automatic Extracting Road Edges from Mobile Laser Scanner Point Cloud." In Lecture Notes in Civil Engineering, 1624–32. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7434-4_175.
Повний текст джерелаZuñiga-Noël, David, Jose-Raul Ruiz-Sarmiento, and Javier Gonzalez-Jimenez. "Intrinsic Calibration of Depth Cameras for Mobile Robots Using a Radial Laser Scanner." In Computer Analysis of Images and Patterns, 659–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_54.
Повний текст джерелаLiu, Tianyu, Ye Gu, Weihua Sheng, Yongqiang Li, and Yongsheng Ou. "Detection and Tracking of Moving Objects for Indoor Mobile Robots with a Low-Cost Laser Scanner." In Artificial Intelligence and Mobile Services – AIMS 2018, 243–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94361-9_19.
Повний текст джерелаYu, Jinxia, Zixing Cai, and Zhuohua Duan. "Mobile Robot Self-localization Based on Feature Extraction of Laser Scanner Using Self-organizing Feature Mapping." In Advances in Neural Networks – ISNN 2007, 743–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72383-7_87.
Повний текст джерелаDonati Sarti, Giulio, Mauro Busa, Gabriele Garnero, Andrea Magnani, and Ivano Rossato. "An Open-Source Approach to Modelling and Analysing a Tree Detected with a Mobile Laser Scanner." In Geomatics for Green and Digital Transition, 275–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17439-1_20.
Повний текст джерелаGonçalves, José, João Paulo Coelho, Manuel Braz-César, and Paulo Costa. "Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach." In Lecture Notes in Electrical Engineering, 49–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58653-9_5.
Повний текст джерелаEscolà, A., J. A. Martínez-Casasnovas, J. Rufat, A. Arbonés, R. Sanz, F. Sebé, J. Arnó, et al. "A mobile terrestrial laser scanner for tree crops: point cloud generation, information extraction and validation in an intensive olive orchard." In Precision agriculture '15, 337–44. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-814-8_41.
Повний текст джерелаSahin, Cumhur, Bahadır Ergun, and Furkan Bilucan. "Terrestrial Backpack Laser Scanner Usage in Mobile Surveying: A Case Study for Cadastral Surveying." In Point Cloud Generation and Its Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1006158.
Повний текст джерелаТези доповідей конференцій з теми "Mobile laser scanner (MLS)"
Bianchini Ciampoli, Luca, Alessandro Calvi, Alessandro Di Benedetto, Margherita Fiani, and Valerio Gagliardi. "Ground Penetrating Radar (GPR) and Mobile Laser Scanner (MLS) technologies for non-destructive analysis of transport infrastructures." In Earth Resources and Environmental Remote Sensing/GIS Applications XII, edited by Karsten Schulz, Konstantinos G. Nikolakopoulos, and Ulrich Michel. SPIE, 2021. http://dx.doi.org/10.1117/12.2599283.
Повний текст джерелаCabo, Carlos, Silverio García-Cortés, Agustín Menéndez-Díaz, and Celestino Ordoñez. "Automatic road edge detection from Mobile Laser Scanning (MLS)." In Optics and Measurement 2016 International Conference, edited by Jana Kovacicinova. SPIE, 2016. http://dx.doi.org/10.1117/12.2257108.
Повний текст джерелаPodsedkowski, L., J. Nowakowski, M. Idzikowski, and I. Visvary. "Online navigation of mobile robots using laser scanner." In Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353). IEEE, 1999. http://dx.doi.org/10.1109/romoco.1999.791082.
Повний текст джерелаSobreira, Heber, A. Paulo Moreira, Paulo Gomes Costa, and Jose Lima. "Robust Mobile Robot Localization Based on Security Laser Scanner." In 2015 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2015. http://dx.doi.org/10.1109/icarsc.2015.28.
Повний текст джерелаMorita, Kakeru, Masafumi Hashimoto, and Kazuhiko Takahashi. "Point-Cloud Mapping and Merging Using Mobile Laser Scanner." In 2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, 2019. http://dx.doi.org/10.1109/irc.2019.00078.
Повний текст джерелаWilson, Scott, Johan Potgieter, and Khalid Arif. "Floor surface mapping using mobile robot and 2D laser scanner." In 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2017. http://dx.doi.org/10.1109/m2vip.2017.8211508.
Повний текст джерелаXiao, Qinghua, Fuchun Sun, Rui Ge, Kunlun Chen, and Bin Wang. "Human tracking and following of mobile robot with a laser scanner." In 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2017. http://dx.doi.org/10.1109/icarm.2017.8273243.
Повний текст джерелаJianhua Wang, Bing Li, Weihai Chen, and Lixia Rong. "3D reconstruction embedded system based on laser scanner for mobile robot." In 2008 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2008. http://dx.doi.org/10.1109/iciea.2008.4582604.
Повний текст джерелаzhang, Heng, Yanhong Ge, and Wenfeng Li. "Human Following of Mobile Robot With a Low-cost Laser Scanner." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914440.
Повний текст джерелаEl-Halawany, Sherif Ibrahim, and Derek D. Lichti. "Detection of Road Poles from Mobile Terrestrial Laser Scanner Point Cloud." In 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM). IEEE, 2011. http://dx.doi.org/10.1109/m2rsm.2011.5697364.
Повний текст джерелаЗвіти організацій з теми "Mobile laser scanner (MLS)"
Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.
Повний текст джерелаCoastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.
Повний текст джерела