Добірка наукової літератури з теми "MMWAVE PROPAGATION"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MMWAVE PROPAGATION".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "MMWAVE PROPAGATION"

1

Al-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim, and Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments." Electronics 10, no. 14 (2021): 1653. http://dx.doi.org/10.3390/electronics10141653.

Повний текст джерела
Анотація:
The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Baobao, Pan Tang, Jianhua Zhang, Yue Yin, Guangyi Liu, and Liang Xia. "Propagation Characteristics Comparisons between mmWave and Visible Light Bands in the Conference Scenario." Photonics 9, no. 4 (2022): 228. http://dx.doi.org/10.3390/photonics9040228.

Повний текст джерела
Анотація:
Millimeter-wave (mmWave) communications and visible light communications (VLC) are proposed to form hybrid mmWave/VLC systems. Furthermore, channel modeling is the foundation of system design and optimization. In this paper, we compare the propagation characteristics, including path loss, root mean square (RMS) delay spread (DS), K-factor, and cluster characteristics, between mmWave and VLC bands based on a measurement campaign and ray tracing simulation in a conference room. We find that the optical path loss (OPL) of VLC channels is highly dependent on the physical size of the photodetectors (PDs). Therefore, an OPL model is further proposed as a function of the distance and size of PDs. We also find that VLC channels suffer faster decay than mmWave channels. Moreover, the smaller RMS DS in VLC bands shows a weaker delay dispersion than mmWave channels. The results of K-factor indicate that line-of-sight (LOS) components mainly account for more power for mmWave in LOS scenarios. However, non-LOS (NLOS) components can be stronger for VLC at a large distance. Furthermore, the K-Power-Means algorithm is used to perform clustering. The fitting cluster number is 5 and 6 for mmWave and VLC channels, respectively. The clustering results reveal the temporal sparsity in mmWave bands and show that VLC channels have a large angular spread.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rodríguez-Corbo, Fidel, Leyre Azpilicueta, Mikel Celaya-Echarri, et al. "Millimeter Wave Spatial Channel Characterization for Vehicular Communications." Proceedings 42, no. 1 (2019): 64. http://dx.doi.org/10.3390/ecsa-6-06562.

Повний текст джерела
Анотація:
With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rodríguez-Corbo, Fidel Alejandro, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio Lopez-Iturri, Ana V. Alejos, and Francisco Falcone. "Deterministic Propagation Approach for Millimeter-Wave Outdoor Smart Parking Solution Deployment." Engineering Proceedings 2, no. 1 (2020): 81. http://dx.doi.org/10.3390/ecsa-7-08231.

Повний текст джерела
Анотація:
Impact factor as an indicator of efficiency or sustainability is entirely correlated with the continuous development of the smart city concept technology application. Intelligent transportation systems (ITSs) and particularly autonomous vehicles are expected to play an important role in this challenging environment. Fast and secure connections will be pivotal in order to achieve this new vehicular communications’ application era. The use of millimeter-wave (mmWave) frequency range is the most promising approach to allow these real-time, high-demand applications that require higher bandwidth with the minimum possible latency. However, an in-depth mmWave-channel characterization of the environment is required for a proper mmWave-based solution deployment. In this work, a complete radio wave propagation channel characterization for a mmWave smart parking solution deployment in a complex outdoor environment was assessed at a 28 GHz frequency band. The considered scenario is a parking lot placed in an open free university campus area surrounded by inhomogeneous vegetation. The vehicle and vegetation density within the scenario, in terms of inherent transceivers density and communication impairments, leads to overall system operation challenges, given by multiple communication links operation at line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. By means of an in-house developed 3D ray launching (3D-RL) algorithm, the impact of variable vegetation density is addressed, providing precise modelling estimations of large-scale multipath propagation effects in terms of received power levels and path loss. The obtained results along with the proposed simulation methodology can aid in an adequate characterization of an mmWave communication channel for new vehicular communications networks, applications, and deployments, considering the outdoor conditions as well as the impact of different vegetation densities, for current as well as for future wireless technologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gulfam, Sardar, Syed Nawaz, Konstantinos Baltzis, Abrar Ahmed, and Noor Khan. "Characterization of Fading Statistics of mmWave (28 GHz and 38 GHz) Outdoor and Indoor Radio Propagation Channels." Technologies 7, no. 1 (2019): 9. http://dx.doi.org/10.3390/technologies7010009.

Повний текст джерела
Анотація:
Extension of usable frequency spectrum from microwave to millimeter-wave (mmWave) is one of the key research directions in addressing the capacity demands of emerging 5th-generation communication networks. This paper presents a thorough analysis on the azimuthal multipath shape factors and second-order fading statistics (SOFS) of outdoor and indoor mmWave radio propagation channels. The well-established analytical relationship of plain angular statistics of a radio propagation channel with the channel’s fading statistics is used to study the channel’s fading characteristics. The plain angle-of-arrival measurement results available in the open literature for four different outdoor radio propagation scenarios at 38 GHz, as well as nine different indoor radio propagation scenarios at 28 GHz and 38 GHz bands, are extracted by using different graphical data interpretation techniques. The considered quantifiers for energy dispersion in angular domain and SOFS are true standard-deviation, angular spread, angular constriction, and direction of maximum fading; and spatial coherence distance, spatial auto-covariance, average fade duration, and level-crossing-rate; respectively. This study focuses on the angular spread analysis only in the azimuth plane. The conducted analysis on angular spread and SOFS is of high significance in designing modulation schemes, equalization schemes, antenna-beams, channel estimation, error-correction techniques, and interleaving algorithms; for mmWave outdoor and indoor radio propagation environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rahayu, Ismalia, and Ahmad Firdausi. "5G Channel Model for Frequencies 28 GHz, 73 GHz and 4 GHz with Influence of Temperature in Bandung." Jurnal Teknologi Elektro 13, no. 2 (2022): 94. http://dx.doi.org/10.22441/jte.2022.v13i2.006.

Повний текст джерела
Анотація:
The 5G channel model is the latest research on future cellular communication by considering the proposed millimeter wave (mmwave) as an enabling technology for the realization of connectivity in the 5G era. However, mmwave signal propagation suffers a high propagation loss to sensitivity to delay, resulting in a high probability and a low signal to signal ratio (SNR). This can take into account the potential for millimeter wave (mmwave) frequencies of 28, 73 and 4 GHz which are capable of meeting wide bandwidth requirements and data rates of up to Gbps for various scenarios such as Urban Microcell (UMi) and Urban Macrocell (UMa). The area used to conduct this research is in Indonesia because it is a tropical region that has high rainfall so that it can determine the effect that occurs when it is at maximum and minimum temperatures in each month. Therefore, to determine the characteristics of the 28, 73 and 4 GHz channels in the city of Bandung. This study discusses large-scale mmwave characteristics such as path loss, delay spread and power delay profile for line-of-sight (LOS) and non-line-of-sight (NLOS) cases and compares directional and omnidirectional propagation. In this study the Urban Microcell (UMi) scenario was carried out at a distance of 20 meters to 200 meters with a frequency of 28 GHz and 73 GHz, then for the Urban Macro cell (UMa) scenario at a frequency of 4 GHz with a distance of 50 meters to 500 meters.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dos Anjos, Andre Antonio, Tiago Reis Rufino Marins, Carlos Rafael Nogueira Da Silva, et al. "Higher Order Statistics in a mmWave Propagation Environment." IEEE Access 7 (2019): 103876–92. http://dx.doi.org/10.1109/access.2019.2930931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yao, H., X. Wang, H. Qi, and X. Liang. "TIGHTLY COUPLED INDOOR POSITIONING USING UWB/MMWAVE RADAR/IMU." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (May 5, 2022): 323–29. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-323-2022.

Повний текст джерела
Анотація:
Abstract. The ultra-wideband (UWB)-based positioning has a wide internet of things applications such as smart medical and smart logistics, due to its high positioning accuracy. However, non-line-of-sight radio propagation degrades UWB positioning accuracy. The inertial measurement unit (IMU) can achieve positioning with high accuracy in a short time. In addition, the millimeter wave (mmWave) radar can work well in scenes such as fog, smoke, dust, and other small particles due to the longer wavelength of mmWave Radar, but the drift error of IMU and mmWave radar are all increased rapidly over time. This paper achieves the tight coupling of UWB and IMU, UWB and mmWave radar based on the extended Kalman filter, respectively. The field experiments were conducted based on a handheld platform in an indoor scene to evaluate and compare the performance of the fusion position systems; the experiment results demonstrated that the positioning accuracy by fusing UWB/IMU and UWB/mmWave was significantly higher than that of the positioning using a single sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiang, Ting, Maozhong Song, Xiaorong Zhu, and Xu Liu. "Channel Estimation for Broadband Millimeter Wave MIMO Systems Based on High-Order PARALIND Model." Wireless Communications and Mobile Computing 2021 (November 23, 2021): 1–12. http://dx.doi.org/10.1155/2021/6408442.

Повний текст джерела
Анотація:
Channel state information (CSI) is important to improve the performance of wireless transmission. However, the problems of high propagation path loss, multipath, and frequency selective fading make it difficult to obtain the CSI in broadband millimeter-wave (mmWave) system. Based on the inherent multidimensional structure of mmWave multipath channels and the correlation between channel dimensions, mmWave multiple input multiple output (MIMO) channels are modelled as high-order parallel profiles with linear dependence (PARALIND) model in this paper, and a new PARALIND-based channel estimation algorithm is proposed for broadband mmWave system. Due to the structural property of PARALIND model, the proposed algorithm firstly separates the multipath channels of different scatterers by PARALIND decomposition and then estimates the channel parameters from the factor matrices decomposed from the model based on their structures. Meanwhile, the performance of mmWave channel estimation is analysed theoretically. A necessary condition for channel parameter estimation is given based on the uniqueness principle of PARALIND model. Simulation results show that the proposed algorithm performs better than traditional compressive sensing-based channel estimation algorithms.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Idan, Hayder R., Basim K. AL-Shammari, and Hasan F. Khazal. "mmWave Compound Link Budget Model of Dust and Humidity Effect." Wasit Journal of Engineering Sciences 11, no. 1 (2023): 45–60. http://dx.doi.org/10.31185/ejuow.vol11.iss1.323.

Повний текст джерела
Анотація:
mmWave Path Loss (PL) Link Budget (LB) modeling considerations are based on many different factors. For instance, the third generation partnership project (3GPP) model is mainly based on the distance from an Access Point (AP) and the frequency of transmission as well as the transmission link budget situation. Furthermore, there are certain interesting models about the effects of dust and humidity on the mmWave propagation. These models had introduced the consequences of the humid and dusty environments without consideration for the additional mmWave transmission LB parameters. First of all, this paper introduces an average dust and humidity model based on statistical Z-test in order to overcome the variation in the results between the three chosen models for dust and humidity effect in the mmWave range. Secondly, it proposes LB compound model, that comprises 3GPP PL LB with an average dust and humidity model. This introduced compound model has been applied on RMa PL LB with and without the presence of dust and humidity. The simulation of the presented model has been applied for distinct distances from the AP and mmWave transmission frequency range from 0.5 to 30 GHz.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії