Добірка наукової літератури з теми "Mixed organic layers"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mixed organic layers".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mixed organic layers"
Rasoga, Oana, Anne Lutgarde Djoumessi Yonkeu, Carmen Breazu, Marcela Socol, Nicoleta Preda, Florin Stanculescu, Anca Stanculescu, and Emmanuel Iwuoha. "Organic Heterostructures with Dendrimer Based Mixed Layer for Electronic Applications." Molecules 29, no. 17 (September 1, 2024): 4155. http://dx.doi.org/10.3390/molecules29174155.
Повний текст джерелаGhotsa Mekontchou, Claudele, Daniel Houle, Yves Bergeron, and Igor Drobyshev. "Contrasting Root System Structure and Belowground Interactions between Black Spruce (Picea mariana (Mill.) B.S.P) and Trembling Aspen (Populus tremuloides Michx) in Boreal Mixedwoods of Eastern Canada." Forests 11, no. 2 (January 21, 2020): 127. http://dx.doi.org/10.3390/f11020127.
Повний текст джерелаShin, Paik-Kyun, Palanisamy Kumar, Abhirami Kumar, Santhakumar Kannappan, and Shizuyasu Ochiai. "Effects of Organic Solvents for Composite Active Layer of PCDTBT/PC71BM on Characteristics of Organic Solar Cell Devices." International Journal of Photoenergy 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/786468.
Повний текст джерелаHeutz, Sandrine, Paul Sullivan, Brett M. Sanderson, Stephan M. Schultes, and Tim S. Jones. "Molecular Thin Films for Optoelectronic Applications." Solid State Phenomena 121-123 (March 2007): 373–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.373.
Повний текст джерелаGuan, Xi, Yufei Wang, Shang Feng, Jidong Zhang, Qingqing Yang, Binyuan Liu, and Dashan Qin. "Improving the stabilities of organic solar cells via employing a mixed cathode buffer layer." European Physical Journal Applied Physics 95, no. 3 (September 2021): 30201. http://dx.doi.org/10.1051/epjap/2021210151.
Повний текст джерелаHansen, Poul Lenvig, and Holger Lindgreen. "Structural investigations of mixed-layer smectite-illite clay minerals from North Sea oil source rocks." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 374–75. http://dx.doi.org/10.1017/s0424820100126664.
Повний текст джерелаLi, Zuchuan, and Nicolas Cassar. "A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature." Biogeosciences 14, no. 22 (November 14, 2017): 5015–27. http://dx.doi.org/10.5194/bg-14-5015-2017.
Повний текст джерелаKobayashi, Kazuko. "Organic Components of Moxa." American Journal of Chinese Medicine 16, no. 03n04 (January 1988): 179–85. http://dx.doi.org/10.1142/s0192415x88000261.
Повний текст джерелаAkkina, Subhash, та Marcus R. Bond. "Bis(1,2,3-trimethylpyridinium) Octa(μ2-bromido)Tetrabromidopentacuprate(II): Linear, Quasi-Planar Pentacopper(II) Oligomers Stacked to Form Egg-Tray Layers". Crystals 12, № 9 (7 вересня 2022): 1270. http://dx.doi.org/10.3390/cryst12091270.
Повний текст джерелаSeo, Ji Hoon, Jung Sun Park, Suk Jae Lee, Bo Min Seo, Kum Hee Lee, Jung Keun Park, Seung Soo Yoon, and Young Kwan Kim. "Efficient white organic light-emitting diodes with mixed electron transporting layers." Journal of Mechanical Science and Technology 25, no. 1 (January 2011): 17–19. http://dx.doi.org/10.1007/s12206-010-1007-y.
Повний текст джерелаДисертації з теми "Mixed organic layers"
Bou, Rahhal Elie. "Couches organiques à fonctionnalité TEMPO : de la conception par ingénierie de surface innovante à l’application en électrocatalyse." Electronic Thesis or Diss., Angers, 2024. https://dune.univ-angers.fr/documents/dune19187.
Повний текст джерелаSurface functionalization advances as engineering techniques evolve to adjust the structural properties of deposited films. TEMPO-based catalytic platforms benefit from these advancements, as they require performance optimization in confined states. However, the stability and structural organization of TEMPO motifs on conductive surfaces present challenges that limit their full potential. This thesis project explores an innovative surface engineering strategy based on adapting the molecular structure of diazonium salts to adjust the composition and structure of layers formed by their reduction—an issue difficult to overcome with conventional molecular designs. This approach has effectively increased the density of immobilized species and strengthened intermolecular interactions within the organic monolayer. Moreover, this study has shown that the diazotization agents used to synthesize the TEMPO-derivatized diazonium salt influence the redox state of TEMPO entity, and subsequently impacting immobilization efficiency. With such structural modification of the conventional design of diazonium salts, it was possible to design bi-functional surfaces with controlled thickness and composition, generating calibrated surface dilution ratios to optimize catalytic site accessibility. Preliminary electrocatalytic tests demonstrated that diluted TEMPO-based layers exhibit enhanced electrocatalytic activity for electro-assisted alcohol oxidation. These results offer promising prospects for the design of TEMPO-based layers, paving the way for improved stability and efficiency of catalysts in organic transformations
Aversa, Pierfrancesco. "Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Повний текст джерелаDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Pachoumi, Olympia. "Metal oxide/organic interface investigations for photovoltaic devices." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246263.
Повний текст джерелаPfützner, Steffen. "Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83486.
Повний текст джерелаDiese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert
Lesieur, Pierre. "Etude de l'orientation moléculaire dans les films de Langmuir-Blodgett." Paris 6, 1986. http://www.theses.fr/1986PA066290.
Повний текст джерелаLiu, Shun-Wei, and 劉舜維. "Lifetime Study of Organic Light Emitting Devices by Using Mixed Layer Technology." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/87803391267996537222.
Повний текст джерела長庚大學
機械工程研究所
91
Unlike traditional Liquid-Crystal Displays (LCDs), Organic Light Emitting Devices (OLEDs) are self-luminous and need no backlighting. Despite these advantages, OLEDs are not widely commercialized due to its short operation lifetime. In this thesis, the lifetime mechanism in OLEDs, where the device structure based on a mixed emitting layer (EML), is investigated in terms of carrier transport and direct holes-electrons recombination. The mixed EML is sandwiched between the hole and electron transport layers. From accelerated degradation tests, the operation lifetime of optimal mixed layer (ML) device is considerably improved over the heterojunction (HJ) OLEDs, which shows the lifetime of about 60 h with initial luminance of 10,000 cd/m2. This significant improvement in device lifetime is attributed to the elimination of the organic-organic interface. In addition, the luminance reaches 244,100 cd/m2 at 8V, which corresponds to a luminous efficiency of 4.34 cd/A. These results demonstrate that the mixed EML can extend the performance of OLEDs without significantly changing the device structure or organic material.
Hsu, Jhe-Hao, and 許哲豪. "The Luminescence Study of Blue Organic Light-Emitting Diodes Using Mixed Emitting Layer." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/80217826816808518899.
Повний текст джерела輔仁大學
化學系
96
In this experiment,we present and analyze the device performance of mixed layer organic light-emitting devices(OLEDs). The mixed layer material in this device consists of emitting layer(EML) coevaporated with electron transport layer(ETL) and hole transport layer(HTL),respectively. We coevaporate the hole transport material TPD and emitting material DPVBi and use it as the EML. This mixed layer structure blurs the HTL/EML interface. The blurred interface reduce the carrier accumulation and reduce driving voltage,but adjust luminous mechanism. In order to prevent exciton forming in TPBi, we use BCP as hole blocking layer. Therefore,it keep emission wavelength of DPVBi and improve device luminous performance. the max luminance is 12519.43 cd/m2. The luminous power efficiency is 1.71 cd/A The device was made by mixing electron transport layer(TPBI) and emitting layer(DPVBi) in the ratio 1:1.This design could confine the exciton recombination at the mixed layer,and EL emission spectrum is the same.As a result,,it enhance luminous behavior and the max luminance is 12519.43 cd/m2.In other hand,when the mixed ratio change from 1:1 to 2:1,the electron-hole balance is achieved in the emitting layer and high currenent density is shown at low operation voltage.The performance has shown the external quantum efficiency and luminous power efficiency are 2.37% and 2.10 cd/A,respectively.
Lin, Mou-Zhong, and 林茂仲. "Using NPB:Alq3 Mixed Layer to Improve the Efficiency of Organic Light Emitting Diodes." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/30667070382289525906.
Повний текст джерела義守大學
電子工程學系
92
In organic materials, the mobility of the holes(μp , 10-4 cm2/Vs)) are much fast than the electrons(μn , 5x10-6 cm2/Vs). The extra holes will decrease the efficiencies of the light emission. Therefore, the most important issue is to balance the amount of the holes and electrons in the organic light emitting diode (OLED). There are two common ways to achieve it. First is to increase the electrons mobility. Second is to decrease the holes mobility. In this work, we decrease the holes mobility to improve the combined efficiency between the holes and electrons. We inserted a NPB:Alq3 mixed layer between these two NPB and Alq3 layers to decrease the holes mobility and improve the combined efficiency between the holes and electrons. After inserting the NPB:Alq3 layer, the current density of the device( ITO/ MTDATA(15 nm)/ NPB[(60-X)nm]/NPB:Alq3 (Y wt%)(X nm) / Alq3(60 nm)/ LiF(0.7 nm)/ Al(180 nm)) is decreased obviously. This result suggests that NPB:Alq3 layer could delay the holes mobility. The optimum concentration in our device is 30 wt% while the total thickness is 30nm. Finally, we also discuss the possibility of emission light in the NPB:Alq3 layer and the applications of red OLEDs in the future.
Tsai, Chih-Hung, and 蔡志鴻. "Highly Stable Organic Light Emitting Devices with a Uniformly Mixed Hole Transport Layer." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/38963711181445834088.
Повний текст джерела國立交通大學
應用化學系所
93
In this thesis, highly stable organic light emitting devices was made by using a uniformly mixed hole transport layer (UM-HTL) composed of a mixture of 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) and N,N’-bis(1-naphthyl)-N,N’-diphenyl,1,1’-biphenyl-4,4’-diamine (NPB) in a 3:7 (MADN:NPB) ratio. In 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl- 2,3,6,7-tetrahydro-1H,5H,11H-benzo[l]-pyrano[6,7,8-ij]quinolizin-11-one (C-545T) doped green device, the stability of device with a UM-HTL can be greatly improved to 3 times (initial luminance normalized to 100 nits, 52200 hrs) longer than that of the conventional NPB based HTL without deteriorating on its driving voltage, current efficiency and emissive color significantly. This improvement in stability can be attributed to the fact that the accumulations of positive charge in emission layer have been effectively suppressed. Moreover, using UM-HTL in MADN based blue device systems, the stability of device also can be greatly improved to at least 1.5 times longer than that of the conventional NPB based HTL without deteriorating on its driving voltage, current efficiency and emissive color significantly. These results indicated that UM-HTL can improve the stability of device with any kind of emission color without affecting its emission property. Furthermore, UM-HTL has good thin film thermal property to solve the issue of low Tg in conventional HTL materials. Hence, this made UM-HTL a potential candidate to replace the conventional HTL for each emission color.
Tien-Chun, Lin. "Blue Organic Light-Emitting Device and the Study of the Mixed-Host Emitting Layer." 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1907200512180100.
Повний текст джерелаЧастини книг з теми "Mixed organic layers"
Mopper, Kenneth. "Organic Chemical Dynamics of the Mixed Layer: Measurement of Dissolved Hydrophilic Organics at Sea." In Dynamic Processes in the Chemistry of the Upper Ocean, 137–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5215-0_12.
Повний текст джерелаPardasani, R. T., and P. Pardasani. "Magnetic properties of mixed valence organic-based layered vanadium oxide." In Magnetic Properties of Paramagnetic Compounds, 767–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49202-4_372.
Повний текст джерелаPovero, P., M. Fabiano, and G. Catalano. "Particulate Organic Matter and Nutrient Utilization in the Mixed Layer of the Ross Sea." In Ross Sea Ecology, 121–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59607-0_10.
Повний текст джерелаMosbah, O., F. Z. Sabi, S. M. Terrah, H. Boutchiche, N. Hamamousse, A. Sahila, A. Kaiss, and N. Zekri. "Influence of fuel load on the flammability of live Pinus Halepensis needles." In Advances in Forest Fire Research 2022, 1671–74. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_256.
Повний текст джерелаSevink, Jan, and Otto Spaargaren. "Weathering and (Holocene) Soil Formation." In The Physical Geography of Western Europe. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780199277759.003.0027.
Повний текст джерелаOuakki, Moussa, Zakia Aribou, Khadija Dahmani, Otmane Kharbouch, Elhachmia Ech-chihbi, Mohamed Rbaa, Mouhsine Galai, and Mohammed Cherkaoui. "Imidazole Derivative as a Novel Corrosion Inhibitor for Mild Steel in Mixed Pickling Bath." In Handbook of Research on Corrosion Sciences and Engineering, 456–88. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7689-5.ch017.
Повний текст джерела"Rural Hauntings and Black Sheep: Comic Turns, Violence and Supernatural Echoes in New Zealand’s Gothic Comedy Films." In Comic Gothic, edited by Lorna Piatti-Farnell and Angelique Nairn, 225–38. Edinburgh University Press, 2024. https://doi.org/10.3366/edinburgh/9781399505758.003.0016.
Повний текст джерелаAtkinson, Martin E. "The gastrointestinal system." In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0012.
Повний текст джерелаZhang, X. N., and A. Z. Zhao. "Surface Charge." In Chemistry of Variable Charge Soils. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195097450.003.0005.
Повний текст джерелаBarbashova, Iryna. "MASS PEDAGOGICAL EXPERIENCE OF SENSORY DEVELOPMENT OF PRIMARY SCHOOL STUDENTS." In Integration of traditional and innovation processes of development of modern science. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-021-6-4.
Повний текст джерелаТези доповідей конференцій з теми "Mixed organic layers"
Khadka, Dhruba, Yasuhiro Shirai, Masatoshi Yanagida, and Kenjiro Miyano. "Efficient Wide Bandgap Mixed Halide Perovskite Solar Cells Tuning with Electron Transport Layers." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.067.
Повний текст джерелаSteirer, K. Xerxes, N. Edwin Widjonarko, Ajaya K. Sigdel, Matthew T. Lloyd, David S. Ginley, Dana C. Olson, and Joseph J. Berry. "Optimization of organic photovoltaic devices using tuned mixed metal oxide contact layers." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614501.
Повний текст джерелаÖz, Dilara, and Dr Selina Olthof. "Do substrates matter? - the impact of hole transport layers on Iodide/Bromide composition in thermally evaporated mixed halide perovskites." In International Conference on Hybrid and Organic Photovoltaics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. http://dx.doi.org/10.29363/nanoge.hopv.2024.057.
Повний текст джерелаPopovic, Zoran D., Hany Aziz, Carl P. Tripp, Nan-Xing Hu, Ah-Mee Hor, and Gu Xu. "Improving the efficiency and stability of organic light-emitting devices using mixed emitting layers." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Zakya H. Kafafi. SPIE, 1998. http://dx.doi.org/10.1117/12.332630.
Повний текст джерелаSchildkraut, Jay S. "Electrooptic polymer films with organic photoconductors." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fq3.
Повний текст джерелаAversa, Pierfrancesco, Senol Öz, Eunhwan Jung, Olivier Plantevin, Olivier Cavani, Nadège Ollier, Bernard Geffroy, Sanjay Mathur, and Catherine Corbel. "Radiative Recombination in Quadruple Cation Organic-Inorganic Mixed Halide Perovskite Layers: Electron Irradiation Induced Ageing Effects." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.053.
Повний текст джерелаAversa, Pierfrancesco, Senol Öz, Eunhwan Jung, Olivier Plantevin, Olivier Cavani, Nadège Ollier, Bernard Geffroy, Sanjay Mathur, and Catherine Corbel. "Radiative Recombination in Quadruple Cation Organic-Inorganic Mixed Halide Perovskite Layers: Electron Irradiation Induced Ageing Effects." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.053.
Повний текст джерелаSancaktar, E., and J. Kuznicki. "Stress-Dependent Water Uptake Behavior of Clay Reinforced Nanocomposite Epoxy." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80549.
Повний текст джерелаRaghavan, Sathyanarayanan, Ilko Schmadlak, George Leal, and Suresh K. Sitaraman. "Cohesive Zone Models to Predict Multiple White Bumps in Flip-Chip Assemblies." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40199.
Повний текст джерелаGopakumar, Sunil, Francois Billaut, Eric Fremd, and Manthos Economou. "Pb-Free Process Development for a High End Storage Area Network Application." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33857.
Повний текст джерела