Добірка наукової літератури з теми "Mitofusins"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mitofusins".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mitofusins":

1

Cohen, Mickael M., and David Tareste. "Recent insights into the structure and function of Mitofusins in mitochondrial fusion." F1000Research 7 (December 28, 2018): 1983. http://dx.doi.org/10.12688/f1000research.16629.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an overview of the established strategies employed by various protein machineries distinct from Mitofusins to mediate membrane fusion. We then present recent structure–function data on Mitofusins that provide important novel insights into their mode of action in mitochondrial fusion.
2

Wolf, Christina, Víctor López del Amo, Sabine Arndt, Diones Bueno, Stefan Tenzer, Eva-Maria Hanschmann, Carsten Berndt, and Axel Methner. "Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery." Cells 9, no. 4 (March 27, 2020): 815. http://dx.doi.org/10.3390/cells9040815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
3

LeBrasseur, Nicole. "Pro-diversity mitofusins." Journal of Cell Biology 176, no. 4 (February 12, 2007): 373a. http://dx.doi.org/10.1083/jcb.1764iti3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schiavon, Cara R., Rachel E. Turn, Laura E. Newman, and Richard A. Kahn. "ELMOD2 regulates mitochondrial fusion in a mitofusin-dependent manner, downstream of ARL2." Molecular Biology of the Cell 30, no. 10 (May 2019): 1198–213. http://dx.doi.org/10.1091/mbc.e18-12-0804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondria are essential and dynamic organelles undergoing constant fission and fusion. The primary players in mitochondrial morphology (MFN1/2, OPA1, DRP1) have been identified, but their mechanism(s) of regulation are still being elucidated. ARL2 is a regulatory GTPase that has previously been shown to play a role in the regulation of mitochondrial morphology. Here we demonstrate that ELMOD2, an ARL2 GTPase-activating protein (GAP), is necessary for ARL2 to promote mitochondrial elongation. We show that loss of ELMOD2 causes mitochondrial fragmentation and a lower rate of mitochondrial fusion, while ELMOD2 overexpression promotes mitochondrial tubulation and increases the rate of fusion in a mitofusin-dependent manner. We also show that a mutant of ELMOD2 lacking GAP activity is capable of promoting fusion, suggesting that ELMOD2 does not need GAP activity to influence mitochondrial morphology. Finally, we show that ELMOD2, ARL2, Mitofusins 1 and 2, Miros 1 and 2, and mitochondrial phospholipase D (mitoPLD) all localize to discrete, regularly spaced puncta along mitochondria. These results suggest that ELMOD2 is functioning as an effector downstream of ARL2 and upstream of the mitofusins to promote mitochondrial fusion. Our data provide insights into the pathway by which mitochondrial fusion is regulated in the cell.
5

Koch, Linda. "Mitofusins and energy balance." Nature Reviews Endocrinology 9, no. 12 (October 15, 2013): 691. http://dx.doi.org/10.1038/nrendo.2013.202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Escobar-Henriques, Mafalda. "Mitofusins: ubiquitylation promotes fusion." Cell Research 24, no. 4 (February 21, 2014): 387–88. http://dx.doi.org/10.1038/cr.2014.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Miao, Junru, Wei Chen, Pengxiang Wang, Xin Zhang, Lei Wang, Shuai Wang, and Yuan Wang. "MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice." International Journal of Molecular Sciences 22, no. 24 (December 16, 2021): 13507. http://dx.doi.org/10.3390/ijms222413507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.
8

Sloat, S. R., B. N. Whitley, E. A. Engelhart, and S. Hoppins. "Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2." Molecular Biology of the Cell 30, no. 17 (August 2019): 2309–19. http://dx.doi.org/10.1091/mbc.e19-05-0291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondrial structure can be maintained at steady state or modified in response to changes in cellular physiology. This is achieved by the coordinated regulation of dynamic properties including mitochondrial fusion, division, and transport. Disease states, including neurodegeneration, are associated with defects in these processes. In vertebrates, two mitofusin paralogues, Mfn1 and Mfn2, are required for efficient mitochondrial fusion. The mitofusins share a high degree of homology and have very similar domain architecture, including an amino terminal GTPase domain and two extended helical bundles that are connected by flexible regions. Mfn1 and Mfn2 are nonredundant and are both required for mitochondrial outer membrane fusion. However, the molecular features that make these proteins functionally distinct are poorly defined. By engineering chimeric proteins composed of Mfn1 and Mfn2, we discovered a region that contributes to isoform-specific function (mitofusin isoform-specific region [MISR]). MISR confers unique fusion activity and mitofusin-specific nucleotide-dependent assembly properties. We propose that MISR functions in higher-order oligomerization either directly, as an interaction interface, or indirectly through conformational changes.
9

Alsayyah, Cynthia, Manish K. Singh, Maria Angeles Morcillo-Parra, Laetitia Cavellini, Nadav Shai, Christine Schmitt, Maya Schuldiner, et al. "Mitofusin-mediated contacts between mitochondria and peroxisomes regulate mitochondrial fusion." PLOS Biology 22, no. 4 (April 26, 2024): e3002602. http://dx.doi.org/10.1371/journal.pbio.3002602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these “PerMit” contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin–proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.
10

R. Khalil, Rana, Mufeda AL-Ammar, and Hayder A. L. Mossa. "Mitofusin 1 as Marker of Oocyte Maturation in Relevance to ICSI Outcome in Infertile Females." IraQi Journal of Embryos and Infertility Researches 13, no. 2 (November 8, 2023): 39–50. http://dx.doi.org/10.28969/ijeir.v13.i2.r4.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pro-fusion proteins as mitofusins-1 are required for controlling mitochondrial shape which determined by a dynamic balance between organelle fusion and fission and also supports oocyte development. When compare with somatic cell, mitochondria of oocyte are tiny and circular in presence. The aim is to study the mitofusin-1 in the follicular fluid as a marker for evaluating of oocyte maturation in women undergoing ICSI cycles. Fifty infertile females were included in cross-section study was undergoing ICSI procedure with age 20 to 42 years. After retrieval of oocyte and the number of oocytes was recorded by embryologist and follicular fluid Samples were used for the measurement of Mitofusin 1. Mitofusin 1 levels by ELISA kit (Mybiosource /USA).The results showed considerable higher mitofusin1levels in patients with good oocytes quality (3.71 ± 1.35 vs. 2.45 ± 1.12 & p=0.001). There were much positive correlations between follicular fluids mitofusin-1 with both total oocytes count (r= 0.374 & p= 0.007) and MII oocytes (r=0.383 & p=0.006); and there was no much correlation between mitofusin-1 levels with MI oocyte (r= - 0.100 & p= 0.490), germinal vesical oocyte (r=0.103 & p= 0.475) and fertilization rate (r= 0.054 & p= 0.711). High follicular fluid levels of Mitofusin 1 may positively impact oocyte development and pregnancy rate.

Дисертації з теми "Mitofusins":

1

Versini, Raphaëlle. "Structural basis of outer-mitochondrial membrane mitofusin-guided fusion." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS653.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le projet de doctorat porte sur l'étude structurale des mitofusines (Mfn1/2 chez l'homme et Fzo1 chez la levure) en utilisant principalement des méthodes basées sur la modélisation telles que la dynamique moléculaire ou les méthodes de prédiction de structure basées sur l'intelligence artificielle (principalement AlphaFold). Les mitochondries forment un réseau complexe à l'intérieur des cellules, subissant des événements continus de fusion et de fission. Ces processus façonnent la dynamique mitochondriale et sont essentiels pour l'entretien, la fonction, la distribution et l'héritage des mitochondries. La morphologie de ces dernières répond donc aux changements physiologiques constants de la cellule. Les larges GTPase impliquées dans l'ancrage et la fusion des membranes externes de mitochondrie sont des protéines transmembranaires appelées mitofusines. Les mitofusines Mfn1 et Mfn2 se trouvent chez les mammifères. Fzo1 (Fuzzy Onion 1) est l'homologue unique de Mfn1/2 chez la levure Saccharomyces cerevisiae. La fusion de la membrane interne mitochondriale et l'organisation des crêtes sont médiées par l'OPA1 humaine (Atrophie Optique 1) et la Mgm1 de la levure (Maintenance du Génome Mitochondrial 1). La dysfonction de la fusion mitochondriale est liée à plusieurs troubles neurodégénératifs, tels que Parkinson, Alzheimer et la maladie de Huntington. En effet, il a été montré que les mutations dans Mfn2 induisent le développement et la progression de dystrophies musculaires, telles que la maladie de Charcot-Marie-Tooth de type 2A, la forme la plus courante de la maladie CMT axonale. Le mécanisme exact par lequel les mitofusines contribuent à la dysfonction mitochondriale, ainsi que le mécanisme moléculaire exact de la fusion, ne sont pas encore entièrement compris. Dans l'ensemble, la fusion mitochondriale joue un rôle important dans la CMT2A, il est donc d'une importance capitale de comprendre pleinement le processus au niveau moléculaire. Les structures de Mfn1 et Mfn2 ont étés partiellement résolue, le domaine transmembranaire étant exclu, mais aucune structure résolue n'est disponible pour Fzo1. Fzo1 est intégré à membrane externe de mitochondrie avec ses deux domaines transmembranaires, exposant les parties N- et C-terminales vers le cytosol et une boucle vers l'espace intermembranaire. Du côté N-terminal, on trouve deux domaines de répétitions en heptad (HRs), HRN (présent uniquement chez la levure) et HR1, flanquant un domaine GTPase. Un troisième domaine HR, HR2, se trouve dans la partie C-terminale. Certains modèles de Fzo1 ont été construits avec comme template la protéine bactérienne de type dynamin-like (BDLP). BDLP est impliquée dans le remodelage des membranes et existe sous deux états conformationnels, une version compacte fermée qui passe à une structure étendue ouverte lors de la liaison au GTP, sur laquelle les modèles construits étaient basés. L'objectif du doctorat est de mettre à jour le modèle de Fzo1 construit en 2017, en travaillant dans un premier temps le domaine transmembranaire à l'aide de dynamiques moléculaires à plusieurs échelles. Un autre projet a consisté à étudier l'hélice amphipathique du domaine HR1 de Mfn1 (MfnA-AH), à tester ses capacités de liaison à la membrane. Initialement, nous avons utilisé des simulations gros grains, établissant ainsi une base solide pour évaluer la capacité prédictive de la famille de champs de force MARTINI. En utilisant d'autres simulations réalisées avec la pénétratine, nous avons pu fournir une analyse comparative des interactions AH-membranes dans les champs de force MARTINI. Mfn1-AH a ensuite été caractérisé plus en détail à l'aide de simulations tout-atomiques
The Phd project is the structural study of mitofusins (Mfn1/2 in humans and Fzo1 in yeasts) using mainly modeling-based methods such as molecular dynamics or structure prediction methods based on artificial intelligence (mainly AlphaFold). This project is a part of an ANR (MITOFUSION) shared between different partners (Laboratoire de Biochimie Théorique: Antoine Taly, Marc Baaden, Laboratoire des Biomolécules: Patrick Fuchs, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes: Mickaël Cohen, Institut de Psychiatrie et Neurosciences de Paris: David Tareste) whose goal is to understand the structure-function relationships of the mitofusin. Mitochondria form a complex network inside the cells, undergoing continuous fusion and fission events. These processes shape mitochondrial dynamics and are essential for the maintenance, function, distribution and inheritance of mitochondria. The morphology of the latter therefore respond to the ever-changing physiological changes of the cell. The large GTPase involved in the tethering and fusion of the mitochondrial outer membranes (OM) are transmembrane proteins called mitofusins. The mitofusins Mfn1 and Mfn2 can be found in mammals. Fzo1 (Fuzzy Onion 1) is the unique mitofusin homologue in Saccharomyces cerevisiae. The mitochondrial inner membrane fusion and cristea organisation is mediated by human OPA1 (Optic Atrophy 1) and yeast Mgm1 (Mitochondrial Genome Maintenance 1). Mitochondrial fusion dysfonction is related to several neurodegenerative disorders, such as Parkinson, Alzheimer and Huntingtion diseases. As a matter of fact, research has shown that mutations in Mfn2 induce the development and progression of muscular dystrophies, such as Charcot-Marie-Tooth Type 2A, the most common form of axonal CMT disease. The exact mechanism by which the mitofusins contributes to mitochondria dysfunction as well as the exact molecular fusion mechanism is not fully understood yet. Overall, mitochondrial fusion plays an important role in CMT2A, it is thus of paramount importance to get a full understanding of the process at the molecular level. The structure of both Mfn1 and Mfn2 was partially solved, the transmembrane domain being excluded, and no solved structure are available for Fzo1. With our ANR partners, we decided to work on the yeast version of Mitofusin (named Fzo1) as it is a good model (of homology with human Mfn1 and Mfn2) as yeast are convenient hosts for testing how other protein partners are involved in the process (e.g. Ugo1). Fzo1 is embedded in the mitochondrial OM as it possesses two transmembrane domains, exposing N- and C- terminal portions towards the cytosol and a loop towards the intermembrane space. On the N-terminal side can be found two coiled-coil heptad repeats (HRs) domains, HRN (in yeast only) and HR1, flanking a GTPase domain. A third coiled-coil heptad repeats domain HR2 is on the C-terminal portion. Some models of Fzo1 were built based on the mitofusin related bacterial dynamin-like protein (BDLP). BDLP is involved in membrane remodelling and exists in two conformational states, a closed compact version which changes to an opened extended structure, upon GTP-binding, on which the built models were based. The goal of the PhD is to update the model of Fzo1 built in 2017, by working on the transmembrane domains using multiscale molecular dynamics, and then update the overall structure using artificial intelligence methods. An other project consisted in studying the amphipathic helix of HR1 domain of Mfn1 (MfnA-AH), test its membrane binding capabilities. Initially, we employed coarse-grained simulations, establishing a robust foundation for evaluating the predictive capacity of the MARTINI family of force fields. Using other simulations ran with the penetratin, we were able to provide a comparative analysis for the AH-membranes interactions in the MARTINI force-fields. The Mfn1-AH was then further characterized using all-atom simulations
2

Sauvanet, Cécile. "Caractérisation des acteurs et des mécanismes de la fusion mitochondriale." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21883/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mitochondries sont des organites dynamiques qui fusionnent et se divisent continuellement. Cette dynamique est requise pour la biogenèse mitochondriale, la fonction et la dégradation. Les relations entre les OXPHOS, la dynamique et les mécanismes assurant la modulation de la dynamique restent largement inconnus. Nous avons étudié grâce à un essai de fusion in vivo, les relations entre la fusion et les OxPhos dans des cellules de levure portant des mutations ponctuelles dans le gène mitochondrial ATP6 qui sont associés à des maladies chez l’homme. Nous montrons que les défauts des OxPhos provoquent des défauts de fusion de la membrane interne mitochondriale mais pas de la membrane externe. L'inhibition sélective de la fusion de la membrane interne peut être mimée par les ionophores qui dissipent le potentiel de membrane interne, mais pas par des inhibiteurs des phosphorylations oxydatives. Nous montrons une inhibition dominante de fusion qui pourrait être un mécanisme d'exclusion des mitochondries dysfonctionnelles du réseau mitochondrial pour les adresser à la mitophagie. Ces résultats indiquent que les défauts de fusion pourraient contribuer à la pathologie des maladies provoquées par des mutations de l'ADNmt. De plus ces résultats impliquent que dans des cellules, l'inhibition de la fusion dominante pourrait permettre l'exclusion des mitochondries dysfonctionnelles du réseau mitochondrial. La fusion mitochondriale implique de nombreuses protéines de la superfamille des dynamines. Si ces protéines ont été identifiées, les mécanismes moléculaires permettant la fusion restent indéterminés. Dans le but de comprendre ces mécanismes, nous avons choisi de caractériser les protéines Mitofusine 1 et 2, essentielles à la fusion des membranes externes mitochondriales. Ces protéines sont composées de deux domaines coiled-coil et un domaine N-terminal GTPase et des domaines hydrophobes prédits pour être des segments transmembranaires. Après la détermination des activités GTPase des mitofusines, nous avons reconstitué les mitofusines ou des fragments des mitofusines dans des liposomes afin d'étudier leur capacité à fusionner ces liposomes. Les mitofusines, permettent la fusion des liposomes contenant des cardiolipides. Étonnamment, ces événements sont indépendants de la présence du GTP mais nécessitent Mg2+ dans la solution. En utilisant la microscopie électronique, nous montrons que les mitofusines 1 et 2 induisent une déformation des liposomes. Cette capacité permettant de créer localement des régions très courbes (et donc fusogènes) ouvre un nouvel angle pour comprendre les mécanismes moléculaires de la fusion mitochondriale
Mitochondria are dynamic organelles that continuously fuse and divide. This dynamic is required for mitochondrial biogenesis, function and degradation. The cross-talk between OXPHOS and dynamics and the mechanisms ensuring modulation of dynamics remain largely unraveled. We have investigated the relationship between fusion and OXPHOS in yeast cells carrying point mutations in the mitochondrial ATP6 gene that are associated to human diseases. We show that OXPHOS defects provoke severe defects of inner membrane, but not outer membrane fusion. Selective inhibition of inner membrane fusion can be recapitulated by ionophores that dissipate the inner membrane potential, but not by inhibitors of OXPHOS. We show a dominant inhibition of fusion that further provides a mechanism for the exclusion of defective mitochondria from the functional mitochondrial network, a pre-requisite for their selective targeting to mitophagy. These results suggest that defects of fusion could contribute to the pathology of diseases caused by mtDNA mutations. Moreover, these results imply that in cells, inhibition of dominant fusion could allow the exclusion of dysfunctional mitochondria mitochondrial network. Mitochondrial fusion involves many proteins of the superfamily of dynamin. If these proteins have been identified, the molecular mechanisms of fusion remain undetermined. In order to understand these mechanisms, we choose to characterize Mitofusin 1 and 2 proteins, essential for outer mitochondrial membrane fusion. These transmembrane proteins are consisting of two coiled-coil domains and one N-terminal GTPase domain. We have characterized GTPase activity of Mitofusin and reconstituted Mitofusins or fragments of Mitofusins into liposomes to study their capacity to fuse these liposomes. Full-length mitofusins can fuse liposomes containing cardiolipins. Surprisingly, these fusion events are independent of GTP but require Mg2+ in the buffer. Using electron microscopy, we show that mitofusin 1 and 2 induce local deformation of liposomes. This capacity of mitofusins to locally create highly curved (and thus fusogenic) membrane regions opens a new angle to understand the molecular mechanisms of mitochondrial fusion
3

Alsayyah, Cynthia. "Régulation de la fusion mitochondriale par le Système Ubiquitine Protéasome et les contacts physiques mitochondrie - peroxysomes chez la levure Saccharomyces cerevisiae." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. https://theses.hal.science/tel-03810525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mitochondries sont des organelles très dynamiques qui subissent des phénomènes de fission et de fusion constants de leurs membranes extérieures et intérieures. Ces processus sont essentiels pour le maintien des fonctions mitochondriales essentielles telles que la phosphorylation oxydative ou la signalisation du calcium. D’un point de vue moléculaire, la fusion et la fission mitochondriale dépendent tous les deux des grandes GTPases de la famille des protéines de type dynamine. Les dynamines qui favorisent l’attachement et la fusion des membranes mitochondriales extérieures sont appelés les mitofusines.La mitofusine de la levure Fzo1 est une GTPase transmembranaire située dans la membrane externe de la mitochondrie. Son oligomérisation favorise l’attachement suivi de la fusion de la membrane externe mitochondriale. Fzo1 a été proposé récemment comme une protéine d’attachement potentielle entre les peroxysomes et les mitochondries lorsqu’elle est surexprimée. Cependant, on ignore si Fzo1 est présent sur les membranes peroxysomales dans les cellules sauvages ou si cette localisation extra-mitochondriale est une conséquence de la surexpression. De plus, nous ne savons toujours pas comment le Fzo1 peroxysomal et le Fzo1 mitochondrial interagissent dans ces contacts et quel est leur rôle dans la cellule. Durant ma thèse, j’ai pu prouver que Fzo1 se trouve réellement aux peroxysomes dans des conditions physiologiques et oligomérise avec le Fzo1 mitochondrial créant ainsi des contacts Fzo1-Fzo1 entre les peroxysomes et les mitochondries que nous appellerons maintenant des contacts « Permit Fzo1-dépendants ». On a découvert que ces contacts sont modulés par les niveaux de Fzo1 qui sont étroitement régulés par la ligase ubiquitine appelée Mdm30 mais aussi en fonction des niveaux de désaturation des acides gras dans la cellule. D’un point de vue fonctionnel et après avoir écarté plusieurs possibilités, nous avons trouvé que le rôle des contacts Permit Fzo1-dépendants est de réguler la fusion mitochondriale à travers le cycle glyoxylate, un processus qui permet aux cellules de convertir des composés unitaires de C2 en précurseurs de C4 pour la biosynthèse des acides aminés et des glucides. Nous avons découvert que les contacts Permit Fzo1-dépendants permettent le transfert mitochondrial des produits intermédiaires du cycle de glyoxylate pour stimuler la fusion mitochondriale. Ces résultats révèlent ainsi une réponse des organelles aux changements de désaturation des acides gras et aux besoins métaboliques de la cellule pour réguler la fusion mitochondriale.Enfin, les résultats obtenus au cours de ma thèse ont enrichi nos connaissances sur les contacts entre organelles et nous ont permis de prouver que Fzo1 est localisé sur les membranes mitochondriales et peroxysomales dans les cellules de type sauvage de levure. Nos études montrent également que les contacts Permit Fzo1-dépendants sont modulés en fonction des besoins de la cellule car ils jouent un rôle crucial dans l’entretien de la fusion mitochondriale en créant un raccourci possible pour les produits intermédiaires du cycle du glyoxylate pour atteindre les mitochondries lorsque cela est nécessaire
Mitochondria are highly dynamic organelles that undergo constant fission and fusion of their outer and inner membranes. These processes are critical to maintain essential mitochondrial functions such as oxidative phosphorylation or calcium signaling. On a molecular basis, mitochondrial fusion and fission both depend on large GTPases of the Dynamin-Related Protein (DRP) family. The DRPs that mediate attachment and fusion of mitochondrial outer membranes are called the Mitofusins. The yeast mitofusin Fzo1 is located in the mitochondrial outer membrane. Its oligomerization promotes mitochondrial tethering followed by mitochondrial outer membrane fusion. Fzo1 has recently been proposed as a potential tether between peroxisomes and mitochondria when overexpressed. However, whether Fzo1 is present on peroxisomal membranes in WT cells or whether this extra-mitochondrial localization is a consequence of overexpression is unknown. In addition, we still don’t know how peroxisomal and mitochondrial Fzo1 mediate these contacts and their purpose in the cell. In my thesis, we were able to prove that Fzo1 naturally localizes to peroxisomes and oligomerizes with the mitochondrial Fzo1 thus creating Fzo1-Fzo1 contacts between peroxisomes and mitochondria which we will now call “Fzo1-mediated permit” contacts. We found that these contacts are modulated by Fzo1 levels which are tightly regulated by an SCF ubiquitin ligase called Mdm30 but also depending on fatty acid desaturation levels in the cell. From a functional standpoint, we found that the role of Fzo1-mediated permit contacts is to regulate mitochondrial fusion through the glyoxylate cycle, a process which allows cells to convert C2 unit compounds to C4 precursors for amino acid and carbohydrate biosynthesis. We discovered that Fzo1-mediated permit contacts allow the mitochondrial transfer of early byproducts of the glyoxylate cycle to stimulate mitochondrial fusion. In fine, the results obtained during my thesis enriched our knowledge on organelle contacts and allowed us to prove that Fzo1 is localized on both mitochondrial and peroxisomal membranes in wild type cells. Our studies also show that Fzo1-mediated permit contacts are modulated according to the cell’s needs as they play a crucial role in upkeeping mitochondrial fusion by providing a possible shortcut for byproducts of the glyoxylate cycle to reach mitochondria when direly needed
4

Hamze, Carmen. "Mitofusin 1 and Mitofusin 2 Function in the Context of Brain Development." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitofusin 1 and 2 are outer-mitochondrial membrane proteins that have been shown to be involved in fusion. Mitofusin 2 has also been associated with apoptosis and development. When Mfn1 and Mfn2 were each conditionally knocked out from the cerebellum, Purkinje cells in Mfn2 deficient cerebellum during development had undergone neurodegeneration. Mutations in Mfn2 have also been associated with the Charcot Marie Tooth Type 2A (CMT2A). We want to asses the effect Mfn2 and Mfn1 might have on the development of other regions of the brain such as the telencephalon. We generated Mfn1 and Mfn2 conditional knockouts in the telencephalon by crossing them with Foxg1 Cre - a cre expressed in the telencephalon. We found that Mfn1 deficient mice have lost their corpus callosum at the midline, but survive over 6 months with a decrease in progenitor cells postnatally. Mfn2 deficient mice die between P9 and P12 with a decrease in progenitor cells postnatally and a decrease in number of neurons in the cortex. Therefore, our results suggest that Mfn1 and Mfn2 play a significant role in the development of the telencephalon.
5

Daste, Frédéric. "Function and regulation of coiled‐coil domains in intracellular membrane fusion." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mécanismes moléculaires impliqués dans la fusion membranaire ont été amplement étudiés au cours des trente dernières années. Notre compréhension actuelle de ce phénomène est principalement basée sur des résultats obtenus par (1) le développement de modèles physiques décrivant la fusion des membranes biologiques, (2) l’étude mécanistique et structurale des protéines de fusion membranaire des virus à enveloppe et (3) l’étude des évènements de fusion intracellulaire médiés par les protéines SNARES dans les cellules eucaryotes. La découverte du complexe SNARE fut l’aboutissement de travaux interdisciplinaires qui ont exigés un large éventail de techniques tel que la génétique de la levure, l’électrophysiologie, la biologie moléculaire, la biochimie cellulaire, la biophysique expérimentale et l’imagerie. Tirant parti des paradigmes et techniques biophysiques qui ont émergés de ces études, nous avons examiné les fonctions et mécanismes de régulation des domaines « coiled-coil » dans les processus de fusion intracellulaire impliquant des protéines de la famille des Longin-SNAREs ou des Mitofusines, deux machineries protéiques de fusion dont le mode d’action exact reste encore peu clair. La conception exacte des mécanismes moléculaires de la fusion membranaire requiert la reconstitution in vitro des protéines de fusion dans un large spectre d’environnement membranaire avec des propriétés biophysiques définies et facilement modulables. Idéalement, ces systèmes membranaires devraient permettre à l’expérimentateur de contrôler la composition lipidique et protéique, ainsi que la topologie membranaire, afin de rendre compte de l’importante variabilité observée entre les différents compartiments de fusion cellulaire. La reconstitution dans des liposomes offre une incroyable flexibilité avec la possibilité de faire varier la plupart des paramètres clefs et de créer un environnement minimal dans lequel les facteurs solubles et/ou membranaires peuvent être ajoutés, seuls ou en combinaison, pour dévoiler leur rôle avec clarté. Nous avons mis au point des systèmes in vitro de reconstitution de protéines dans des plateformes membranaires artificielles pour nos deux systèmes d’études (les deux protéines Longin-SNAREs TI-VAMP et Sec 22b, ainsi que les domaines « coiled-coil » des Mitofusines) et nous avons réalisé des expériences biochimiques pour caractériser le mode d’action de ces protéines. L’objectif à long-terme de ce projet est de comparer les mécanismes moléculaires des machineries de fusion associés aux protéines SNAREs et Mitofusines, et ainsi de dévoiler des similitudes structurelles et fonctionnelles entre (1) leur protéines de fusion principales et (2) leur facteurs régulateurs
The molecular mechanisms involved in membrane fusion have been extensively studied for the past thirty years. Our current understanding of this phenomenon is mainly based on results obtained by (i) the development of physical models describing the fusion of membranes, (ii) structural and mechanistic investigations on fusion proteins of enveloped viruses and (iii) studies of SNARE protein-mediated intracellular fusion events of eukaryotic cells. Discovery of the SNARE complex was the outcome of interdisciplinary works which involved a wide range of techniques including yeast genetics, electrophysiology, molecular biology, cell-free biochemistry, adhesion/fusion biophysics and imaging. Taking advantage of the paradigms and biophysical techniques that emerged from these studies, we investigated the function and regulation of coiled-coil domains in intracellular fusion processes involving Longin-SNAREs or Mitofusins, two fusion protein machineries whose exact mode of action still remains unclear. A comprehensive understanding of the molecular mechanisms of membrane fusion requires the in vitro reconstitution of fusion proteins into a wide variety of membrane environments with defined and tunable biophysical properties. Ideally, these membrane systems should allow the experimentalists to control the lipid and protein composition as well as the membrane topology, to account for the variability observed across cellular fusing compartments. Reconstitution into liposomes offers amazing flexibility with the capacity to vary most of these relevant parameters, and to create a minimal environment in which membrane and/or soluble factors can be added, one at a time or in combination, to reveal their role with clarity. We have set up the in vitro reconstitution of proteins into various artificial membrane platforms for both systems (the Longin-SNAREs TI-VAMP and Sec22b and the coiled-coil domains of Mitofusins) and performed biochemical assays to gain insight into how these proteins execute their functions. The long-term goal of this project is to compare the molecular mechanisms of SNARE and Mitofusin fusion machineries and thus reveal structural and functional similitudes between (i) their core fusion proteins, and (ii) their regulatory factors
6

Cerqueira, Fernanda Menezes. "Efeitos da restrição calórica nas vias de sinalização por insulina e óxido nítrico: implicações para biogênese, morfologia e função mitocondriais." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-24022013-151501/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A restrição calórica (RC) estende a expectativa de vida de muitos organismos por mecanismos ainda em estudo. Entre os vários efeitos fisiológicos da RC encontra-se o aumento na biogênese mitocondrial, dependente de óxido nítrico (NO•), sintetizado pela enzima óxido nítrico sintase endotelial (eNOS). Um dos indutores fisiológicos mais potentes da eNOS é a insulina, cujos níveis plasmáticos são consideravelmente reduzidos nos organismos em RC. O objetivo deste trabalho foi investigar os mecanismos associados ao aumento da sinalização por NO• durante a RC in vivo e in vitro, e as conseqüências celulares do aumento de massa mitocondrial no que diz respeito à longevidade e capacidade respiratória celulares. Submetemos camundongos Swiss fêmeas à RC de 40% e observamos um considerável aumento tecido-específico na fosforilação basal de Akt e eNOS em músculo esquelético, tecido adiposo visceral e cérebro, os quais também apresentaram maior massa mitocondrial. A associação entre a sinalização por insulina, NO• e biogênese mitocondrial foi adicionalmente confirmada em um grupo de camundongos tratados com o desacoplador mitocondrial dinitrofenol (DNP), que também reduz a insulinemia e aumenta a longevidade em camundongos. Para o estudo mecanístico deste fenômeno, usamos soros de ratos Sprague-Dawley submetidos à RC de 40% ou alimentados ad libitum (AL) em cultura celular de células vasculares da musculatura lisa (VSMC), reproduzindo um protocolo descrito para RC in vitro. O uso do soro RC aumentou a fosforilação do receptor de insulina e Akt, a expressão de eNOS e nNOS (forma neural da NOS) e a fosforilação de eNOS, o que se refletiu em maior liberação de nitrito (NO2) no meio de cultura. Inibindo-se a Akt, todos os efeitos promovidos pela RC na sinalização por NO• foram revertidos. Ao se imunoprecipitar do soro a adiponectina, citocina conhecida por aumentar a sensibilidade à insulina, aumentada durante a RC, os efeitos do soro RC na via de sinalização de insulina foram abolidos e, conseqüentemente, os efeitos na sinalização por •NO foram prevenidos. Neurônios de células granulosas de cerebelo, que não expressam eNOS, apenas nNOS, foram cultivados com os soros AL ou RC, e também apresentaram considerável aumento na sinalização por •NO. Estas alterações induziram a biogênese mitocondrial e capacidade respiratória, e foram associadas à maior longevidade celular. Os mesmos efeitos mitocondriais foram observados em células secretoras de insulina, INS1, entretanto a secreção de insulina em resposta à glicose tornou-se inibida, por um mecanismo desconhecido, porém associado a reduzidos níveis intracelulares de espécies oxidantes, moléculas-chave para a secreção de insulina; e à alteração da morfologia mitocondrial, provavelmente devido à maior expressão de mitofusina-2 (Mfn-2). Ao se nocautear a Mfn-2, houve um aumento na geração de EROs e as células em RC passaram a secretar insulina a níveis comparáveis aos das células controle. Concluímos que durante a RC a maior sensibilidade à insulina aumenta a atividade de eNOS, via Akt, associada à maior biogênese mitocondrial. A adiponectina é uma molécula-central nestes eventos. A expressão de nNOS também é afetada, por mecanismos desconhecidos. O aumento de biogênese mitocondrial eleva a capacidade respiratória celular e impacta positivamente a longevidade in vitro. A alteração da morfologia mitocondrial associa-se a alterações na produção de oxidantes intracelulares e mudanças na secreção de insulina.
Calorie restriction (RC) is known to extend the lifespan in many organisms, and its mechanisms of action are still under investigation. Enhanced mitochondrial biogenesis driven by nitric oxide (•NO), synthesized by the endothelial nitric oxide synthase (eNOS), is proposed to be a CR central effect. Insulin is one of the most potent physiological activators of eNOS. However, plasmatic insulin levels are dramatically reduced in organisms under CR. The goal of this work was uncover the mechanisms associated with enhanced •NO signaling during CR, in vivo and in vitro, as well as the cellular consequences of increased mitochondrial mass, regarding lifespan and reserve respiratory capability. Female Swiss mice were submitted to 40% of CR. A tissue-specific (skeletal muscle, abdominal adipose tissue and brain) increment in basal Akt and eNOS phosphorylation, which was related to enhanced mitochondrial biogenesis, was observed. Indeed, this association was also verified in tissues from mice treated with low doses of a mitochondrial uncoupler, dinitrophenol (DNP). To unveil the mechanism behind the insulin signaling effects on •NO levels, serum from Sprague-Dawley rats submmited to 40% of CR was used to culture in VSMC cells, an in vitro CR protocol. CR sera enhanced insulin receptor (IR) and Akt phosphorylation, as well as nitrite (NO2-) accumulation in the culture media, the expression of eNOS and nNOS (neural NOS isoform) and eNOS phosphorylation. The effects of CR sera were reversed by Akt inhibition. The immunoprecipitation of serum adiponectin, a cytokine known to improve peripheral insulin sensitivity, also reversed the CR serum effects on insulin and •NO signaling. Cerebellar neurons, which do not express eNOS, just nNOS, were also cultured with CR or AL serum and also presented striking increments in •NO signaling, associated with mitochondrial biogenesis, increased reserve respiratory capability and lifespan extension. The mitochondrial effects promoted by CR were also observed in insulin secreting cells (INS1). However, under the CR condition, insulin secretion stimulated by glucose was impaired. The likely explanations are reduced mitochondrial reactive oxygen species (ROS) generation, or the alteration in mitochondrial morphology, associated, in our model, with enhanced mitofusin-2 expression (Mfn-2). In cells which the Mfn-2 was knocked down, insulin secretion in CR and AL groups was responsive to glucose at the same level, and the intracellular oxidants levels were much higher. Overall, CR improves •NO signaling due to enhanced insulin sensitivity, through Akt, and results in mitochondrial biogenesis. Adiponectin is a key molecule in this phenomenon. Increments in mitochondrial mass enhance the cellular reserve respiratory capability and lifespan. Mitochondrial morphology alterations are associated with possible decreases in ROS generation and impaired insulin release, maintained the low levels of plasmatic insulin.
7

Guillery, Olwenn. "Dynamique mitochondriale : caractérisation moléculaire et fonctionnelle de ses acteurs, de ses besoins énergétiques et de son évolution au cours de la mitose." Paris 6, 2008. http://www.theses.fr/2008PA066313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mitochondries sont des organites intracellulaires délimités par deux membranes. Remarquablement dynamiques, elles fusionnent et fissionnent en permanence. Au cours de ma thèse je me suis intéressée aux mécanismes de cette dynamique et à sa pertinence physiologique. De nouveaux tests de fusion nous ont permis de montrer que la fusion des membranes mitochondriales interne et externe est effectuée par deux machineries aux besoins énergétiques différents. Nous avons également montré que la protéolyse d’OPA1, facteur de la fusion de la membrane interne, est régulée par le potentiel de membrane et catalysée par une métalloprotéase intramitochondriale. Nous avons mis en évidence une interaction physique entre OPA1 et les Mitofusines, facteurs de la fusion de la membrane externe, dont nous avons cherché d’autres partenaires par crible double hybride. Par ailleurs, nous avons montré que les défauts d’oxydation phosphorylante n’influent que faiblement sur la morphologie mitochondriale. Enfin, nous avons observé le maintien de mitochondries filamenteuses contenant plusieurs nucléoïdes à tous les stades de la mitose.
8

Trevisan, Tatiana. "Ruolo della morfologia e della funzionalità mitocondriale sulla distribuzione intracellulare dei mitocondri in neuroni di Drosophila." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Mitochondria are the energy producing organelles in eukaryotic cells providing ATP through oxidative phosphorylation (OXPHOS). Mitochondria are highly dynamic and undergo fission, fusion and move into the cell along the microtubules to generate the mitochondrial network. Mitochondrial dynamics play a critical role in the control of organelle shape, size, number, function and quality control of mitochondria. It is regulated by several GTPases that play an important role in fusion and fission processes. In mammals, mitochondrial fusion is controlled by Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2) and Optic atrophy protein 1 (Opa1), while mitochondrial fission is regulated by Dynamin related protein 1 (Drp1). The aim of this study is to understand how mitochondrial distribution in neuronal cells is affected by mitochondria function and/or morphology. We use Drosophila melanogaster , whose genome contains homologs for all mitochondrial fusion and fission proteins, as a modelorganism to study how loss of fusion and fission protein modify the axonal distribution and motility of mitochondria. We demonstrate that loss of Marf (Mitochondrial associated regulatory factor, homologous to human mitofusins) or Opa1 causes an accumulation of mitochondria in the soma, a defect in the axonal distribution of mitochondria, a severe depletion of mitochondria in neuromuscular junctions (NMJs) and reduced mitochondrial motility. Simultaneous loss of Drp1 rescues the Opa1 phenotype very robustly while loss of Marf essentially does not. Viability data however show the opposite trend. The expression of Marf RNAi or Opa1 RNAi cause lethality, and so does the double down regulation of Opa1 and Drp1. Conversely individuals expressing Marf RNAi and Drp1 RNAi simultaneously survive and are comparable to the controls. We then examined possible alterations of mitochondrial function by analyzing the mitochondrial respiratory capacity, the activity of the respiratory chain complexes and ATP production capacity. The data show that individuals where Marf, Opa1 or simultaneously Opa1 and Drp1 are down-regulated display severe alterations in mitochondrial function, while there are no obvious energy defects in individuals in which the expression of Marf and Drp1 is simultaneously reduced. Collectively our results obtained suggest that mitochondrial morphology is important for a homogeneous distribution of mitochondria along the axon and their transport to synapses and that these mechanisms are independent of mitochondria function.
RIASSUNTO I mitocondri sono organelli essenziali per la cellula e la loro funzione primaria è di produrre energia sottoforma di ATP. I mitocondri sono organelli altamente dinamici:processi di fusione e fissione delle membrane mitocondriali ne controllano la forma, la lunghezza e il numero e un equilibrio tra i due meccanismi è fondamentale per una corretta morfologia mitocondriale. Numerose proteine sono coinvolte nei processi di fusione e fissione mitocondriale: Mitofusina 1 e Mitofusina 2 (Mfn1 e Mfn2) e Optic atrophy 1 (Opa1) regolano i processi di fusione mitocondriale, mentre Dynamin-related protein 1 (Drp1)mediala fissione. Drosophila possiede il gene mitochondrial assembly regulatory factor (MARF), espresso in modo ubiquitario ed omologo al gene MFN2. Nel tessuto muscolare la riduzione di espressione di Marf induce frammentazione e alterazione della morfologia del mitocondrio. Inoltre, mutanti di Marf mostrano una severa deplezione dei mitocondri nelle giunzioni neuromuscolari (NMJs) ed un’alterazione della morfologia della giunzione caratterizzata dall’aumento nel numero e da una riduzione nella dimensione dei bottoni sinaptici. Un altro aspetto della dinamica mitocondriale, oltre ai processi di fusione e fissione, è la motilità dei mitocondri, che deve essere altamente regolata soprattutto in cellule come i neuroni. Il trasporto mitocondriale e la continua ridistribuzione dei mitocondri lungo l’assone è essenziale per il mantenimento dell’integrità assonale e delle normali funzioni della cellula. Studi hanno messo in evidenza come la mancanza di mitocondri a livello delle giunzioni neuromuscolari in Drosophila comprometta la trasmissione sinaptica e come difetti nel trasporto mitocondriale assonale siano implicati nello sviluppo di disordini neurologici e malattie neurodegenerative (Chan, 2006). Lo scopo di questo lavoro è quello di capire il ruolo della morfologia e della funzione mitocondriale nella distribuzione intracellulare dei mitocondri nei neuroni. Per fare questo abbiamo utilizzato Drosophila melanogaster, organismo modello efficace per l’analisi della funzione genica, inclusa quella di geni responsabili di patologie umane. L’analisi della morfologia mitocondriale è stata effettuata utilizzando linee di Drosophilache esprimono in vivo un transgene per RNA interference e che permette di ridurre l’espressione di geni endogeni coinvolti nei processi di fusione e fissione mitocondriale, quali Marf, Opa1 e Drp1. Abbiamo inoltre creato linee che esprimono contemporaneamente i trangeni per RNAi di Marf e Drp1 o Opa1 e Drp1, con lo scopo di bilanciare i meccanismi di fusione e/o fissione. Ci siamo soffermati in particolare sullo studio di due aspetti principali, la morfologia e la funzionalità mitocondriale, per capire se difetti nella morfologia e nella funzionalità mitocondriale siano collegate e concorrano insieme allo sviluppo di patologie.Numerose patologie neurodegenerative sono infatti caratterizzate da alterazioni del trasporto mitocondriale e spesso questo è associato a difetti nella morfologia e nella funzionalità mitocondriale. Per studiare la morfologia mitocondriale, le linee UAS-RNAi sono state incrociate con una linea che contiene il promotore ELAV per l’espressione tessuto-specifica nei neuroni ed esprime una GFP mitocondriale. Abbiamo analizzato la morfologia dei mitocondri, sia nel corpo cellulare sia negli assoni e la distribuzione mitocondriale in assoni lunghi come i motoneuroni e assoni corti come quelli del nervo ottico e la distribuzione mitocondriale nella giunzione neuromuscolare.I risultati ottenuti mostrano che frammentazione dei mitocondri e alterazione della distribuzione mitocondriale assonale in individui in cui sia ridotta l’espressione di proteine di fusione. Inoltre si osserva una diminuzione della percentuale dei mitocondri mobili e del numero assoluto dei mitocondri anterogradi e retrogradi. Questi dati dimostrano che vi è una stretta correlazione tra morfologia mitocondriale e distribuzione dei mitocondri, in particolare in assoni lunghi. Inoltre analizzando le linee Marf RNAi Drp1 RNAi e Opa1 RNAi Drp1 RNAi, nelle quali gli eventi di fusione e fissione ridotti ma sono in equilibrio tra loro, si osserva un miglioramento la morfologia, la distribuzione e il trasporto mitocondriale assonale in modo particolare nel caso di Opa1 e non nel caso di Marf. Abbiamo cercato di capire quindi se in questi individui vi fossero alterazioni delle funzionalità mitocondriali attraverso l’analisi della capacità respiratoria mitocondriale, dell’attività dei complessi della catena respiratoria e della capacità di produzione di ATP. I risultati ottenuti dimostrano che morfologia e funzionalità mitocondriale non sempre sono collegate tra loro hanno effetti diversi nella modulazione della distribuzione mitocondriale assonale. In conclusione possiamo affermare che solamente la morfologia e la dimensione del mitocondrio sembrano essere essenziali per la corretta distribuzione mitocondriale assonale.
9

Sexton, Jaime. "Genetic Analysis of Miro and Mitofusin Protein Interactions." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/321953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gangaraju, Sandhya. "Role of mitofusin2 in the regulation of mitochondrial dynamics." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondria in all cell types undergo frequent fission and fusion events, and these dynamics determine the overall morphology of the organelle in cells. Two important GTPases have been recently identified that regulate mitochondrial membrane activity, a dynamin related protein (DRP1) required for fission, and the novel fusion GTPase, Mitofusin2. Mitofusin2 is an outer mitochondrial membrane protein and, like other GTPases involved in membrane fusion events, the N-terminal GTPase domain is exposed to the cytosol, such that it could interact with and recruit potential cytosolic proteins. The work documented in this thesis aims towards understanding the specific role of this unique GTPase in regulating mitochondrial fusion events, and to identify potential interacting proteins that work together with Mfn2 to carry out this complex biochemical event. Two independent approaches were taken to identify interacting proteins, both a yeast two-hybrid screen and affinity chromatography using recombinant bacterial expressed Mfn2 protein as bait. (Abstract shortened by UMI.)

Книги з теми "Mitofusins":

1

Williams, Linda. Role of Mitofusin 2 in the biology of hematopoietic stem cells. [New York, N.Y.?]: [publisher not identified], 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mitofusins":

1

Muñoz, Juan Pablo, and Antonio Zorzano. "Analysis of Mitochondrial Morphology and Function Under Conditions of Mitofusin 2 Deficiency." In Methods in Molecular Biology, 307–20. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2288-8_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gegg, Matthew E. "Ubiquitination of Mitofusins in PINK1/Parkin-Mediated Mitophagy." In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 189–99. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-405528-5.00012-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Allegra, Alessandro, Vanessa Innao, Andrea Gaetano Allegra, and Caterina Musolino. "Relationship between mitofusin 2 and cancer." In Advances in Protein Chemistry and Structural Biology, 209–36. Elsevier, 2019. http://dx.doi.org/10.1016/bs.apcsb.2018.11.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mitofusins":

1

Bhatia, D., E. Kallinos, M. Plataki, A. M. Choi, and M. E. Choi. "Myeloid and Type II Alveolar Cell-specific Mitofusins Regulate Kidney Fibrosis-associated Lung Injury." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guda, Maheedhara Reddy, Swapna Asuthkar, Collin M. Labak, Chase P. Smith, Andrew J. Tsung, and Kiran Velpula. "Abstract 5494: Targeting deregulated expression and function of Mitofusin 1 in glioblastoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Meng-Ju, Mi Ran Kim, Silpa Gampala, Yingsheng Zhang, Yueyang Wang, Jer-Yen Yang, and Chun-Ju Chang. "Abstract 798: Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Meng-Ju, Mi Ran Kim, Silpa Gampala, Yingsheng Zhang, Yueyang Wang, Jer-Yen Yang, and Chun-Ju Chang. "Abstract 798: Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії