Дисертації з теми "Mirror symmetry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Mirror symmetry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Branco, Lucas Castello. "Higgs bundles, Lagrangians and mirror symmetry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.
Повний текст джерелаMertens, Adrian. "Mirror Symmetry in the presence of Branes." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.
Повний текст джерелаGu, Wei. "Gauged Linear Sigma Model and Mirror Symmetry." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.
Повний текст джерелаDoctor of Philosophy
In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Perevalov, Eugene V. "Type II/heterotic duality and mirror symmetry /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаRossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable Systems." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.
Повний текст джерелаKrefl, Daniel. "Real Mirror Symmetry and The Real Topological String." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.
Повний текст джерелаWilliams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Повний текст джерелаUeda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Повний текст джерела0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Kadir, Shabnam Nargis. "The arithmetic of Calabi-Yau manifolds and mirror symmetry." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.
Повний текст джерелаPetracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Повний текст джерелаBott, Christopher James. "Mirror Symmetry for K3 Surfaces with Non-symplectic Automorphism." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7456.
Повний текст джерелаMatessi, Diego. "Constructions of Calabi Yau metrics and of special Lagrangian submanifolds." Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246770.
Повний текст джерелаAlim, Murad. "Mirror Symmetry, Toric Branes and Topological String Amplitudes as Polynomials." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-103416.
Повний текст джерелаHartmann, Heinrich [Verfasser]. "Mirror symmetry and stability conditions on K3 surfaces / Heinrich Hartmann." Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1016152949/34.
Повний текст джерелаYang, Wenzhe. "The arithmetic geometry of mirror symmetry and the conifold transition." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:e55a7b22-a268-4c57-9d98-c0547ecdcef9.
Повний текст джерелаPrince, Thomas. "Applications of mirror symmetry to the classification of Fano varieties." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43374.
Повний текст джерелаBorokhov, Vadim Aleksandrovich Kapustin Anton N. "Monopole operators and mirror symmetry in three-dimensional gauge theories /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-04062004-015855.
Повний текст джерелаSigrist, Norbert. "First-order design of mirror systems with no axial symmetry." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284660.
Повний текст джерелаJohnson, Jared Drew. "An Algebra Isomorphism for the Landau-Ginzburg Mirror Symmetry Conjecture." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2793.
Повний текст джерелаZhang, Xiangwen 1984. "Mean curvature flow for Lagrangian submanifolds with convex potentials." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111593.
Повний текст джерелаMukai, Daichi. "Mirror symmetry of nonabelian Landau-Ginzburg orbifolds with loop type potentials." Kyoto University, 2020. http://hdl.handle.net/2433/253068.
Повний текст джерелаPumperla, Max [Verfasser], and Bernd [Akademischer Betreuer] Siebert. "Unifying Constructions in Toric Mirror Symmetry / Max Pumperla. Betreuer: Bernd Siebert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/1026332966/34.
Повний текст джерелаBöhm, Janko [Verfasser], and Frank-Olaf [Akademischer Betreuer] Schreyer. "Mirror symmetry and tropical geometry / Janko Böhm. Betreuer: Frank-Olaf Schreyer." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/1051094968/34.
Повний текст джерелаLu, Wenxuan. "Instanton correction, wall crossing and mirror symmetry of Hitchin's moduli spaces." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67809.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 205-210).
We study two instanton correction problems of Hitchin's moduli spaces along with their wall crossing formulas. The hyperkahler metric of a Hitchin's moduli space can be put into an instanton-corrected form according to physicists Gaiotto, Moore and Neitzke. The problem boils down to the construction of a set of special coordinates which can be constructed as Fock-Goncharov coordinates associated with foliations of quadratic differentials on a Riemann surface. A wall crossing formula of Kontsevich and Soibelman arises both as a crucial consistency condition and an effective computational tool. On the other hand Gross and Siebert have succeeded in determining instanton corrections of complex structures of Calabi-Yau varieties in the context of mirror symmetry from a singular affine structure with additional data. We will show that the two instanton correction problems are equivalent in an appropriate sense via the identification of the wall crossing formulas in the metric problem with consistency conditions in the complex structure problem. This is a nontrivial statement of mirror symmetry of Hitchin's moduli spaces which till now has been mostly studied in the framework of geometric Langlands duality. This result provides examples of Calabi-Yau varieties where the instanton correction (in the sense of mirror symmetry) of metrics and complex structures can be determined. This equivalence also relates certain enumerative problems in foliations to some gluing constructions of affine varieties.
by Wenxuan Lu.
Ph.D.
Vaintrob, Dmitry. "Mirror symmetry and the K theory of a p-adic group." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104578.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-61).
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth = e "truncated" analogue Loc(e) which has finite-dimensional stalks, and satisfies the property RIP ... V of depth = e. We deduce that every finitely-generated representation of G has a bounded resolution by representations induced from finite-dimensional representations of compact open subgroups, and use this to write down a set of generators for the K-theory of G in terms of K-theory of its parahoric subgroups.
by Dmitry A. Vaintrob.
Ph. D.
Sheridan, Nicholas (Nicholas James). "Homological mirror symmetry for a Calabi-Yau hypersurface in projective space." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73374.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 365-369).
This thesis is concerned with Kontsevich's Homological Mirror Symmetry conjecture. In Chapter 1, which is based on [1], we consider the n-dimensional pair of pants, which is defined to be the complement of n + 2 generic hyperplanes in CPn. The pair of pants is conjectured to be mirror to the Landau-Ginzburg model (Cn+2 , W), where W = z1...zn+2 We construct an immersed Lagrangian sphere in the pair of pants, and show that its endomorphism A.. algebra in the Fukaya category is quasi-isomorphic to the endomorphism dg algebra of the structure sheaf of the origin in the mirror,.giving some evidence for the Homological Mirror Symmetry conjecture in this case. In Chapter 2, which is based on [2], we build on these results to prove Homological Mirror Symmetry for a smooth d-dimensional Calabi-Yau hypersurface in projective space, for any d =/> 3.
by Nicholas Sheridan.
Ph.D.
MAGID, DIANE ALEXIS. "FRAMES OF REFERENCE, THE PERCEPTION OF SYMMETRY AND THE MIRROR ILLUSION (ENANTIOMORPHS)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188154.
Повний текст джерелаBarrott, Lawrence Jack. "Convergence of the mirror to a rational elliptic surface." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285007.
Повний текст джерелаRainville, Stéphane Jean Michel. "The spatial mechanisms mediating the perception of mirror symmetry in human vision /." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36688.
Повний текст джерелаOverall, results from empirical and modeling work revealed an intimate link between symmetry perception and the properties of spatial filters. In particular, I argue that the size of the IR tends to vary such that a fixed amount of information is integrated irrespective of the spatial properties of the stimulus. Implications for the functional architecture of symmetry perception are discussed, and a paradigm for future research in symmetry perception is proposed in which spatial filtering is extended to higher orders of spatial complexity.
Basalaev, Alexey [Verfasser]. "Mirror symmetry for simple elliptic singularities with a group action / Alexey Basalaev." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1073604454/34.
Повний текст джерелаMertens, Adrian [Verfasser], and Christian [Akademischer Betreuer] Römelsberger. "Mirror Symmetry in the presence of Branes / Adrian Mertens. Betreuer: Christian Römelsberger." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1016172877/34.
Повний текст джерелаRainville, Stéphane Jean Michel. "The spatial mechanisms mediating the perception of mirror symmetry in human vision." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ64650.pdf.
Повний текст джерелаBuchholz, Arne Verfasser], and Hannah [Akademischer Betreuer] [Markwig. "Tropical covers, moduli spaces & mirror symmetry / Arne Buchholz. Betreuer: Hannah Markwig." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1060715953/34.
Повний текст джерелаJost, Jan Niklas [Verfasser], and Thomas [Akademischer Betreuer] Reichelt. "Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer: Thomas Reichelt." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Повний текст джерелаJost, Jan [Verfasser], and Thomas [Akademischer Betreuer] Reichelt. "Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer: Thomas Reichelt." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Повний текст джерелаSmorenburg, Ana Renée Pascale. "Mirror (a)symmetry? : visuo-proprioceptive interactions in individuals with spastic hemiparetic cerebral palsy." Thesis, Manchester Metropolitan University, 2012. http://e-space.mmu.ac.uk/314042/.
Повний текст джерелаHuang, Yu-Chien Ph D. Massachusetts Institute of Technology. "Elliptic fibrations among toric hypersurface Calabi-Yau manifolds and mirror symmetry of fibrations." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/124593.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 245-255).
In this thesis, we investigate the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau three folds by (1) constructing explicitly elliptically fibered Calabi-Yau threefolds with large Hodge numbers using Weierstrass model techniques motivated by F-theory, and comparing the Tate-tuned Wierstrass model set with the set of Calabi-Yau threefolds constructed using toric hypersurface methods, and (2) systematically analyzing directly the fibration structure of 4D reflexive polytopes by classifying all the 2D subpolytopes of the 4D polytopes in the Kreuzer and Skarke database of toric Calabi-Yau hypersurfaces. With the classification of the 2D fibers, we then study the mirror symmetry structure of elliptic toric hypersurface Calabi-Yau threefolds. We show that the mirror symmetry of Calabi-Yau manifolds factorizes between the toric fiber and the base: if there exist 2D mirror fibers of a pair of mirror reflexive polytopes, the base and fibration structure of one hypersurface Calabi-Yau determine the base of the other.
by Yu-Chien Huang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Francis, Amanda. "New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3265.
Повний текст джерелаJones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides /." Connect to this title, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0057.
Повний текст джерелаBrown, Matthew Robert. "Construction and Isomorphism of Landau-Ginzburg B-Model Frobenius Algebras." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5652.
Повний текст джерелаCordner, Nathan James. "Isomorphisms of Landau-Ginzburg B-Models." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5882.
Повний текст джерелаArgüz, Nurömür Hülya [Verfasser], and Bernd [Akademischer Betreuer] Siebert. "Log geometric techniques for open invariants in mirror symmetry / Nurömür Hülya Argüz ; Betreuer: Bernd Siebert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1123729506/34.
Повний текст джерелаArgüz, Nurömür Hülya Verfasser], and Bernd [Akademischer Betreuer] [Siebert. "Log geometric techniques for open invariants in mirror symmetry / Nurömür Hülya Argüz ; Betreuer: Bernd Siebert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://nbn-resolving.de/urn:nbn:de:gbv:18-82774.
Повний текст джерелаJones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides." University of Western Australia. School of Physics, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0057.
Повний текст джерелаWu, Ruoxu. "Notes on Some (0,2) Supersymmetric Theories in Two Dimensions." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77921.
Повний текст джерелаPh. D.
Pavanelli, Simone. "Mirror symmetry for a two parameter family of Calabi-Yau three-folds with Euler characteristic 0." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396954.
Повний текст джерелаGoldner, Christoph Jan [Verfasser]. "Enumerative aspects of Tropical Geometry : Curves with cross-ratio constraints and Mirror Symmetry / Christoph Jan Goldner." Tübingen : Universitätsbibliothek Tübingen, 2021. http://d-nb.info/1233678248/34.
Повний текст джерелаMerrell, Evan D. "A Maple Program for Computing Landau-Ginzburg A- and B-Models and an Exploration of Mirror Symmetry." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3322.
Повний текст джерелаComparin, Paola. "Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2281/document.
Повний текст джерелаA K3 surface is a complex compact projective surface X which is smooth and such that its canonical bundle is trivial and h0;1(X) = 0. In this thesis we study two different topics about K3 surfaces. First we consider K3 surfaces obtained as double covering of P2 branched on a sextic curve. For these surfaces we classify elliptic fibrations and their Mordell-Weil group, i.e. the group of sections. A 2-torsion section induces a symplectic involution of the surface, called van Geemen-Sarti involution. The classification of elliptic fibrations and 2-torsion sections allows us to classify all van Geemen-Sarti involutions on the class of K3 surfaces we are considering. Moreover, we give details in order to obtain equations for the elliptic fibrations and their quotient by the van Geemen-Sarti involutions. Then we focus on the mirror construction of Berglund-Hübsch-Chiodo-Ruan (BHCR). This construction starts from a polynomial in a weighted projective space together with a group of diagonal automorphisms (with some properties) and gives a pair of Calabi-Yau varieties which are mirror in the classical sense. The construction works for any dimension. We use this construction to obtain pairs of K3 surfaces which carry a non-symplectic automorphism of prime order p > 3. Dolgachev and Nikulin proposed another notion of mirror symmetry for K3 surfaces: the mirror symmetry for lattice polarized K3 surfaces (LPK3). In this thesis we show how to polarize the K3 surfaces obtained from the BHCR construction and we prove that these surfaces belong to LPK3 mirror families
Sandberg, Ryan Thor. "A Nonabelian Landau-Ginzburg B-Model Construction." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5833.
Повний текст джерела