Добірка наукової літератури з теми "MiRNA-mRNA interactions"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MiRNA-mRNA interactions".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MiRNA-mRNA interactions"
Guo, Li, Yang Zhao, Sheng Yang, Hui Zhang, and Feng Chen. "Integrative Analysis of miRNA-mRNA and miRNA-miRNA Interactions." BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/907420.
Повний текст джерелаMuniategui, Ander, Rubén Nogales-Cadenas, Miguél Vázquez, Xabier L. Aranguren, Xabier Agirre, Aernout Luttun, Felipe Prosper, Alberto Pascual-Montano, and Angel Rubio. "Quantification of miRNA-mRNA Interactions." PLoS ONE 7, no. 2 (February 14, 2012): e30766. http://dx.doi.org/10.1371/journal.pone.0030766.
Повний текст джерелаNaderi, Elnaz, Mehdi Mostafaei, Akram Pourshams, and Ashraf Mohamadkhani. "Network of microRNAs-mRNAs Interactions in Pancreatic Cancer." BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/534821.
Повний текст джерелаSubat, Sophia, Kentaro Inamura, Hironori Ninomiya, Hiroko Nagano, Sakae Okumura, and Yuichi Ishikawa. "Unique MicroRNA and mRNA Interactions in EGFR-Mutated Lung Adenocarcinoma." Journal of Clinical Medicine 7, no. 11 (November 6, 2018): 419. http://dx.doi.org/10.3390/jcm7110419.
Повний текст джерелаMukushkina, D. D., S. Labeit, and A. T. Ivashchenko. "CHARACTERISTICS OF miRNA INTERACTION WITH mRNA OF ISCHEMIC HEART DISEASE CANDIDATE GENES." REPORTS 335, no. 1 (February 12, 2021): 74–82. http://dx.doi.org/10.32014/2021.2518-1483.11.
Повний текст джерелаBencun, Maja, Thiago Britto-Borges, Jessica Eschenbach, and Christoph Dieterich. "New Tricks with Old Dogs: Computational Identification and Experimental Validation of New miRNA–mRNA Regulation in hiPSC-CMs." Biomedicines 10, no. 2 (February 6, 2022): 391. http://dx.doi.org/10.3390/biomedicines10020391.
Повний текст джерелаAlshalalfa, Mohammed. "MicroRNA Response Elements-Mediated miRNA-miRNA Interactions in Prostate Cancer." Advances in Bioinformatics 2012 (November 4, 2012): 1–10. http://dx.doi.org/10.1155/2012/839837.
Повний текст джерелаStebel, Sophie, Janina Breuer, and Oliver Rossbach. "Studying miRNA–mRNA Interactions: An Optimized CLIP-Protocol for Endogenous Ago2-Protein." Methods and Protocols 5, no. 6 (November 30, 2022): 96. http://dx.doi.org/10.3390/mps5060096.
Повний текст джерелаAfonso-Grunz, Fabian, and Sören Müller. "Principles of miRNA–mRNA interactions: beyond sequence complementarity." Cellular and Molecular Life Sciences 72, no. 16 (June 3, 2015): 3127–41. http://dx.doi.org/10.1007/s00018-015-1922-2.
Повний текст джерелаWang, Zixing, Wenlong Xu, Haifeng Zhu, and Yin Liu. "A Bayesian Framework to Improve MicroRNA Target Prediction by Incorporating External Information." Cancer Informatics 13s7 (January 2014): CIN.S16348. http://dx.doi.org/10.4137/cin.s16348.
Повний текст джерелаДисертації з теми "MiRNA-mRNA interactions"
Fu, Xiaonan. "Functional study of miRNA-mRNA interactions in malaria mosquito An. gambiae." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96216.
Повний текст джерелаPHD
Shahab, Shubin. "Microrna and messenger rna interactions in ovarian cancer." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44753.
Повний текст джерелаFrampton, Adam. "The complex network of miRNA and mRNA target interactions in pancreatic cancer." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24951.
Повний текст джерелаHernandes, Natalia Helena. "Identificação e validação das interações miRNA-mRNA na metamorfose de Apis mellifera." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-04012017-115203/.
Повний текст джерелаInsect metamorphosis is one of the most complex and beautiful of known biological events; it consists of successive morphological and physiological alterations. This intricate process is coordinated by various molecular components, including ecdysteroids (20E), juvenile hormone (JH), transcription factors and microRNAs (miRNAs). The miRNAs regulate gene expression, which in turn orchestrates physiological and anatomical changes necessary for successful insect ontogeny. Despite enormous efforts, the endocrine and genetic circuits that regulate metamorphosis in social insects, such as honey bees (Apis mellifera), are far from being completely elucidated. The miRNAs are a substantial component of this molecular machinery and seem to be ubiquitously involved in the control of biological processes. Disclosing new miRNA-target interactions involved in metamorphosis and in the regulation of 20E and JH cascades can shed light on these poorly understood events. In this study, we provide new pieces to this puzzle. We investigated the roles of miR-34, miR-281, miR-252a and miR-252b, known to be important regulators of insect metamorphosis, in the A. mellifera model. All of these miRNAs revealed a high degree of phylogenetic conservation and responded to treatment with 20E, which altered transcript abundance. Using available information and our databases, we identified interactions involving these miRNAs and the component genes of JH and 20E pathways: ultraspiracle (Usp), fushi tarazu-transcription factor 1 (ftz-f1), ecdysone receptor (EcR), calponin (chd64), insulin receptor 2 (inr2), and Krüppel homolog 1 (Kr-h1). Prediction of miRNA-target interactions revealed that the ecdysteroid receptors EcR and Usp and the transcription factor ftz-f1 are highly targeted by miRNAs involved in metamorphosis; they presented binding sites for all four miRNAs. We also observed that all six-protein coding genes are putatively targeted by miR-34. Using the luciferase assay, we were able to validate the interactions of miR-34 with the targets Krh1, chd64 and inr2; miR-252a with the targets ftz-f1 and EcR; miR-252b with the targets chd64 and ftz-f1; and miR-281 with the targets ftz-f1, EcR and Usp. Investigation of miRNA expression profiles during larval (L3-PP3) and pupal (Pw) development, as a function of the profiles of their respective targets, demonstrated many cases of positive miRNA-mRNA relationships. These results complemented the validation results, showing how the miRNAs regulate their targets. In conclusion, we identified various previously unknown miRNA-mRNA interactions involved in the metamorphosis of A. mellifera. The regulatory pathways proposed and validated by us, as well as their characterizations and relationships with metamorphosis regulator hormones, are unique and add to the understanding of the regulation of metamorphosis in A. mellifera. In this context, our research contributes to a better understanding of the molecular events involved in honey bee metamorphosis.
Homberg, Nicolas. "New models and algorithms for the identification of sncRNA-(snc)RNA interactions intra and across-species/kingdom." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10090.
Повний текст джерелаMicroRNAs (miRNAs) are non-coding RNAs present in eukaryotes that regulate the expression of messenger RNAs (mRNAs) up or down. These miRNAs have significant potential in future treatment of cancer and other diseases. The miRNA-mRNA interactions are intricate and involve various mechanisms, such as sequence complementarity, accessibility, and conservation. This thesis focuses on two such mechanisms, namely accessibility and intra-species conservation of the site of interaction, using experimental data from Cross-linking, Ligation And Sequencing of Hybrids (CLASH). Although the accessibility of interaction sites on mRNAs is generally observed, it is not consistent for all interactions. Intra-species conservation is a rare feature, which we explore by inferring conserved motifs from mRNA interaction sites. Although the results are noisy, in some specific cases, we manage to retrieve some mRNA interaction sites from the inferred motifs
Lo, Tzu-Chun, and 羅子鈞. "A Statistical Framework for Identifying miRNA-mRNA Interactions in Association Studies." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/2bm4p6.
Повний текст джерела國立中正大學
資訊工程研究所
103
MicroRNAs (miRNAs) are noncoding small RNAs which suppress target mRNA expres- sion by cleavage. Thanks to the development of small RNA sequencing (small RNA-Seq) and RNA sequencing (RNA-Seq), we can gain insight into the landscape and expres- sion abundance of miRNAs and mRNAs in the genome. In reality, the miRNA-cleaved transcripts remain in the cell before degradation. These cleaved transcripts may be still captured and sequenced, leading to aberrant expression around the cleavage site. In this thesis, we design and implement a statistical framework for identifying aberrant expression caused by miRNA cleavage from RNA-seq. Our method is applied on a cold- stress study of two rice strains. We identied 23 miRNA-mRNA interactions with such aberrant expression, which are highly correlated to tolerance of cold stress.
Correia, Sónia Cristina Heleno. "Molecular analysis of microRNA-target gene interactions in the pine seed." Master's thesis, 2017. http://hdl.handle.net/10362/21586.
Повний текст джерелаRana, Mitali. "miRNA-mRNA interaction map in breast cancer." Thesis, 2013. http://ethesis.nitrkl.ac.in/5304/1/411LS2062.pdf.
Повний текст джерелаCzarnocki-Cieciura, Mariusz. "Analiza architektury kompleksu CCR4-NOT i mechanizmu jego działania w szlaku mikroRNA." Doctoral thesis, 2015.
Знайти повний текст джерелаEukaryotic mRNA are protected from degradation from both ends by the cap structure and poly(A) tail at their 5' and 3' ends, respectively. Moreover, the PABP proteins (poly(A) binding proteins) associated with poly(A) tail interact with the translation factors eIF4E/eIF4G that protect the 5' cap structure. This mRNA circularization stabilizes such mRNP (mRNA-protein complexes) and results in the enhancement of translation. Therefore, the first step in mRNA degradation is destabilization of the interaction between 5'- and 3'-ends by reducing the length of poly(A) tail (deadenylation by the CCR4-NOT and PAN2-PAN3 protein complexes) and/or removal of the 5'-cap structure by the DCP2-DCP1 decapping complex.The CCR4-NOT complex is the major eukaryotic deadenylase and is involved in cytoplasmic degradation of most mRNA molecules. This evolutionarily conserved multiprotein assembly consists of at least two distinct functional and structural modules that are connected by the large scaffold protein CNOT1. The two catalytic subunits (CNOT6/CNOT6L and CNOT7/CNOT8) together with the CNOT9 protein interact with the N-terminal part of CNOT1 protein, while the CNOT2 and CNOT3 proteins associate with the C-terminal part of CNOT1. Recently it was shown that CCR4-NOT complex is involved in microRNA-mediated mRNA repression. Central to this pathway are small, 22 nt long RNA called miRNA. They are complementary to short sequences present in 3'-UTR (untranslated region) of many transcripts. After incorporation into RNA-induced silencing complexes (RISC) miRNA guide them to those mRNA. This generally leads to translational repression and subsequent degradation of targeted transcripts. Major players in this process are GW182 proteins. They are recruited to miRNA targets through their N-terminal domains, while their C-terminal part, called silencing domain (SD) or C-terminal effector domain (CED), is directly responsible for silencing. The SD/CED domain may directly recruit deadenylase complexes and presumably other degradation factors by interacting with CNOT1 protein, but the exact mechanism of GW182 action remains elusive. To get insights into architecture of the CCR4-NOT complex and to identify its subunits that are directly involved in the interaction with GW182 proteins a series of truncated versions of CNOT1 protein and other subunits of the human CCR4-NOT complex were purified from E. coli expression cells. Recombinant proteins were tested for interaction with each other and with SD/CED domain of human GW182 proteins by size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS). These experiments showed that the CNOT7 catalytic subunit interacts with the central domain of CNOT1 protein called MIF4G while the CNOT9 subunit is bound to the adjacent CN9BD domain. Moreover, experiments conducted with yeast orthologues of CNOT2 and CNOT3 subunits showed that they interact with each other through their C-terminal NOT-box domains. SEC-MALS analysis of CCR4-NOT subunits mixed with SD/CED domain showed that the GW182 proteins recruit the major deadenylase complex by interacting with the CNOT9 subunit. This interaction is mediated by hydrophobic Trp residues scattered throughout the unstructured parts of SD/CED sequence and is further stabilised by additional binding surface located on the NOT-module of the CCR4-NOT complex. Collectively, these results provide new insights into the architecture of the CCR4-NOT complex and explain mechanism of its recruitment by GW182 proteins.
Частини книг з теми "MiRNA-mRNA interactions"
Andrés-León, Eduardo, Gonzalo Gómez-López, and David G. Pisano. "Prediction of miRNA–mRNA Interactions Using miRGate." In Methods in Molecular Biology, 225–37. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6866-4_15.
Повний текст джерелаBagnacani, Andrea, Markus Wolfien, and Olaf Wolkenhauer. "Tools for Understanding miRNA–mRNA Interactions for Reproducible RNA Analysis." In Computational Biology of Non-Coding RNA, 199–214. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8982-9_8.
Повний текст джерелаLuo, Dan, Shu-Lin Wang, and Jianwen Fang. "Combining Gene Expression and Interactions Data with miRNA Family Information for Identifying miRNA-mRNA Regulatory Modules." In Intelligent Computing Theories and Application, 311–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63312-1_28.
Повний текст джерелаKléma, Jiří, Jan Zahálka, Michael Anděl, and Zdeněk Krejčík. "Interaction-Based Aggregation of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome." In Biomedical Engineering Systems and Technologies, 165–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26129-4_11.
Повний текст джерелаGiurgiu, Miruna, Robert Kaltenbach, Franziska Ahrend, Summer Weeks, Holly Clifton, Martin Bouldo, Vitaly Voloshin, Jiling Zhong, Siegfried Harden, and Alexander Kofman. "Multiple genetic polymorphisms within microRNA targets and homologous microRNA-binding sites: two more factors influencing microRNA-mediated regulation of gene expression." In Advances in Genetic Polymorphisms [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002250.
Повний текст джерелаShahid, Imran, and Qaiser Jabeen. "Appling Drug Discovery in HCV-therapeutics: A snapshot from the past and glimpse into the future." In Hepatitis C Virus-Host Interactions and Therapeutics: Current Insights and Future Perspectives, 290–342. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123432123010013.
Повний текст джерелаThi Ngoc Nguyen, Thanh, Thu Huynh Ngoc Nguyen, Luan Huu Huynh, Hoang Ngo Phan, and Hue Thi Nguyen. "Predicting SNPs in Mature MicroRNAs Dysregulated in Breast Cancer." In Recent Advances in Non-Coding RNAs [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105514.
Повний текст джерелаMajeed Shah, Ishteyaq, Mashooq Ahmad Dar, Kaiser Ahmad Bhat, Tashook Ahmad Dar, Fayaz Ahmad, and Syed Mudasir Ahmad. "Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes." In Recent Advances in Non-Coding RNAs [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104861.
Повний текст джерелаPrado-Garcia, Heriberto, Ana E. González-Santiago, Susana Romero-Garcia, Alejandra Garcia-Hernandez, Victor Ruiz, Arnoldo Aquino-Galvez, Alma Cebreros-Verdin, and Angeles Carlos-Reyes. "lncRNA-miRNA-mRNA Interaction Networks Regulation in Hematological Malignancies." In Reference Module in Biomedical Sciences. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-443-15717-2.00010-x.
Повний текст джерелаZhu, Jinyi, Haoran Meng, and Yan Li. "Screening and Bioinformatics Analysis of Differential Genes in Autism Spectrum Disorder Based on GEO Database." In Studies in Health Technology and Informatics. IOS Press, 2023. http://dx.doi.org/10.3233/shti230851.
Повний текст джерелаТези доповідей конференцій з теми "MiRNA-mRNA interactions"
Ferdous, Rayhan, Md Zahidul Islam, and Ferdous Bin Ali. "Identifying miRNA-mRNA interactions by a combination of spearman's rank correlation and IDA." In 2016 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2016. http://dx.doi.org/10.1109/iciev.2016.7760131.
Повний текст джерелаGuo, Yichen, Marie Denis, Rency S. Varghese, Sidharth S. Jain, Mahlet G. Tadesse, and Habtom W. Ressom. "Bayesian Approach Integrating Prior Knowledge for Identifying miRNA-mRNA Interactions in Hepatocellular Carcinoma." In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2023. http://dx.doi.org/10.1109/bibm58861.2023.10385314.
Повний текст джерелаWeidner, Julie, Carina Malmhäll, Aidan Barrett, Huda Hasan, Emma Boberg, Linda Ekerljung, and Madeleine Rådinger. "Glucocorticoid signaling genes are altered in asthma subgroups – A potential role for mRNA-miRNA interactions." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2715.
Повний текст джерелаRomero-Cordoba, Sandra L., Rosa Rebollar-Vega, Valeria Quintanar-Jurado, Alfredo Hidalgo-Miranda, Sergio Rodriguez-Cuevas, Veronica Bautista-Pina, and Antonio Maffuz-Aziz. "Abstract 4370: miRNA profiles identify different subgroups of triple negative tumors and reveal novel miRNA-mRNA interactions in breast cancer tumorigenesis." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4370.
Повний текст джерелаSzczepankiewicz, D., W. Langwiński, J. Nowakowska, P. Kołodziejski, E. Pruszyńska-Oszmałek, M. Sassek, N. Leciejewska, K. Ziarniak, and A. Szczepankiewicz. "Allergic airway inflammation affects signaling pathways in adipose tissue via mRNA-miRNA interactions in the rat." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.2275.
Повний текст джерелаTelonis, Aristeidis G. "Abstract B79: Integrative quantitative analysis of pancreatic ductal adenocarcinoma mRNA, miRNA, and methylation profiles reveals interactions that are dependent on tumor cellularity." In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; May 12-15, 2016; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.panca16-b79.
Повний текст джерелаGabriel, Binthiya Suny, and Tessamma Thomas. "Novel Method for Analyzing the Relation of miRNA Seed Length and the miRNA-mRNA Interaction Strength." In 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). IEEE, 2021. http://dx.doi.org/10.1109/icbsii51839.2021.9445143.
Повний текст джерелаYURIKOVA, O., S. ATAMBAYEVA, R. NIYAZOVA, and A. IVASHCHENKO. "INTERACTION OF MIRNA WITH MRNA OF ORTHOLOGOUS GENES INVOLVED IN THE DEVELOPMENT OF NEURODEGENERATIVE AND ONCOLOGICAL DISEASES." In 5TH MOSCOW INTERNATIONAL CONFERENCE "MOLECULAR PHYLOGENETICSAND BIODIVERSITY BIOBANKING". TORUS PRESS, 2018. http://dx.doi.org/10.30826/molphy2018-40.
Повний текст джерела"Characteristics of interaction of miRNA with mRNA of C2H2, ERF and GRAS transcription factors of arabidopsis, rice and maize." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-214.
Повний текст джерела