Добірка наукової літератури з теми "MINUTIA MATCHING"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MINUTIA MATCHING".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MINUTIA MATCHING"
BHOWMICK, PARTHA, ARIJIT BISHNU, BHARGAB BIKRAM BHATTACHARYA, MALAY KUMAR KUNDU, C. A. MURTHY, and TINKU ACHARYA. "DETERMINATION OF MINUTIAE SCORES FOR FINGERPRINT IMAGE APPLICATIONS." International Journal of Image and Graphics 05, no. 03 (July 2005): 537–71. http://dx.doi.org/10.1142/s0219467805001896.
Повний текст джерелаLoyola-González, Octavio, Emilio Francisco Ferreira Mehnert, Aythami Morales, Julian Fierrez, Miguel Angel Medina-Pérez, and Raúl Monroy. "Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction." Applied Sciences 11, no. 9 (May 4, 2021): 4187. http://dx.doi.org/10.3390/app11094187.
Повний текст джерелаBENHAMMADI, FARID, and KADDA BEGHDAD BEY. "EMBEDDED FINGERPRINT MATCHING ON SMART CARD." International Journal of Pattern Recognition and Artificial Intelligence 27, no. 02 (March 2013): 1350006. http://dx.doi.org/10.1142/s0218001413500067.
Повний текст джерелаGao, Qinghai. "Toward Constructing Cancellable Templates using K-Nearest Neighbour Method." International Journal of Computer Network and Information Security 9, no. 5 (May 8, 2017): 1–10. http://dx.doi.org/10.5815/ijcnis.2017.05.01.
Повний текст джерелаZHU, EN, JIAN-PING YIN, GUO-MIN ZHANG, and CHUN-FENG HU. "FINGERPRINT MINUTIAE RELATIONSHIP REPRESENTATION AND MATCHING BASED ON CURVE COORDINATE SYSTEM." International Journal of Image and Graphics 05, no. 04 (October 2005): 729–44. http://dx.doi.org/10.1142/s0219467805001987.
Повний текст джерелаSoetarmono, Anggya N. D. "IDENTIFIKASI SIDIK JARI DENGAN MENGGUNAKAN STRUKTUR MINUTIA." Teknika 1, no. 1 (July 1, 2012): 36–46. http://dx.doi.org/10.34148/teknika.v1i1.5.
Повний текст джерелаCao, Kai, Xin Yang, Xinjian Chen, Xunqiang Tao, Yali Zang, Jimin Liang, and Jie Tian. "Minutia handedness: A novel global feature for minutiae-based fingerprint matching." Pattern Recognition Letters 33, no. 10 (July 2012): 1411–21. http://dx.doi.org/10.1016/j.patrec.2012.03.007.
Повний текст джерелаSoleimani, Hossein, and Mohsen Ahmadi. "Fast and efficient minutia‐based palmprint matching." IET Biometrics 7, no. 6 (April 11, 2018): 573–80. http://dx.doi.org/10.1049/iet-bmt.2017.0128.
Повний текст джерелаTico, M., and P. Kuosmanen. "Fingerprint matching using an orientation-based minutia descriptor." IEEE Transactions on Pattern Analysis and Machine Intelligence 25, no. 8 (August 2003): 1009–14. http://dx.doi.org/10.1109/tpami.2003.1217604.
Повний текст джерелаSelvarani, P., and N. Malarvizhi. "Multibiometric authentication with MATLAB simulation." International Journal of Engineering & Technology 7, no. 1.7 (February 5, 2018): 47. http://dx.doi.org/10.14419/ijet.v7i1.7.9389.
Повний текст джерелаДисертації з теми "MINUTIA MATCHING"
Li, Tuo. "Fingerprint Identification by Improved Method of Minutiae Matching." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1484672769912832.
Повний текст джерелаNoor, Azad. "A new algorithm for minutiae extraction and matching in fingerprint." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7473.
Повний текст джерелаHenriksson, Marcus. "Analys av fingeravtryck." Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1219.
Повний текст джерелаThis report describes a system for verification of fingerprints against a previous created template. It describes how and why a fingerprint image must be processed before it can be used to either identify or verify a person. The method is based on special features of a fingerprint, called minutiae points. The whole process from image to matching is described, every step in the process with image enhancement, binarization, thinning and how to find the minutiae points. Also what false minutiae points are, how they arise, why they deteriorate the result, and how to handle them, is discussed.
Finally a test of the system with a large number of fingerprints is presented, to see how good the system is according to security and reliability about not accepting prints from other fingers or reject the fingerprints, which are from the same finger as the template. Many proposals about how the performance and the security of the system can be improved are also presented.
Filla, David. "Biometrie otisku prstu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219256.
Повний текст джерелаBlommé, Johan. "Evaluation of biometric security systems against artificial fingers." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1145.
Повний текст джерелаVerification of users’ identities are normally carried out via PIN-codes or ID- cards. Biometric identification, identification of unique body features, offers an alternative solution to these methods.
Fingerprint scanning is the most common biometric identification method used today. It uses a simple and quick method of identification and has therefore been favored instead of other biometric identification methods such as retina scan or signature verification.
In this report biometric security systems have been evaluated based on fingerprint scanners. The evaluation method focuses on copies of real fingers, artificial fingers, as intrusion method but it also mentions currently used algorithms for identification and strengths and weaknesses in hardware solutions used.
The artificial fingers used in the evaluation were made of gelatin, as it resembles the surface of human skin in ways of moisture, electric resistance and texture. Artificial fingers were based on ten subjects whose real fingers and artificial counterpart were tested on three different fingerprint scanners. All scanners tested accepted artificial fingers as substitutes for real fingers. Results varied between users and scanners but the artificial fingers were accepted between about one forth and half of the times.
Techniques used in image enhancement, minutiae analysis and pattern matching are analyzed. Normalization, binarization, quality markup and low pass filtering are described within image enhancement. In minutiae analysis connectivity numbers, point identification and skeletonization (thinning algorithms) are analyzed. Within pattern matching, direction field analysis and principal component analysis are described. Finally combinations of both minutiae analysis and pattern matching, hybrid models, are mentioned.
Based on experiments made and analysis of used techniques a recommendation for future use and development of fingerprint scanners is made.
Mohamed, Abdul Cader Akmal Jahan. "Finger biometric system using bispectral invariants and information fusion techniques." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134464/1/Akmal%20Jahan_Mohamed%20Abdul%20Cader_Thesis.pdf.
Повний текст джерелаKUMAR, AJAY. "FINGERPRINT RECOGNITION." Thesis, 2011. http://dspace.dtu.ac.in:8080/jspui/handle/repository/13880.
Повний текст джерелаThe popular Biometric used to authenticate a person is Fingerprint which is unique and permanent throughout a person’s life. A minutia matching is widely used for fingerprint recognition and can be classified as ridge ending and ridge bifurcation. Automatic minutiae detection is an extremely critical process, especially in low-quality fingerprints where noise and contrast deficiency can originate pixel configurations similar to minutiae or hide real minutiae. The technique describe here, is consists of minutiae extraction and minutiae matching. the minutia extraction algorithm proposed here, is much faster and more reliable and implemented for extracting features from an input fingerprint image. For minutia matching, an alignment-based elastic matching algorithm has been developed. The proposed algorithm results in an efficient, robust and fast representation of fingerprints which accurately retains the fidelity in minutiae (ridge endings and bifurcations).
TIEN, SHAO-HUA, and 田韶華. "Fingerprint Recognition Method Based on Fusion of Spatial Statistical Features and Minutia Matching." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/x98wy4.
Повний текст джерела國立中央大學
資訊工程學系在職專班
103
Product get smaller and technological improve every day, relatively small area of the fingerprint sensor to capture the DPI is also getting smaller and smaller, resolution or image complexity will affect the image of the fingerprint identification result, the traditional approach has been to identify a single one inadequate use of feature points presented in this recognition and non-recognition feature points plus two kinds of identification method to fusion, non-feature point identification method uses a statistical and probability neural network, coupled with training through fingerprint classification to achieve their goals in decision fusion experiments on the max and two-stage and other fusion methods, and finally decision fusion experiment error rate lower than the previous two individual identification party.
Chen, Guan-you, and 陳冠佑. "Fingerprint Minutiae Matching with LBP Texture." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/86076627486817221560.
Повний текст джерела國立中央大學
資訊工程學系
103
The minutiae-based matching is the main stream method in fingerprint recognition which is an algorithm tries to find out the matched minutiae between two fingerprints. According to the amount of matched Minutiae, we can determine whether these two fingerprints are same or not. Due to the noise in the fingerprint images, image pre-processing has to be proceeded in order to reduce the noises, otherwise those extracted spurious Minutiae will influence the correctness of results. Therefore, recently, there are plenty of methods proposing the combination of multiple fingerprint features to identify two fingerprints. In this paper, we propose an improved minutiae matching method by integrating the Local Binary Pattern (LBP) feature, which compares LBP texture features in the adjacent region of Minutiae in order to select the reference points we want and guarantee the precision of identification. The experiment results show that our method can outperform the traditional Minutiae-based method. In FVC2000 and the fingerprint database we build, both Error Equal Rate (EER) of the outcomes are better than the traditional way.
Gwo-Cheng, Chao, and 趙國成. "A Fingerprint Verification System based on Minutiae Matching." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/69420330587510232317.
Повний текст джерела國立臺灣科技大學
資訊工程系
93
Fingerprint based identification has been known and used for a long time. Owing to the uniqueness and immutability, fingerprints are today the most widely used biometric features. Fingerprint verification is based on the minutiae of the fingerprints. Extracting minutiae from fingerprint patterns is one of the most important steps in automatic system for fingerprint identification. This model, adopted in most automatic systems, is based on a two-class minutiae classification: endpoint and bifurcation .The accuracy of the minutiae will affect the correctness of the fingerprint matching; therefore the fingerprint enhancement will be done to reduce the false minutiae. In this thesis, an effective fingerprint verification system is implemented by passing the image pre/post-processing, feature extraction and matching processes. We describe an improved method on fingerprint enhancement and post-processing. We directly enhance the fingerprint on gray-scale image and reduce the most false minutiae in the post-processing step. For minutiae matching, an alignment-based elastic matching algorithm has been developed. This algorithm is capable of finding the corresponding point pairs between input and template minutiae. It also has the ability to adaptively compensate for the nonlinear deformations between fingerprints.
Книги з теми "MINUTIA MATCHING"
Michael, McCabe R., and National Institute of Standards and Technology (U.S.), eds. Fingerprint minutiae from latent and matching tenprint images. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2000.
Знайти повний текст джерелаFail Safe Employment Techniques (Firm), ed. Fail safe employment techniques: A guide to the world of work : matching skills to more than 20,000 jobs : an unbeatable method to scan thousands of potential careers in minutes. Bellevue, Wash: Fail Safe Employment Techniques, 1985.
Знайти повний текст джерелаNIST SPECIAL DATABASE 27 FINGERPRINT MINUTIAE FROM LATENT MATCHING TENPRINT IMAGES... NISTIR 6534... U.S. DEPARTMENT OF COMMERCE. [S.l: s.n., 2001.
Знайти повний текст джерелаRush, David N., and Peter W. Nickerson. Rejection. Edited by Jeremy R. Chapman. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0283_update_001.
Повний текст джерелаSciences, Planet of. 100 Days of Telling the Time - Practice Worksheets Workbook with Answers ,fill in the-Blank, Drawing Hands on a Clock Face : Ages 7-9: Hours, Quarter Hours, Five Minutes, Minutes, Matching Times. Independently Published, 2020.
Знайти повний текст джерелаMuders, Thomas, and Christian Putensen. Pressure-controlled mechanical ventilation. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0096.
Повний текст джерелаЧастини книг з теми "MINUTIA MATCHING"
Sarier, Neyire Deniz. "Private Minutia-Based Fingerprint Matching." In Information Security Theory and Practice, 52–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24018-3_4.
Повний текст джерелаQi, Jin, Yangsheng Wang, Zhongchao Shi, Ke Xu, and Xuying Zhao. "Fingerprint Matching Integrating the Global Orientation Field with Minutia." In Biometric Authentication, 337–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25948-0_47.
Повний текст джерелаMedina-Pérez, Miguel Angel, Andrés Gutiérrez-Rodríguez, and Milton García-Borroto. "Improving Fingerprint Matching Using an Orientation-Based Minutia Descriptor." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 121–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10268-4_14.
Повний текст джерелаCappelli, Raffaele, Matteo Ferrara, and Davide Maltoni. "Minutiae-Based Fingerprint Matching." In Intelligent Systems Reference Library, 117–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28457-1_7.
Повний текст джерелаAsha, S., and C. Chellappan. "Partial Fingerprint Matching Using Minutiae Subset." In Intelligent Computing, Networking, and Informatics, 445–52. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1665-0_42.
Повний текст джерелаRatha, Nalini K., Jonathan H. Connell, and Ruud M. Bolle. "An Analysis of Minutiae Matching Strength." In Lecture Notes in Computer Science, 223–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45344-x_32.
Повний текст джерелаParziale, Giuseppe, and Albert Niel. "A Fingerprint Matching Using Minutiae Triangulation." In Biometric Authentication, 241–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25948-0_34.
Повний текст джерелаBenhammadi, Farid, Hamid Hentous, Kadda Bey-Beghdad, and Mohamed Aissani. "Fingerprint Matching Using Minutiae Coordinate Systems." In Pattern Recognition and Image Analysis, 529–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11492542_65.
Повний текст джерелаChen, Jiali, and Zhenhua Guo. "Palmprint Matching by Minutiae and Ridge Distance." In Cloud Computing and Security, 371–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48674-1_33.
Повний текст джерелаPatel, Ronakkumar B., Dilendra Hiran, and Jayeshbhai Patel. "Biometric Fingerprint Recognition Using Minutiae Score Matching." In Lecture Notes on Data Engineering and Communications Technologies, 463–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4474-3_52.
Повний текст джерелаТези доповідей конференцій з теми "MINUTIA MATCHING"
Xuefeng Liang and T. Asano. "Fingerprint Matching Using Minutia Polygons." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.571.
Повний текст джерелаCzovny, Raphael K., Olga R. P. Bellon, Luciano Silva, and Henrique S. G. Costa. "Minutia Matching using 3D Pore Clouds." In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8546036.
Повний текст джерелаBaig, Wajih Ullah, Umar Munir, Adeel Ejaz, and Kashif Sardar. "Minutia Texture Cylinder Codes for Fingerprint Matching." In 2019 International Conference on Frontiers of Information Technology (FIT). IEEE, 2019. http://dx.doi.org/10.1109/fit47737.2019.00024.
Повний текст джерелаLuo, Yuxuan, Jianjiang Feng, and Jie Zhou. "Fingerprint matching based on global minutia cylinder code." In 2014 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2014. http://dx.doi.org/10.1109/btas.2014.6996231.
Повний текст джерелаLahby, Mohamed, Yassine Ismaili, Abdelbaki Attioui, and Abderrahim Sekkaki. "Performance analysis of minutia-based fingerprint matching algorithms." In 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA). IEEE, 2016. http://dx.doi.org/10.1109/sita.2016.7772324.
Повний текст джерелаWu, Chunsheng, Liu Zhigang, and Feng Caigang. "Palmprint Minutia Point Matching Algorithm and GPU Application." In The 5th International Conference on Computer Engineering and Networks. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.259.0030.
Повний текст джерелаWen, Wen, Zhi Qi, Zhi Li, Junhao Zhang, Yu Gong, and Peng Cao. "A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm." In 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2013. http://dx.doi.org/10.1109/acpr.2013.43.
Повний текст джерелаSutarno, Muhamad Visat, and Achmad Imam Kistijantoro. "Minutia cylinder code-based fingerprint matching optimization using GPU." In 2017 International Conference on Data and Software Engineering (ICoDSE). IEEE, 2017. http://dx.doi.org/10.1109/icodse.2017.8285880.
Повний текст джерелаJIN, SHENGPING, MEILAN ZENG, and DINGFANG CHEN. "THE FINGERPRINT IMAGE NOISE REDUCING AND MINUTIA MATCHING IN VERIFICATION." In Proceedings of the Third International Conference on WAA. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812796769_0120.
Повний текст джерелаZang, Jiong, Jie Yuan, Fei Shi, and Si-dan Du. "A Fingerprint Matching Algorithm of Minutia Based on Local Characteristic." In 2008 Fourth International Conference on Natural Computation. IEEE, 2008. http://dx.doi.org/10.1109/icnc.2008.710.
Повний текст джерелаЗвіти організацій з теми "MINUTIA MATCHING"
Williams, Thomas. Microbial Mating-type Matching memory Game. University of Dundee, 2023. http://dx.doi.org/10.20933/100001286.
Повний текст джерелаMathew, Jijo K., Christopher M. Day, Howell Li, and Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Повний текст джерелаDorna, Guadalupe, and Gastón Gertner. Argentina: Lessons Learned from a Remote Tutoring Pilot. Inter-American Development Bank, September 2023. http://dx.doi.org/10.18235/0005110.
Повний текст джерела