Добірка наукової літератури з теми "MinION sequencing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MinION sequencing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MinION sequencing"
Batovska, Jana, Stacey E. Lynch, Brendan C. Rodoni, Tim I. Sawbridge, and Noel OI Cogan. "Metagenomic arbovirus detection using MinION nanopore sequencing." Journal of Virological Methods 249 (November 2017): 79–84. http://dx.doi.org/10.1016/j.jviromet.2017.08.019.
Повний текст джерелаLu, Hengyun, Francesca Giordano, and Zemin Ning. "Oxford Nanopore MinION Sequencing and Genome Assembly." Genomics, Proteomics & Bioinformatics 14, no. 5 (October 2016): 265–79. http://dx.doi.org/10.1016/j.gpb.2016.05.004.
Повний текст джерелаLemon, Jamie K., Pavel P. Khil, Karen M. Frank, and John P. Dekker. "Rapid Nanopore Sequencing of Plasmids and Resistance Gene Detection in Clinical Isolates." Journal of Clinical Microbiology 55, no. 12 (October 11, 2017): 3530–43. http://dx.doi.org/10.1128/jcm.01069-17.
Повний текст джерелаAgakhanov, M. M., E. A. Grigoreva, E. K. Potokina, P. S. Ulianich, and Y. V. Ukhatova. "Genome assembly of Vitis rotundifolia Michx. using third-generation sequencing (Oxford Nanopore Technologies)." Proceedings on applied botany, genetics and breeding 182, no. 2 (July 1, 2021): 63–71. http://dx.doi.org/10.30901/2227-8834-2021-2-63-71.
Повний текст джерелаTafess, Ketema, Timothy Ting Leung Ng, Hiu Yin Lao, Kenneth Siu Sing Leung, Kingsley King Gee Tam, Rahim Rajwani, Sarah Tsz Yan Tam, et al. "Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost." Clinical Chemistry 66, no. 6 (May 2, 2020): 809–20. http://dx.doi.org/10.1093/clinchem/hvaa092.
Повний текст джерелаde Lannoy, Carlos, Dick de Ridder, and Judith Risse. "A sequencer coming of age: De novo genome assembly using MinION reads." F1000Research 6 (July 7, 2017): 1083. http://dx.doi.org/10.12688/f1000research.12012.1.
Повний текст джерелаde Lannoy, Carlos, Dick de Ridder, and Judith Risse. "The long reads ahead: de novo genome assembly using the MinION." F1000Research 6 (December 12, 2017): 1083. http://dx.doi.org/10.12688/f1000research.12012.2.
Повний текст джерелаJaudou, Sandra, Mai-Lan Tran, Fabien Vorimore, Patrick Fach, and Sabine Delannoy. "Evaluation of high molecular weight DNA extraction methods for long-read sequencing of Shiga toxin-producing Escherichia coli." PLOS ONE 17, no. 7 (July 13, 2022): e0270751. http://dx.doi.org/10.1371/journal.pone.0270751.
Повний текст джерелаWei, Shan, Zachary R. Weiss, and Zev Williams. "Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform." G3: Genes|Genomes|Genetics 8, no. 5 (March 14, 2018): 1649–57. http://dx.doi.org/10.1534/g3.118.200087.
Повний текст джерелаHosokawa-Muto, Junji, Yukiko Sassa-O’Brien, Yoshihito Fujinami, and Hiroaki Nakahara. "Analysis Comparison for Rapid Identification of Pathogenic Virus from Infected Tissue Samples." Diagnostics 12, no. 1 (January 14, 2022): 196. http://dx.doi.org/10.3390/diagnostics12010196.
Повний текст джерелаДисертації з теми "MinION sequencing"
Sim, Justin. "The evaluation of in-field whole genome sequencing using the minION™ nanopore sequencer for forensic DNA applications." Thesis, Sim, Justin (2018) The evaluation of in-field whole genome sequencing using the minION™ nanopore sequencer for forensic DNA applications. Masters by Coursework thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/41414/.
Повний текст джерелаCain, Elizabeth. "Targeted STR and SNP in-field sequencing by Oxford Nanopore MinION™ for the identification of an individual in a military scenario." Thesis, Cain, Elizabeth (2019) Targeted STR and SNP in-field sequencing by Oxford Nanopore MinION™ for the identification of an individual in a military scenario. Masters by Coursework thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/49630/.
Повний текст джерелаFruchard, Cécile. "Étude des chromosomes sexuels et du déterminisme du sexe chez les plantes : comparaison des systèmes Silene et Coccinia." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1108/document.
Повний текст джерелаAlthough rarer than in animals, separate sexes (dioecy) have evolved in ∼15,600 angiosperm species (∼6% of all angiosperm species). How sex is controlled is a central question in plant sciences and also in agronomy as many crops are dioecious (∼20% of crops) with only one useful sex (usually female). Only three master sex-determining genes have been identified in dioecious plants so far, namely in persimmons, asparagus and strawberry. Dioecy likely evolved several times independently in angiosperms, suggesting that sex-determining genes are of diverse origins. Hermaphroditism is the predicted ancestral state of the angiosperm flower. Two main pathways have been identified that explain the evolution of hermaphroditism towards dioecy: either through a monoecious state (with both unisexual male and female flowers on the same individual) or a gynodioecious state (with females and individuals having hermaphroditic flowers). My aim is to compare two plant systems representing each one of these two pathways. In Coccinia grandis, a Cucurbitaceae with an XY chromosome system, dioecy evolved through monoecy. In Silene latifolia, a well-studied dioecious plant with XY sex chromosomes, dioecy evolved through gynodioecy. Three genes controlling monoecy have been identified in melon, and it was suggested that these genes act as sex-determining genes in closely related dioecious species such as C. grandis. I therefore chose a candidate gene approach in this species. Very few genetic and genomic data are available in C. grandis, and we chose to use SEX-DETector, a probabilistic method that uses RNA-seq data to genotype parents and their offspring, and infers sex-linked genes with no need for a reference genome. This method allowed me to identify 1,364 genes that are present on the sex chromosomes of C. grandis. I found that the sex chromosomes are enriched in sex-biasedgenes when compared to autosomes and I characterized Y chromosome degeneration in terms of decreased expression and gene loss. Finally, I showed that dosage compensation occurs in C. grandis. Testing for the three candidates genes is ongoing. In S. latifolia 3 regions involved in sex determination have already been identified on the Y chromosome. We chose to sequence this chromosome to identify sex-determining genes. The sequencing of Y chromosomes remains one of the greatest challenges of current genomics. The assembly step is very difficult because of their highly repeated content. Consequently, fully sequenced Y chromosomes are rare and mainly available for research in animals. To overcome the difficulty of assembling reads with many repeats, I used third generation sequencing (TGS, producing long reads). I produced a dataset using the Oxford Nanopore MinION sequencer with Y chromosome DNA. Assembling was performed using a combination of Illumina, MinION and PacBio sequencing data. The final assembly had a total length of 563 Mb with a scaffold N50 of 6,114 bp, and contained 16,219 de novo annotated genes
Ulrich, Kristina. "Molecular epidemiological study on Infectious Pancreatic Necrosis Virus isolates from aquafarms in Scotland over three decades." Thesis, University of Stirling, 2018. http://hdl.handle.net/1893/28340.
Повний текст джерелаIlango, Sankaralingam. "Computer-aided underground mining machine sequencing." Ohio : Ohio University, 1987. http://www.ohiolink.edu/etd/view.cgi?ohiou1183047349.
Повний текст джерелаPelley, Charles W. "A study of sequencing strategy for steep, tabular, hardrock orebodies." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41746.
Повний текст джерелаThe thesis examines, as a case study, the complexities of sequencing the extraction of the Hemlo orebody through three adjacent mines and details the planning and monitoring of extracting one section of the David Bell orebody. It examines the use of numerical modelling as a tool in extraction sequence planning and demonstrates how, in conjunction with an instrumentation program, the results assist successful completion of the plan.
The thesis concludes that bulk mining sequences have increased resource extraction and productivity, lowered costs and improved ground control aspects of extraction planning; but have compromised grade control. This aspect should be improved to maximize the economic benefits. In addition, as automated or continuous mining methods are developed, their benefits should be analyzed in the context of overall sequence planning objectives.
Smoljanovic, Muñoz Milivoj Antonio. "Optimum sequencing of underground ore reserves for different mining systems." Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/111985.
Повний текст джерелаIngeniero Civil de Minas
Currently, mine plans are optimized by using many criteria, such as profit, life of mine, concentration of some pollutants, mining costs, confidence level or mineral resources, while attending constraints related to production rates, plant capacities and grades. Whilst this approach is successful in terms of producing high value production schedules, it uses a static sequence of production units (for open pit and underground mine) and therefore the optimization is performed within the level of freedom left by the original opening schedule and is far from the optimal value of the project according to the objective function. This approach is often used in the industry and therefore the value addition that is involved when optimizing the mining sequence is disregarded. This thesis summarizes a research that includes applying a model to optimize the NPV value, as the objective function, in a panel cave mine and evaluating this model with different mining systems, to study the drawpoints opening sequence and the NPV variations. The emphasis is in the precedence, geometrical and production constraints that are required to produce meaningful operational drawpoints opening sequences considering the exploitation method (panel caving), physical considerations and logical rules. Further on, while it applies the standard approach of maximizing NPV, other targets for optimization, such as the mining material handling system, are considered. The idea is to consider the drawpoints opening sequence as an output of the problem and to select the best sequence considering different mining systems. The results indicate that the selection of the mining system is important when comparing the results of the objective function or the grade. The results can vary up to 18%. En la actualidad, los planes de producción mineros son optimizados usando diferentes criterios como el beneficio económico, la vida de la mina, la concentración de contaminantes, los costos mina, el nivel de confiabilidad o las reservas mineras, atendiendo a restricciones relacionadas a la producción, capacidades de planta y leyes. Si bien esta aproximación es eficaz en términos de producir planes de producción de alto valor agregado, usa una secuencia de las unidades de producción estática (tanto para minería a cielo abierto como para minería subterránea) y por lo tanto la optimización es realizada con un grado de libertad menos, debido al uso de la secuencia predefinida (secuencia original) y esto está lejos de ser el valor óptimo del proyecto, de acuerdo con la función objetivo utilizada. Esta aproximación se usa a menudo en la industria y por lo tanto, cuando se optimiza la secuencia de explotación de las unidades de producción, el valor agregado involucrado no se percibe. Esta tesis resume una investigación que incluye la aplicación de un modelo para optimizar el VAN como función objetivo, en una mina de Panel Caving y evaluando este modelo para distintos sistemas mineros, de tal forma de estudiar la secuencia de apertura de los puntos de extracción y las variaciones del VAN asociadas. El énfasis se encuentra en las restricciones de precedencia, geométricas y de producción, que son requeridas para producir secuencias de apertura de puntos de extracción significativas considerando el método de explotación (Panel Caving), consideraciones físicas y reglas lógicas. Entonces, mientras se aplica la aproximación estándar para maximizar el VAN, se consideran otros inputs para la optimización como por ejemplo el sistema minero. La idea es considerar la secuencia de apertura de puntos de extracción como un output del problema y seleccionar la mejor secuencia dados distintos sistemas mineros. Los resultados indican que la selección del sistema minero es importante, ya que los resultados de la función objetivo son muy distintos (así como la ley media) para cada sistema considerado. Los resultados pueden variar hasta un 18%.
Quan, Aaron. "Batch Sequencing Methods for Computer Experiments." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1401462464.
Повний текст джерелаMousavi, Nogholi Amin Alah. "Optimisation of open pit mine block sequencing." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/86697/1/Amin%20Alah_Mousavi%20Nogholi_Thesis.pdf.
Повний текст джерела桂宏胜 and Hongsheng Gui. "Data mining of post genome-wide association studies and next generation sequencing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193431.
Повний текст джерелаКниги з теми "MinION sequencing"
Soliman, Mohamed Y., and Ahmed Alzahabi. Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations. Taylor & Francis Group, 2018.
Знайти повний текст джерелаSoliman, Mohamed Y., and Ahmed Alzahabi. Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations. Taylor & Francis Group, 2018.
Знайти повний текст джерелаSoliman, Mohamed Y., and Ahmed Alzahabi. Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations. Taylor & Francis Group, 2018.
Знайти повний текст джерелаOptimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations. Taylor & Francis Group, 2018.
Знайти повний текст джерелаSoliman, Mohamed Y., and Ahmed Alzahabi. Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations. Taylor & Francis Group, 2021.
Знайти повний текст джерелаChaudhry, Bill, José Luis de la Pompa, and Nadia Mercader. The zebrafish as a model for cardiac development and regeneration. Edited by José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso, and Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0029.
Повний текст джерелаBarker, Richard. The accelerating pace of biomedical advance. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198737780.003.0002.
Повний текст джерелаЧастини книг з теми "MinION sequencing"
Runtuwene, Lucky R., Josef S. B. Tuda, Arthur E. Mongan, and Yutaka Suzuki. "On-Site MinION Sequencing." In Single Molecule and Single Cell Sequencing, 143–50. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4_10.
Повний текст джерелаKaramitros, Timokratis, and Gkikas Magiorkinis. "Multiplexed Targeted Sequencing for Oxford Nanopore MinION: A Detailed Library Preparation Procedure." In Methods in Molecular Biology, 43–51. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7514-3_4.
Повний текст джерелаYan, Lifang, Alejandro Banda, and Leyi Wang. "Whole Genome Sequencing of Avian Infectious Bronchitis Virus by iSeq100 Platform and MinION." In Springer Protocols Handbooks, 287–99. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2091-5_22.
Повний текст джерелаQian, Yu, Kang Zhang, and Wei Lai. "Constraint-Based Graph Clustering through Node Sequencing and Partitioning." In Advances in Knowledge Discovery and Data Mining, 41–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24775-3_7.
Повний текст джерелаA., Salim, Amjesh R., and Vinod Chandra S.S. "An Improved Algorithm for MicroRNA Profiling from Next Generation Sequencing Data." In Data Mining and Big Data, 38–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40973-3_4.
Повний текст джерелаZhang, Qian, Junping Zhang, and Chenghai Xue. "Measuring Reproducibility of High-Throughput Deep-Sequencing Experiments Based on Self-adaptive Mixture Copula." In Advances in Knowledge Discovery and Data Mining, 301–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37453-1_25.
Повний текст джерелаBansal, Jagdish Chand, Prathu Bajpai, Anjali Rawat, and Atulya K. Nagar. "Sine Cosine Algorithm for Discrete Optimization Problems." In Sine Cosine Algorithm for Optimization, 65–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9722-8_4.
Повний текст джерелаKumar, Hithesh, Vivek Chandramohan, Smrithy M. Simon, Rahul Yadav, and Shashi Kumar. "Big Data Analysis Techniques for Visualization of Genomics in Medicinal Plants." In Advances in Data Mining and Database Management, 749–81. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3142-5.ch026.
Повний текст джерелаSari, Y. A., and M. Kumral. "Incorporating grade uncertainty into sublevel stope sequencing." In Mining Goes Digital, 323–27. CRC Press, 2019. http://dx.doi.org/10.1201/9780429320774-37.
Повний текст джерелаRamadass, P. "Chapter-06 Gene Sequencing." In Jaypee Gold Standard Mini Atlas Series: Pathology, 165–85. Jaypee Brothers Medical Publishers (P) Ltd., 2007. http://dx.doi.org/10.5005/jp/books/10426_6.
Повний текст джерелаТези доповідей конференцій з теми "MinION sequencing"
Arrones, Andrea, Adriel Latorre, Cristina Vilanova, Jose Gadea, Mariola Plazas, Jaime Prohens, Pietro Gramazio, and Santiago Vilanova. "INTRODUCTION TO ADVANCED SEQUENCING TECHNOLOGIES FOR UNDERGRADUATE STUDENTS IN GENETICS: MINION REAL-TIME SEQUENCING." In 16th International Technology, Education and Development Conference. IATED, 2022. http://dx.doi.org/10.21125/inted.2022.2333.
Повний текст джерелаKchouk, Mehdi, and Mourad Elloumi. "Hybrid error correction approach and de novo assembly for minion sequencing long reads." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822504.
Повний текст джерелаKchouk, Mehdi, and Mourad Elloumi. "Error correction and DeNovo genome Assembly for the MinIon sequencing reads mixing Illumina short reads." In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359962.
Повний текст джерелаDe Block, T., I. De Baetselier, S. Abdellati, J. Laumen, S. Manoharan-Basil, C. Kenyon, and D. Van den Bossche. "P207 Evaluation of Oxford Nanopore MinION sequencing to predict antimicrobial resistance profiles in clinical N. gonorrhoeae strains." In Abstracts for the STI & HIV World Congress, July 14–17 2021. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/sextrans-2021-sti.296.
Повний текст джерелаFeng, Jianhua, Qian Qian, Jianyong Wang, and Lizhu Zhou. "Exploit sequencing to accelerate hot XML query pattern mining." In the 2006 ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1141277.1141400.
Повний текст джерелаLiu, Wenbo, and Hongyi Zhang. "PSO Algorithm for Block Sequencing Problem in Open Pit Mining." In 2015 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iccsae-15.2016.83.
Повний текст джерелаJohnson, Jack L., Jose Garcia-Bravo, Pawan Panwar, and Paul Michael. "Strategies to Minimize Data Sample Size for Regression-Based Pump/Motor Models." In SICFP’21 The 17:th Scandinavian International Conference on Fluid Power. Linköping University Electronic Press, 2021. http://dx.doi.org/10.3384/ecp182p134.
Повний текст джерелаIgnatavičiene, Ieva, Regina Vyšniauskienė, Vida Rančelienė, Rimantas Petrošius, Dace Grauda, and Dalius Butkauskas. "Effects of Low Frequency Electromagnetic Radiation on Lemna minor growth parameters and generation of point mutations at GPx, CAT and APx genes." In 80th International Scientific Conference of the University of Latvia. University of Latvia, 2023. http://dx.doi.org/10.22364/iarb.2022.07.
Повний текст джерелаXiao, Yiou, Kishan G. Mehrotra, Damian G. Allis, and Phillip N. Borer. "A fast sorting algorithm for aptamer identification using deep sequencing." In 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2014. http://dx.doi.org/10.1109/asonam.2014.6921671.
Повний текст джерелаWarnke, Julia, and Hesham Ali. "A Tolerance Graph Approach for Domain-Specific Assembly of Next Generation Sequencing Data." In 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). IEEE, 2013. http://dx.doi.org/10.1109/icdmw.2013.105.
Повний текст джерелаЗвіти організацій з теми "MinION sequencing"
Cytryn, Eddie, Mark R. Liles, and Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Повний текст джерелаRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, February 2022. http://dx.doi.org/10.18235/0003982.
Повний текст джерелаGhanim, Murad, Joe Cicero, Judith K. Brown, and Henryk Czosnek. Dissection of Whitefly-geminivirus Interactions at the Transcriptomic, Proteomic and Cellular Levels. United States Department of Agriculture, February 2010. http://dx.doi.org/10.32747/2010.7592654.bard.
Повний текст джерелаWeller, Joel I., Derek M. Bickhart, Micha Ron, Eyal Seroussi, George Liu, and George R. Wiggans. Determination of actual polymorphisms responsible for economic trait variation in dairy cattle. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600017.bard.
Повний текст джерела