Добірка наукової літератури з теми "Mining Source Code Repositories"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mining Source Code Repositories".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mining Source Code Repositories"
Williams, C. C., and J. K. Hollingsworth. "Automatic mining of source code repositories to improve bug finding techniques." IEEE Transactions on Software Engineering 31, no. 6 (June 2005): 466–80. http://dx.doi.org/10.1109/tse.2005.63.
Повний текст джерелаKagdi, Huzefa, Michael L. Collard, and Jonathan I. Maletic. "Towards a taxonomy of approaches for mining of source code repositories." ACM SIGSOFT Software Engineering Notes 30, no. 4 (July 2005): 1–5. http://dx.doi.org/10.1145/1082983.1083159.
Повний текст джерелаM. Ishag, Musa Ibrahim, Hyun Woo Park, Dingkun Li, and Keun Ho Ryu. "Highlighting Current Issues in API Usage Mining to Enhance Software Reusability." WSEAS TRANSACTIONS ON COMPUTER RESEARCH 10 (March 22, 2022): 29–34. http://dx.doi.org/10.37394/232018.2022.10.4.
Повний текст джерелаSun, Xiaobing, Bin Li, Yucong Duan, Wei Shi, and Xiangyue Liu. "Mining Software Repositories for Automatic Interface Recommendation." Scientific Programming 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/5475964.
Повний текст джерелаPinzger, Martin, Emanuel Giger, and Harald C. Gall. "Comparing fine-grained source code changes and code churn for bug prediction - A retrospective." ACM SIGSOFT Software Engineering Notes 46, no. 3 (July 14, 2021): 21–23. http://dx.doi.org/10.1145/3468744.3468751.
Повний текст джерелаNugroho, Yusuf Sulistyo, Hideaki Hata, and Kenichi Matsumoto. "How different are different diff algorithms in Git?" Empirical Software Engineering 25, no. 1 (September 11, 2019): 790–823. http://dx.doi.org/10.1007/s10664-019-09772-z.
Повний текст джерелаSCOTTO, MARCO, ALBERTO SILLITTI, and GIANCARLO SUCCI. "AN EMPIRICAL ANALYSIS OF THE OPEN SOURCE DEVELOPMENT PROCESS BASED ON MINING OF SOURCE CODE REPOSITORIES." International Journal of Software Engineering and Knowledge Engineering 17, no. 02 (April 2007): 231–47. http://dx.doi.org/10.1142/s0218194007003215.
Повний текст джерелаSaini, Munish, Sandeep Mehmi, and Kuljit Kaur Chahal. "Understanding Open Source Software Evolution Using Fuzzy Data Mining Algorithm for Time Series Data." Advances in Fuzzy Systems 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1479692.
Повний текст джерелаSchreiber, Roland Robert. "Organizational Influencers in Open-Source Software Projects." International Journal of Open Source Software and Processes 14, no. 1 (February 16, 2023): 1–20. http://dx.doi.org/10.4018/ijossp.318400.
Повний текст джерелаLu, Mingming, Yan Liu, Haifeng Li, Dingwu Tan, Xiaoxian He, Wenjie Bi, and Wendbo Li. "Hyperbolic Function Embedding: Learning Hierarchical Representation for Functions of Source Code in Hyperbolic Space." Symmetry 11, no. 2 (February 18, 2019): 254. http://dx.doi.org/10.3390/sym11020254.
Повний текст джерелаДисертації з теми "Mining Source Code Repositories"
Kagdi, Huzefa H. "Mining Software Repositories to Support Software Evolution." Kent State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=kent1216149768.
Повний текст джерелаBengtsson, Jonathan, and Heidi Hokka. "Analysing Lambda Usage in the C++ Open Source Community." Thesis, Mittuniversitetet, Institutionen för data- och systemvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39514.
Повний текст джерелаObjektorienterade språk har gjort en förskjutning mot att integrera funktionella begrepp som lambdas. Lambdas är anonyma funktioner som kan användas inom ramen för andra funktioner. I C ++ anses lambdas vara svåra att använda för oerfarna utvecklare. Detta innebär att det kan vara problem med lambdas i C ++. Emellertid är studier på lambdas i C ++ repositorier mindre vanliga jämfört med andra objektorienterade språk som Java. Denna studie syftar till att ta itu med ett kunskapsgap beträffande hur lambdas används av utvecklare i C++ repositorier. Dessutom undersöks hur utvecklarvanor och sedvänjor i programvaruutveckling, till exempel enhetstestning och dokumentation, korrelerar med inkluderingen av lambdas. För att uppnå detta skapar vi en uppsättning verktyg som statiskt analyserar repositorier för att samla resultat. Denna studie fick inblick i antalet repositorier som använder lambdas, deras användningsområden och dokumentation men också hur dessa resultat jämför sig med liknande studieresultat i Java. Vidare har det visats att enhetstestning och utvecklaren erfarenhet korrelerar med användningen av lambdas.
Schulte, Lukas. "Investigating topic modeling techniques for historical feature location." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85379.
Повний текст джерелаVu, Duc Ly. "Towards Understanding and Securing the OSS Supply Chain." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/333508.
Повний текст джерелаCarlsson, Emil. "Mining Git Repositories : An introduction to repository mining." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27742.
Повний текст джерелаSinha, Vinayak. "Sentiment Analysis On Java Source Code In Large Software Repositories." Youngstown State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1464880227.
Повний текст джерелаRibeiro, Athos Coimbra. "Ranking source code static analysis warnings for continuous monitoring of free/libre/open source software repositories." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082018-170140/.
Повний текст джерелаEmbora exista grande variedade de analisadores estáticos de código-fonte disponíveis no mercado, tanto com licenças proprietárias, quanto com licenças livres, cada uma dessas ferramentas mostra melhor desempenho em um pequeno conjunto de problemas distinto, dificultando a escolha de uma única ferramenta de análise estática para analisar um programa. A combinação das análises de diferentes ferramentas pode reduzir o número de falsos negativos, mas gera um aumento no número de falsos positivos (que já é alto para muitas dessas ferramentas). Uma solução interessante é filtrar esses resultados para identificar os problemas com menores probabilidades de serem falsos positivos. Este trabalho apresenta kiskadee, um sistema para promover o uso da análise estática de código fonte durante o ciclo de desenvolvimento de software provendo relatórios de análise estática ranqueados. Primeiramente, kiskadee roda diversos analisadores estáticos no código-fonte. Em seguida, utilizando um modelo de classificação, os potenciais bugs detectados pelos analisadores estáticos são ranqueados conforme sua importância, onde defeitos críticos são colocados no topo de uma lista, e potenciais falsos positivos, ao fim da mesma lista. Para treinar o modelo de classificação do kiskadee, realizamos uma pós-análise nos relatórios gerados por três analisadores estáticos ao analisarem casos de teste sintéticos disponibilizados pelo National Institute of Standards and Technology (NIST) dos Estados Unidos. Para tornar a técnica apresentada o mais genérica possível, limitamos nossos dados às informações contidas nos relatórios de análise estática das três ferramentas, não utilizando outras informações, como históricos de mudança ou métricas extraídas do código-fonte dos programas inspecionados. As características extraídas desses relatórios foram utilizadas para treinar um conjunto de árvores de decisão utilizando o algoritmo AdaBoost para gerar um classificador mais forte, atingindo uma acurácia de classificação de 0,8 (a taxa de falsos positivos das ferramentas utilizadas foi de 0,61, quando combinadas). Finalmente, utilizamos esse classificador para ranquear os alarmes dos analisadores estáticos nos baseando na probabilidade de um dado alarme ser de fato um bug no código-fonte. Resultados experimentais mostram que, em média, quando inspecionando alarmes ranqueados pelo kiskadee, encontram-se 5,2 vezes menos falsos positivos antes de se encontrar cada bug quando a mesma inspeção é realizada para uma lista ordenada de forma aleatória.
Hassan, Ahmed. "Mining Software Repositories to Assist Developers and Support Managers." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1017.
Повний текст джерелаThummalapenta, Suresh. "Improving Software Productivity and Quality via Mining Source Code." NORTH CAROLINA STATE UNIVERSITY, 2011. http://pqdtopen.proquest.com/#viewpdf?dispub=3442531.
Повний текст джерелаDelorey, Daniel Pierce. "Observational Studies of Software Engineering Using Data from Software Repositories." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1716.pdf.
Повний текст джерелаЧастини книг з теми "Mining Source Code Repositories"
Scheidgen, Markus, and Joachim Fischer. "Model-Based Mining of Source Code Repositories." In System Analysis and Modeling: Models and Reusability, 239–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11743-0_17.
Повний текст джерелаMoser, Raimund, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi. "A Model to Identify Refactoring Effort during Maintenance by Mining Source Code Repositories." In Product-Focused Software Process Improvement, 360–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69566-0_29.
Повний текст джерелаSillitti, Alberto, and Giancarlo Succi. "Source Code Repositories and Agile Methods." In Extreme Programming and Agile Processes in Software Engineering, 243–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499053_37.
Повний текст джерелаMukherjee, Sudipta. "Code Mining." In Source Code Analytics With Roslyn and JavaScript Data Visualization, 91–130. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1925-6_5.
Повний текст джерелаDiamantopoulos, Themistoklis, and Andreas L. Symeonidis. "Mining Source Code for Component Reuse." In Advanced Information and Knowledge Processing, 133–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30106-4_6.
Повний текст джерелаDiamantopoulos, Themistoklis, and Andreas L. Symeonidis. "Mining Source Code for Snippet Reuse." In Advanced Information and Knowledge Processing, 175–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30106-4_7.
Повний текст джерелаKato, Koki, Tsuyoshi Kanai, and Sanya Uehara. "Source Code Partitioning Using Process Mining." In Lecture Notes in Computer Science, 38–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23059-2_6.
Повний текст джерелаSavarimuthu, Bastin Tony Roy, and Hoa Khanh Dam. "Towards Mining Norms in Open Source Software Repositories." In Lecture Notes in Computer Science, 26–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55192-5_3.
Повний текст джерелаPham, Hoang Son, Siegfried Nijssen, Kim Mens, Dario Di Nucci, Tim Molderez, Coen De Roover, Johan Fabry, and Vadim Zaytsev. "Mining Patterns in Source Code Using Tree Mining Algorithms." In Discovery Science, 471–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33778-0_35.
Повний текст джерелаNoll, John, Dominik Seichter, and Sarah Beecham. "A Qualitative Method for Mining Open Source Software Repositories." In IFIP Advances in Information and Communication Technology, 256–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33442-9_18.
Повний текст джерелаТези доповідей конференцій з теми "Mining Source Code Repositories"
Dyer, Robert, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. "Mining source code repositories with boa." In the 2013 companion publication for conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2508075.2514570.
Повний текст джерелаGerlec, Crt, Andrej Krajnc, Marjan Hericko, and Jan Boznik. "Mining source code changes from software repositories." In 2011 7th Central and Eastern European Software Engineering Conference in Russia (CEE-SECR 2011). IEEE, 2011. http://dx.doi.org/10.1109/cee-secr.2011.6188468.
Повний текст джерелаSokol, Francisco Zigmund, Mauricio Finavaro Aniche, and Marco Aurelio Gerosa. "MetricMiner: Supporting researchers in mining software repositories." In 2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2013. http://dx.doi.org/10.1109/scam.2013.6648195.
Повний текст джерелаCanfora, Gerardo, Luigi Cerulo, and Massimiliano Di Penta. "Identifying Changed Source Code Lines from Version Repositories." In Fourth International Workshop on Mining Software Repositories (MSR 2007). IEEE, 2007. http://dx.doi.org/10.1109/msr.2007.14.
Повний текст джерелаKagdi, Huzefa, Michael L. Collard, and Jonathan I. Maletic. "Comparing Approaches to Mining Source Code for Call-Usage Patterns." In Fourth International Workshop on Mining Software Repositories. IEEE, 2007. http://dx.doi.org/10.1109/msr.2007.3.
Повний текст джерелаAllamanis, Miltiadis, and Charles Sutton. "Mining source code repositories at massive scale using language modeling." In 2013 10th IEEE Working Conference on Mining Software Repositories (MSR 2013). IEEE, 2013. http://dx.doi.org/10.1109/msr.2013.6624029.
Повний текст джерелаEfstathiou, Vasiliki, and Diomidis Spinellis. "Semantic Source Code Models Using Identifier Embeddings." In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE, 2019. http://dx.doi.org/10.1109/msr.2019.00015.
Повний текст джерелаYusof, Y. "Template mining in source-code digital libraries." In "International Workshop on Mining Software Repositories (MSR 2004)" W17S Workshop - 26th International Conference on Software Engineering. IEE, 2004. http://dx.doi.org/10.1049/ic:20040489.
Повний текст джерелаSinha, Vibha Singhal, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and Senthil Mani. "Detecting and Mitigating Secret-Key Leaks in Source Code Repositories." In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories (MSR). IEEE, 2015. http://dx.doi.org/10.1109/msr.2015.48.
Повний текст джерелаAkbar, Shayan, and Avinash Kak. "SCOR: Source Code Retrieval with Semantics and Order." In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE, 2019. http://dx.doi.org/10.1109/msr.2019.00012.
Повний текст джерелаЗвіти організацій з теми "Mining Source Code Repositories"
Xie, Tao. Mining Program Source Code for Improving Software Quality. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada581476.
Повний текст джерела