Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Mineralogica.

Статті в журналах з теми "Mineralogica"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Mineralogica".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Leicht, Dona Lee. "Behind the Scenes at Rivista Mineralogica Italiana." Rocks & Minerals 97, no. 3 (April 26, 2022): 260–63. http://dx.doi.org/10.1080/00357529.2022.2028101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leicht, Dona Lee. "Behind the Scenes at Rivista Mineralogica Italiana." Rocks & Minerals 97, no. 3 (April 26, 2022): 260–63. http://dx.doi.org/10.1080/00357529.2022.2028101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cipriani, Curzio. "La collezione mineralogica Targioni Tozzetti: gemme e pietre dure." Rendiconti Lincei 18, no. 2 (June 2007): 67–87. http://dx.doi.org/10.1007/bf02967217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Müller, Wolfgang Friedrich. "E.M.U. NEWS: European Mineralogica Union 1998 Medal for Dr. Ross John Angel." European Journal of Mineralogy 11, no. 6 (November 29, 1999): 1143–44. http://dx.doi.org/10.1127/ejm/11/6/1143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cristina Caggiani, Maria, Germana Barone, Salvina Fiorilla, and Paolo Mazzoleni. "Approfondimenti archeometrici su alcuni aspetti produttivi della ceramica smaltata in Sicilia." ARCHIVIO STORICO PER LA SICILIA ORIENTALE, no. 1 (May 2021): 67–75. http://dx.doi.org/10.3280/asso2020-001007.

Повний текст джерела
Анотація:
Negli ultimi decenni, lo studio dei ritrovamenti di ceramica di epoca medievale o post-medievale in Sicilia si è avvalso dell'apporto delle indagini archeometriche, condotte su frammenti provenienti da diversi siti, prevalentemente da Caltagirone. In questo lavoro, con l'obiettivo di approfondire le tecnologie di produzione impiegate, dodici frammenti di ceramica smaltata datati fra il XV e il XVI secolo e provenienti da Caltagirone, Buscemi, Scicli e Modica sono stati sottoposti ad osservazione microscopica e analisi chimico-mineralogica, con un particolare focus sugli smalti di colore blu.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghergari, Lucreția, Corina Ionescu, and Cristina Mariș. "Date noi privind compozitia mineralogica a siltului lutitic de la Dumbrava, judetul Cluj (New Mineralogical Data on the Clayey Silt from Dumbrava (Cluj County)." Studia Universitatis Babes-Bolyai, Geologia 45, no. 1 (June 2000): 23–34. http://dx.doi.org/10.5038/1937-8602.45.1.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

del Mottana, Socio A. "Ricerche di iconografia mineralogica: I.La pietra «gagate» nel Codex medicus graecus 1della Biblioteca Nazionale Austriaca." Rendiconti Lincei 13, no. 2 (June 2002): 89–112. http://dx.doi.org/10.1007/bf02904679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin. Teil 5: Vom Mineralogischen Museum im Hauptgebäude der Universität zu den zwei geowissenschaftlichen Institutionen im Museum für Naturkunde – 1856 bis 1910." Fossil Record 6, no. 1 (January 1, 2003): 3–51. http://dx.doi.org/10.5194/fr-6-3-2003.

Повний текст джерела
Анотація:
Im vorhergehenden 4. Teil der Artikelserie wurde die Zeit behandelt, in der das Gesamtgebiet der Geowissenschaften von dem Mineralogen und Kristallographen Christian Samuel Weiss im Mineralogischen Museum vertreten wurde und in der sich die Spezialisierung in Teilgebiete durch auftretende weitere Lehrkräfte zeigte. Nach dem Tod von Weiss im Jahre 1856 wirkte sich diese Entwicklung auch auf die Leitung des Mineralogischen Museums aus und führte schließlich zur Teilung in zwei Institutionen. Der vorliegende Artikel, der bis zum 100jährigen Jubiläum der Universität im Jahre 1910 reicht, behandelt dies in folgenden Kapiteln: 1) das Mineralogische Museum unter dem Mineralogen Gustav Rose als Direktor und dem Geologen und Paläontologen Ernst Beyrich in der Zeit von 1856 bis 1873, 2) das Mineralogische Museum unter Ernst Beyrich als Direktor, dem Mineralogen Martin Websky und dem Geologen und Petrographen Justus Roth in den Jahren von 1873 bis 1888 nebst Aufteilung in zwei Institutionen, 3) die Projektierung und den Bau des Museums für Naturkunde in den Jahren von 1873 bis 1889, 4) die beiden geowissenschaftlichen Institutionen in den Jahren 1888 bis 1910, 4a) das Geologisch-Paläontologische Institut und Museum unter den Geologen und Paläontologen Ernst Beyrich, Wilhelm Dames und Wilhelm Branco (Branca) nacheinander als Direktoren und 4b) das Mineralogisch-Petrographische Institut und Museum unter dem Mineralogen und Petrographen Carl Klein und danach dem Mineralogen und Kristallographen Theodor Liebisch als Direktoren. <br><br> The preceding fourth part of this series of articles dealt with the period (of time), when the whole field of earth sciences in the Mineralogical Museum was represented by one person, the mineralogist and crystallographer Christian Samuel Weiss. At that time the specialisation of earth sciences into different fields was already becoming evident from the practices of other academic teachers. After Weiss died in 1856, this process influenced the direction of the Museum of Mineralogy in such a way that it was divided into two institutions. This article covers the interval up to the Humboldt University's 100th anniversary in 1910. It is structured as follows: 1) The Mineralogical Museum under the directorship of the mineralogist Gustav Rose and the palaeontologist Ernst Beyrich from 1856 until 1873; 2) the Mineralogical Museum under the directorship of Ernst Beyrich, the mineralogist Martin Websky and the geologist and petrographer Justus Roth from 1873 to 1889, and its division into two institutions; 3) the planning and construction of the Museum für Naturkunde from 1873 to 1889; 4) the two geoscientific institutions from 1888 to 1910; 4a) the Geological-Palaeontological Institute and Museum under the successive directorships of the geologists and palaeontologists Ernst Beyrich, Wilhelm Beyrich, E. Dames and Wilhelm Branco (Branca); 4b) the Mineralogical-Petrographical Institute under the directorship of the mineralogist and petrographer Carl Klein and afterwards under the directorship of the mineralogist and petrographer Theodor Liebisch. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20030060102" target="_blank">10.1002/mmng.20030060102</a>
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roeser, Hubert Mathias Peter, and Kay Schürmann. "Curiosidades na nomenclatura mineralógica: Porpezita do Brasil." Terrae Didatica 11, no. 1 (June 22, 2015): 14. http://dx.doi.org/10.20396/td.v11i1.8637306.

Повний текст джерела
Анотація:
Na virada do século 19 para o século 20, especialmente nos primeiros anos do século 20, surgiu o nome Porpezita, imerso em livros de mineralogia, principalmente na Europa e em especial na literatura francesa. O termo foi atribuído à liga de ouro-paládio (Au, Pd). Amostras de Porpezita chegaram a Viena, em meados do século 19, provavelmente pelo mineralogista austríaco Pohl. Dizia-se que elas teriam chegado da província Porpez no Brasil. No entanto, essa capitania não existe e jamais existiu. O mineral recebeu seu nome provavelmente de uma desfiguração do nome do estado brasileiro de Goiás. Este artigo discute três possíveis razões para tal distorção, ou seja, de como Goiás virou Porpez e como Porpez deu seu nome ao mineral Porpezita. A IMA (International Mineralogical Association) não reconhece o nome; no entanto, ele não pode ser mais banido da literatura, particularmente da InterNet.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Toaldo, Miriam, Giorgio Salbego, Enrico Busnardo, Michele Secco, and Mario Floris. "Caratterizzazione geotecnica e mineralogica di depositi vulcanici alterati soggetti a fenomeni di scivolamento nell’area pedemontana della Provincia di Vicenza." Rendiconti online della Società Geologica Italiana 35 (April 2015): 292–95. http://dx.doi.org/10.3301/rol.2015.123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin Teil 4: Das Mineralogische Museum der Universität Berlin unter Christian Samuel Weiss von 1810 bis 1856." Fossil Record 4, no. 1 (January 1, 2001): 3–27. http://dx.doi.org/10.5194/fr-4-3-2001.

Повний текст джерела
Анотація:
Die Universitätsgründung in Berlin von 1810 war verbunden mit der Übernahme des Lehrbetriebes der aufgelösten Bergakademie, die nur noch in Form des Bergeleveninstituts bzw. Bergelevenklasse für die Finanzierung der Ausbildung der Bergeleven weiter bestand, sowie mit der Übernahme des von der Bergakademie genutzten Königlichen Mineralienkabinetts der preußischen Bergverwaltung als Mineralogisches Museum der Universität. Infolge des Todes von D. L. G. Karsten im Jahre 1810 erhielt der Leipziger Physiker und Mineraloge C. S. Weiss den Lehrstuhl für Mineralogie, den er bis zu seinem Tode 1856 innehatte. Weiss entwickelte die Lehre Werners, die die Mineralogie einschließlich Geologie umfasste, in kristallographischer Hinsicht weiter, während sich später neben ihm zwei seiner Schüler anderen Teilgebieten der Mineralogie annahmen, G. Rose der speziellen Mineralogie und E. Beyrich der geologischen Paläontologie. Der Ausbau der Sammlungen durch eigene Aufsammlungen, Schenkungen und Käufe konnte in starkem Maße fortgesetzt werden, auch zunehmend in paläontologischer Hinsicht, sodass das Mineralogische Museum für das ganze Spektrum der Lehre gut bestückt war. Der streitbare Charakter von Weiss verursachte zahlreiche Reibungspunkte. <br><br> History of the Geoscience Institutes of the Natural History Museum in Berlin. Part 4 <br><br> The establishment of the University in Berlin in 1810 resulted in the adoption of the teaching of the dissolved Bergakademie and of the royal Mineralienkabinett of the Prussian mining department, which was used by the Bergakademie before it became the Mineralogical Museum of the University. The Bergakademie continued to exist only as Bergeleveninstitut or Bergelevenklasse for financing the education of the mining students. The physicist and mineralogist C. S. Weiss was offered the chair of mineralogy after the death of D. L. G. Karsten 1810; he had the position to his death in 1856. Weiss developped the crystallographic part of the science of Werner which included mineralogy and geology. Two of his pupils progressed two other parts of mineralogy, G. Rose the speciel mineralogy and E. Beyrich the geological paleontology. The enlargement of the collections continued on large scale by own collecting, donations and purchases, also more paleontological objects, so that the Mineralogical Museum presented a good collection of the whole spectrum of the field. The pugnacious nature of Weiss resulted in many points of friction. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20010040102" target="_blank">10.1002/mmng.20010040102</a>
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Eshett, Ebong Thomas, John A. I. Omueti, and Anthony S. R. Juo. "Physico-chemical, morphological, and clay mineralogica properties of soils overlying basement complex rocks in Ogoja, northern cross river state of Nigeria." Soil Science and Plant Nutrition 36, no. 2 (June 1990): 203–14. http://dx.doi.org/10.1080/00380768.1990.10414985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tomeoka, Kazushige. "Aqueous Alteration in Hydrated Interplanetary Dust Particles." International Astronomical Union Colloquium 126 (1991): 71–78. http://dx.doi.org/10.1017/s0252921100066501.

Повний текст джерела
Анотація:
AbstractInterplanetary dust particles (IDPs) characterized by chondritic composition can be divided into two principal groups, anhydrous and hydrated. This paper summarizes recent results of mineralogical and petrological studies dealing with the IDPs of hydrated type. Studies on mineralogical characteristics, infrared absorption spectra, and isotopic properties of the hydrated particles have suggested that they are primitive and may contain surviving interstellar material. The hydrated IDPs consist in major part of layer silicates and resemble CI and CM carbonaceous chondrites. Mineralogical and chemical data of both IDPs and carbonaceous chondrites have accumulated, and it is now possible to compare the mineralogies of the IDPs and the meteorites in considerable detail. Evidence was found that a significant proportion of the hydrated IDPs have been processed by aqueous alteration, and the nature of the alteration resembles that of similarly affected meteorites. The mineralogical and chemical data provide important clues to the possible origins of IDPs.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Rossi, Manuela, Rosanna Rizzi, Alessandro Vergara, Francesco Capitelli, Angela Altomare, Fabio Bellatreccia, Michele Saviano, and Rosaria M. Ghiara. "Compositional variation of turquoise-group minerals from the historical collection of the Real Museo Mineralogico of the University of Naples." Mineralogical Magazine 81, no. 6 (December 2017): 1405–29. http://dx.doi.org/10.1180/minmag.2017.081.055.

Повний текст джерела
Анотація:
AbstractFive turquoise samples, belonging to the XVII century historical collection of the Real Museo Mineralogico (University of Naples Federico II), were investigated by a multi-methodological approach based on powder X-ray diffraction, electron microprobe analysis in wavelength-dispersive spectroscopy mode, backscattered electron images from scanning electron microscopy in energy-dispersive spectroscopy mode, laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared and Raman spectroscopy.The samples originate from Sinai (Egypt), Santa Fè S. Miguel (New Mexico), Saxony (Germany), Montebras Creuse (France) and Nishapur (Khorassan, Iran) and display different mineralogical compositions and various mineral associations. The study has shown the presence of: (1) four minerals of the turquoise group: turquoise, faustite, chalcosiderite and planerite; (2) other phosphates from different groups: wavellite, crandallite, goyazite, gorceixite, variscite, metavariscite, fluorapatite; and (3) other minerals: voltaite, adularia and quartz.The present investigation is intended to show the mineralogical and geochemical variability of the samples with particular attention to the mineralogical parageneses, textural analyses and trace-element concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ulčová, Helena, and Dalibor Velebil. "Josef Ryš (1879–1960), pedagog, mineralog, sběratel a jeho sbírka minerálů v Národním muzeu v Praze." Journal of the National Museum (Prague), Natural History Series 189, no. 1 (2020): 31–48. http://dx.doi.org/10.37520/jnmpnhs.2020.005.

Повний текст джерела
Анотація:
Josef Ryš (* 1879, † 1960) was a high school professor at the Real School in Jevíčko, a prominent local researcher - mineralogist and head of the local physical education unit Sokol. Between 1909 and 1958, he published a total of 11 works on the geological and mineralogical conditions of the greater Jevíčko area. He has collaborated with important institutions, such as the Moravian Museum in Brno, Masaryk University in Brno, Charles University in Prague and the National Museum in Prague. He has built a quality collection of Czech and world minerals, of which a total of 913 pieces are stored in the collection of the National Museum in Prague. From this collection, 65 minerals were selected for the new permanent mineralogical exhibition of the National Museum.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Widada, Sugeng, Hanna Afifah, Salatun Said, and Hendaryono Hendaryono. "Jenis Mineral Lempung Endapan Kuarter Pantai Semarang Jawa Tengah dan Potensinya sebagai Lumpur Pemboran." Jurnal Offshore: Oil, Production Facilities and Renewable Energy 3, no. 1 (June 21, 2019): 1. http://dx.doi.org/10.30588/jo.v3i1.488.

Повний текст джерела
Анотація:
<p>Penelitian ini bertujuan untuk mengetahui karakteristik litologi endapan Kuater Pantai Semarang yang meliputi komposisi mineralogi, distribusi serta potensinya sebagai bahan lumpur bor. Komposisi mineralogi ditentukan dengan menggunakan scanning electron microscope (SEM). Untuk mengetahui potensi sebagai lumpur bor ditentukan berdasarkan uji <em>rheology</em> dan <em>filtration loss.</em> Dari hasil analisis menunjukkan sedimen Kuater Pantai Semarang didominasi oleh endapan lempung dengan sedikit lanau pasiran yang terbentuk oleh proses pengendapan secara suspensi. Secara mineralogis, jenis mineral lempung yang dijumpai di daerah telitian sangat bervariasi. Dari analisis SEM menunjukkan jenis mineral lempung yang dijumpai antara lain kaolinit, illit dan campuran montmorilonit- illit. Berdasarkan hasil uji <em>rheology </em>menunjukkan pembacaan <em>deal reading </em>600 RPM nilai yang dominan = 4, harga viskositas plastis = 1, nilai <em>yield point </em>= 2 dan nilai <em>gel strength </em>10 menit = 1. Berdasarkan uji <em>filtration loss </em>menunjukkan volume air yang keluar rata-rata 188 ml, tebal kerak lumpur rata-rata 0,65 cm dan pH = 8. Berdasarkan uji <em>rheology </em>dan <em>filtration loss</em> dapat disimpulkan bahwa mineral lempung di daerah telitian tidak memenuhi kualifikasi untuk dipergunakan sebagai lumpur pemboran.</p><p><em>The objectives of this study are to identify lithological characteristics of the Quaternary Sediments in the Semarang Coast including mineralogical composition, distribution and its potency as drilling mud. Mineralogical composition is determined using scanning electron microscope (SEM). The potency as drilling mud is identified based on rheology and filtration loss tests. Based on this study shows that this sediment is predominantly composed of clay-size material with minor sandy silt-size grain deposited by suspension process. Mineralogically, there are some clay mineral type in the study area based on SEM analysis, they are kaolinite, illite and mixed montomorillonite-illite.Based on rheology test showed that the value of deal reading 600 RPM = 4, plastic viscosity = 1, yield point = 1 and gel strength at 10 minute = 1. Based on filtration loss showed the average volume expelled water = 188 ml, the average thickness of mud cake = 0.65 cm and </em>pH<em> = 8. Based on rheology and filtration loss tests can be concluded that clay sediment in the study area can not be used as mud drilling material.</em></p>
Стилі APA, Harvard, Vancouver, ISO та ін.
17

EDDY, M. D. "Scottish chemistry, classification and the early mineralogical career of the ‘ingenious’ Rev. Dr John Walker (1746 to 1779)." British Journal for the History of Science 35, no. 4 (December 2002): 411–38. http://dx.doi.org/10.1017/s0007087402004806.

Повний текст джерела
Анотація:
The Rev. Dr John Walker was the Professor of Natural History at the University of Edinburgh from 1779 to 1803. Although his time in this position has been addressed by several studies, the previous thirty years that he spent ‘mineralizing’ have been virtually ignored. The situation is similar for many of the well-known mineralogists of the eighteenth century and there is a lack of studies that address how a mineralogist actually became a mineralogist. Using Walker's early career as a guide, this essay seeks to detail the making of an eighteenth-century Scottish mineralogist. The time frame under examination begins with Walker's matriculation at the University of Edinburgh in 1746 and it ends with his being appointed professor in 1779. The first section demonstrates that Walker's early mineralogical education at the Medical School and under William Cullen was closely linked to chemistry. The second section shows how he used chemical characters to classify minerals and to criticize the systems of Linnaeus, Da Costa, Wallerius and Cronstedt. Because Walker needed many ‘fossil’ samples to test the viability of his chemical mineralogy, the final section details how he used tours, patrons and correspondents to build his mineral collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Purwanto, Setiyo, Rachmat Abdul Gani, and Sukarman Sukarman. "Karakteristik Mineral Tanah Berbahan Vulkanik dan Potensi Kesuburannya di Pulau Jawa." Jurnal Sumberdaya Lahan 12, no. 2 (June 25, 2020): 83. http://dx.doi.org/10.21082/jsdl.v12n2.2018.83-98.

Повний текст джерела
Анотація:
<p><em><strong>Abstrak. </strong></em>Pulau Jawa memiliki gunung api terbanyak di Indonesia (45 buah). Material bersumber dari erupsi gunungapi (piroklastik) di sekitar Pulau Jawa menyebabkan kualitas kesuburan tanah di Pulau Jawa lebih baik dibandingkan wilayah lain di Indonesia. Wilayah pegunungan sering dijadikan sebagai daerah sentra usaha pertanian. Kajian terkait karakteristik mineralogi tanah dari bahan vulkanik di Pulau Jawa telah banyak dilakukan, namun terbatas pada penelitian yang bersifat mandiri (perwilayahan pegunungan). Mengungkap dan memperbandingkan data berkait karakteristik mineralogi tanah vulkanik di Pulau Jawa akan memperkaya hasanah keilmuan dan bermanfaat dalam tata kelola lahan pertanian. </p><p><em><strong>Abstract.</strong> </em>Java Island has the most volcanoes in Indonesia (45 volcanoes). Materials sourced from volcanic eruptions (pyroclastic) around the Java Island have caused the quality of soil fertility in Java is better than other regions in Indonesia. Mountainous areas are often used as a center of agricultural business, especially horticulture. Studies related to the mineralogical characteristics of soil from volcanic material on the Java Island have been widely carried out, but are limited to independent research (single mountain territory). Revealing and comparing data related to the mineralogical characteristics of volcanic soils in the Java Island will enriches scientific knowledge and useful in the management of agricultural land.<br /><br /></p>
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bautsch, H. J., and H. P. Schultze. "Prof. Dr. rer. nat. habil. Günter Hoppe zum 85. Geburtstag." Fossil Record 7, no. 1 (January 1, 2004): 221–26. http://dx.doi.org/10.5194/fr-7-221-2004.

Повний текст джерела
Анотація:
Die ersten Kontakte mit dem Museum für Naturkunde hatte Günter Hoppe bereits vor über fünfundfünfzig Jahren. Er besuchte Paul Ramdohr, der damals noch, bis zu seiner Berufung im April 1950 nach Heidelberg, Direktor des Mineralogisch-Petrographischen Institutes und Museums war. Zu dieser Zeit was Günter Hoppe Student an der Universität Halle und mit seiner Abschlussarbeit beschäftigt. Sein Lehrer in Halle war Ferdinand von Wolff, noch im hohen Alter Direktor des Mineralogisch-Petrographischen Institutes. Begonnen hatte Günter Hoppe 1938 ein Studium der Chemie in Halle, das durch die Einberufung zum Militärdienst unterbrochen werden musste. Nach Rückkehr aus dem Krieg nahm er mit Beginn des Studienbetriebes an der Universität Halle 1946 sein Studium wieder auf, jetzt aber in der Mineralogie, wohl angeregt durch eine Praktikumstätigkeit in einem Bergbaubetrieb. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20040070111" target="_blank">10.1002/mmng.20040070111</a>
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Neves, Paulo Cesar Pereira das, Percio de Moraes Branco, and Paulo Anselmo Matioli. "THE PERCIO DE MORAES BRANCO COLLECTION OF RARE MINERALS OF THE UNIVERSIDADE LUTERANA DO BRASIL (ULBRA)." SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 5, no. 5 (December 20, 1997): 51–66. http://dx.doi.org/10.48141/sbjchem.v5.n5.1997.52_1997.pdf.

Повний текст джерела
Анотація:
The Mineral Collection of the Lutheran University of Brazil is one of the most valuable mineral collections of the South American Continent and consists of approximately 500 cataloged minerals, of which about 200 can be classified as rare or very rare. The majority of them are present in paragenesis with other minerals in the form of euhedric, subhedric, and anhedric crystals. The minerals come from different mineralogic provinces, including Denmark, the United States of America, Canada, Italy, Romania, Russia, Sweden, Brazil, Mexico, Chile, Slovenia, Germany, Algeria, England, and others. The Collection is organized in mineralogical classes with the exception of meteorites, organic compounds, and mineraloids and is found on permanent display and open to visitors in the Laboratory of Mineralogy, Building I, Central Campus of ULBRA in Canoas, RS, Brazil.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fortey, N. J. "Image analysis in mineralogy and petrology." Mineralogical Magazine 59, no. 395 (June 1995): 177–78. http://dx.doi.org/10.1180/minmag.1995.059.395.01.

Повний текст джерела
Анотація:
“Image analysis” refers to the general family of computational techniques which are concerned with the extracting of quantitative information from images captured in digital form. Such techniques have been in use for several years in areas such as biology and metallurgy, but have been slow to find wide use in the microscopic areas of Earth Sciences. Notable exceptions have included applications in the areas of mineral processing and sedimentary petrography.The impetus for the meeting held jointly by the Applied Mineralogy Group of the Mineralogical Society and the Geological Information Group of the Geological Society of London in September 1993, was an attempt to take stock of the spread of digital image analysis techniques into the domain of the mineralogist and petrologist.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

EDDY, M. D. "Scottish chemistry, classification and the late mineralogical career of the ‘ingenious’ Professor John Walker (1779–1803)." British Journal for the History of Science 37, no. 4 (December 2004): 373–99. http://dx.doi.org/10.1017/s0007087404006132.

Повний текст джерела
Анотація:
During the first decade of the nineteenth century, Edinburgh was the scene of several lively debates concerning the structure of the Earth. Though the ideas of groups like the ‘Wernerians’ and the ‘Huttonians’ have received due attention, little has been done to explicate the practice of mineralogy as it existed in the decades before the debates. To dig deeper into the eighteenth-century subject that formed the foundation of nineteenth-century geology in Scotland, this essay concentrates on Rev. Dr John Walker, the University of Edinburgh's Professor of Natural History (1779–1803). In pursuing this topic, it builds on an earlier BJHS article in which I excavated his early career as a mineralogist (1749–79). After first addressing a few historiographical points and the provenance of the student manuscripts upon which this study is based, I explain the method that Walker used to arrange minerals. I then move on to show that, like his younger attempts at mineralogical classification, his mature system was based predominantly upon chemistry. This sets the stage for the last half of the essay where I reconstruct the mineralogical system that Walker taught to the hundreds of students who sat in his natural history lectures from 1782 until 1800. I then conclude with a few observations about the relevance of his mineralogy to the scientific community of late eighteenth-century Edinburgh.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Keating, Kristina, and Rosemary Knight. "A laboratory study to determine the effect of iron oxides on proton NMR measurements." GEOPHYSICS 72, no. 1 (January 2007): E27—E32. http://dx.doi.org/10.1190/1.2399445.

Повний текст джерела
Анотація:
Using laboratory methods, we investigate the effect of the presence and mineralogic form of iron on measured proton nuclear magnetic resonance (NMR) relaxation rates. Five samples of quartz sand were coated with ferrihydrite, goethite, hematite, lepidocrocite, and magnetite. The relaxation rates for these iron-oxide-coated sands saturated with water were measured and compared to the relaxation rate of quartz sand saturated with water. We found that the presence of the iron oxides led to increases in the relaxation rates by increasing the surface relaxation rate. The magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. The relaxation rate of the magnetite-coated sand was further increased because of internal magnetic field gradients caused by the presence of magnetite. We conclude that both the concentration and mineralogical form of iron can have a significant impact on NMR relaxation behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Turbanti Memmi, Isabella, Corina Ionescu, and Ulrich Schüssler. "Mineralogical Sciences and Archaeology." European Journal of Mineralogy 23, no. 6 (December 21, 2011): 847–48. http://dx.doi.org/10.1127/0935-1221/2011/0023-2162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Brey, Gerhard, and Heidi Höfer. "European Mineralogical Conference 2012." European Journal of Mineralogy 25, no. 4 (December 20, 2013): 497–98. http://dx.doi.org/10.1127/0935-1221/2013/0025-2356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Prakosa, Brilian Budi. "KARAKTERISTIK MINERALOGI TANAH ENDAPAN PYROCLASTICS SURGE DI LERENG GUNUNGAPI LAMONGAN, JAWA TIMUR." Matriks Teknik Sipil 8, no. 4 (December 29, 2020): 437. http://dx.doi.org/10.20961/mateksi.v8i4.47947.

Повний текст джерела
Анотація:
<p align="justify">Endapan seruakan piroklastik (<em>pyroclastics surge</em><em>)</em> seringkali berasosiasi dengan erupsi preatomagmatik dan preatik yang banyak melibatkan adanya air permukaan dan bawah permukaan. Di Indonesia, endapan pyroclastics surge yang sudah teridentifikasi salah satunya berada di lereng Gunungapi Lamongan. Penelitian ini memiliki tujuan untuk mengetahui karakteristik mineralogi dari tanah endapan jenis tersebut, selain itu juga bisa untuk mengetahui proses mekanisme pengendapan yang terjadi pada saat pembentukan material ini. Metode yang digunakan dalam penelitian ini adalah pemetaan geologi daerah penelitian,pengamatan fisik makroskopik, kemudian dilakukan analisis petrografi dan SEM EDX untuk mengetahui komposisi mineraloginya sekaligus untuk mengetahui tipe erupsi maupun mekanisme pengendapannya.</p><p align="justify">Kondisi geologi di daerah penelitian mempunyai morfologi pegunungan dan perbukitan vulkanik berlereng terjal, litologinya dominan tersusun oleh endapan vulkanik hasil erupsi Gunungapi Lamongan dengan jenis batuan andesit, basalt, serta endapan hasil letusan maar. Komposisi mineralogi batuan penyusunnya berdasarkan analisis petrografis dan SEM-EDX didominasi oleh plagioklas tipe andesin, ortopiroksen hipersten, dan klinopiroksen augit sebagai fenokris, serta untuk massa dasarnya tersusun oleh mikrolit plagioklas, mineral opak (magnetit), dan gelas vulkanik.</p><p align="justify">Tipe erupsi pembentuk maar atau ranu di sekitar Gunungapi Lamongan adalah jenis freatomagmatik, dibuktikan dari kenampakan fisik dan struktur batuannya yang mengindikasikan adanya pengaruh air yang signifikan dan aliran berdensitas rendah.</p><p><strong>Kata Kunci :</strong> seruakan piroklastik, mineralogi, gunungapi</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
27

LaBranche, Nikky, Kellie Teale, Elaine Wightman, Kelly Johnstone, and David Cliff. "Characterization Analysis of Airborne Particulates from Australian Underground Coal Mines Using the Mineral Liberation Analyser." Minerals 12, no. 7 (June 22, 2022): 796. http://dx.doi.org/10.3390/min12070796.

Повний текст джерела
Анотація:
Exposure monitoring and health surveillance of coal mine workers has been improved in Australia since coal workers’ pneumoconiosis was reidentified in 2015 in Queensland. Regional variations in the prevalence of mine dust lung disease have been observed, prompting a more detailed look into the size, shape, and mineralogical classes of the dust that workers are being exposed to. This study collected respirable samples of ambient air from three operating coal mines in Queensland and New South Wales for characterization analysis using the Mineral Liberation Analyser (MLA), a type of scanning electron microscope (SEM) that uses a combination of the backscattered electron (BSE) image and characteristic X-rays for mineral identification. This research identified 25 different minerals present in the coal samples with varying particle size distributions for the overall samples and the individual mineralogies. While Mine 8 was very consistent in mineralogy with a high carbon content, Mine 6 and 7 were found to differ more significantly by location within the mine.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gurzhiy, Vladislav V. "Mineralogical Crystallography." Crystals 10, no. 9 (September 11, 2020): 805. http://dx.doi.org/10.3390/cryst10090805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Esche, Joachim. "Mineralogical Bookplates." Rocks & Minerals 94, no. 5 (August 5, 2019): 456–59. http://dx.doi.org/10.1080/00357529.2019.1619140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Bronger, A., and Th Heinkele. "Mineralogical and clay mineralogical aspects of loess research." Quaternary International 7-8 (January 1990): 37–51. http://dx.doi.org/10.1016/1040-6182(90)90037-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yu. Fridovsky, Valery, Kyunney Yu Yakovleva, Antonina E. Vernikovskaya, Valery A. Vernikovsky, Nikolay Yu Matushkin, Pavel I. Kadilnikov, and Nickolay V. Rodionov. "Geodynamic Emplacement Setting of Late Jurassic Dikes of the Yana–Kolyma Gold Belt, NE Folded Framing of the Siberian Craton: Geochemical, Petrologic, and U–Pb Zircon Data." Minerals 10, no. 11 (November 11, 2020): 1000. http://dx.doi.org/10.3390/min10111000.

Повний текст джерела
Анотація:
We present the results of geostructural, mineralogic–petrographic, geochemical, and U–Pb geochronological investigations of mafic, intermediate, and felsic igneous rocks from dikes in the Yana–Kolyma gold belt of the Verkhoyansk–Kolyma folded area (northeastern Asia). The dikes of the Vyun deposit and the Shumniy occurrence intruding Mesozoic terrigenous rocks of the Kular–Nera and Polousniy–Debin terranes were examined in detail. The dikes had diverse mineralogical and petrographic compositions including trachybasalts, andesites, trachyandesites, dacites, and granodiorites. The rocks showed significant similarities in distributions of REE, and their concentrations of most HFSEs were close to the intermediate ones between ocean islands basalts and enriched middle ocean ridge basalts. We propose that the subduction that was ongoing during the collision of the Kolyma–Omolon superterrane with Siberia led to melting in the asthenospheric wedge and in the lithosphere, which formed a mixed source for the dike systems from both an enriched and a depleted mantle source. The U–Pb SHRIMP-II dates obtained for the dikes corresponded to the Late Jurassic interval of 151–145 Ma. We present a geodynamic model for the northeastern margin of the Siberian Craton for the Tithonian age of the Late Jurassic.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Halley, Scott. "Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses." Economic Geology 115, no. 3 (May 1, 2020): 489–503. http://dx.doi.org/10.5382/econgeo.4722.

Повний текст джерела
Анотація:
Abstract Analytical methods used by commercial assay laboratories have improved enormously in recent years. Inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectrometry methods now report analyses for half of the periodic table with exceptional detection limits and precision. It is becoming commonplace for mining companies to use such methods routinely for the analysis of drill samples throughout mineral deposits. Improvements in software and computing power now allow rapid interrogation of upward of 100,000 assay samples. Geochemical analyses are quantitative, are independent of observer bias, and can form the basis for robust geologic and mineralogical models of mineral deposits, as well as shed light on scientific questions. In particular, consistently collected, high-quality geochemical analyses can significantly improve and systematize logging of lithological and hydrothermal alteration mineralogic changes within drill core. In addition, abundant, high-quality geochemical data provide insights into magmatic and hydrothermal processes that were previously difficult to recognize and that have obvious applications to mineral exploration and improved genetic models of ore deposits. This paper describes a workflow that mining industry geologists can apply to their multielement analysis data to extract more information about magma compositions and gangue mineralogy.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Matkovskyi, O. I., and Ye M. Slyvko. "THE HISTORY OF MINERALOGY IN THE WORKS OF ACADEMICIAN YEVHEN LAZARENKO, HIS STUDENTS AND FOLLOWERS (To the 110th Anniversary of the Scientist's Birth)." Mineralogical Journal 44, no. 4 (2022): 140–47. http://dx.doi.org/10.15407/mineraljournal.44.04.140.

Повний текст джерела
Анотація:
The mineralogical science history occupies a prominent place in academician Ye. Lazarenko's scientific and pedagogical works: in monographic summaries of regional and genetic mineralogy, five editions of the textbook "Course of Mineralogy", the famous "Mineralogical Dictionary". A number of separate articles (individual or with co-authors) are devoted to the history of mineralogy in general and Ukraine in particular. Not all of the scientist's ideas were realized during his lifetime, but students and followers of Yevhen Kostiantynovych — representatives of the scientific mineralogical school that bears his name, a member of the Ukrainian Mineralogical Society, try to continue the work of their teacher. Various aspects of the history of the development of mineralogical research are covered in specialized publications — "Mineralogical Collection", "Mineralogical Journal", "Proceedings of the Ukrainian Mineralogical Society". They are discussed at scientific readings named after Academician Ye. Lazarenko, congresses of the Ukrainian Mineralogical Society and other scientific forums. The separate chapters in modern textbooks, educational aids, reference publications are devoted to the history of mineralogical development in Ukraine and in general; in recent years a number of specialized monographic publications were published.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Casetou-Gustafson, Sophie, Cecilia Akselsson, Stephen Hillier, and Bengt A. Olsson. "The importance of mineral determinations to PROFILE base cation weathering release rates: a case study." Biogeosciences 16, no. 9 (May 7, 2019): 1903–20. http://dx.doi.org/10.5194/bg-16-1903-2019.

Повний текст джерела
Анотація:
Abstract. Accurate estimates of base cation weathering rates in forest soils are crucial for policy decisions on sustainable biomass harvest levels and for calculations of critical loads of acidity. The PROFILE model is one of the most frequently used methods to quantify weathering rates, where the quantitative mineralogical input has often been calculated by the A2M (“Analysis to Mineralogy”) program based solely on geochemical data. The aim of this study was to investigate how uncertainties in quantitative mineralogy, originating from modeled mineral abundance and assumed stoichiometry, influence PROFILE weathering estimate, by using measured quantitative mineralogy by X-ray powder diffraction (XRPD) as a reference. Weathering rates were determined for two sites, one in northern (Flakaliden) and one in southern (Asa) Sweden. At each site, 3–4 soil profiles were analyzed at 10 cm depth intervals. Normative quantitative mineralogy was calculated from geochemical data and qualitative mineral data with the A2M program using two sets of qualitative mineralogical data inputs to A2M: (1) a site-specific mineralogy based on information about mineral identification and mineral chemical composition as determined directly by XRPD and electron microprobe analysis (EMPA), and (2) regional mineralogy, representing the assumed minerals present and assumed mineral chemical compositions for large geographical areas in Sweden, as per previous published studies. Arithmetic means of the weathering rates determined from A2M inputs (WA2M) were generally in relatively close agreement with those (WXRPD) determined by inputs based on direct XRPD and EMPA measurements. The hypothesis that using site-specific instead of regional mineralogy will improve the confidence in mineral data input to PROFILE was supported for Flakaliden. However, at Asa, site-specific mineralogies reduced the discrepancy for Na between WA2M and WXRPD but produced larger and significant discrepancies for K, Ca and Mg. For Ca and Mg the differences between weathering rates based on different mineralogies could be explained by differences in the content of some specific Ca- and Mg-bearing minerals, in particular amphibole, apatite, pyroxene and illite. Improving the accuracy in the determination of these minerals would reduce weathering uncertainties. High uncertainties in mineralogy, due for example to different A2M assumptions, had surprisingly little effect on the predicted weathering of Na- and K-bearing minerals. This can be explained by the fact that the weathering rate constants for the minerals involved, e.g. K feldspar and micas, are similar in PROFILE. Improving the description of the dissolution rate kinetics of the plagioclase mineral group as well as major K-bearing minerals (K feldspars and micas) should be a priority to help improve future weathering estimates with the PROFILE model.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Chernikov, A. A. "Mineralogical types of uranium ores of Russia and contiguous countries. Mineralogical types of large and superlarge deposits." Global Tectonics and Metallogeny 9 (January 1, 2007): 15–16. http://dx.doi.org/10.1127/gtm/9/2007/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Gramaccioli, Carlo M. "Application of mineralogical techniques to gemmology." European Journal of Mineralogy 3, no. 4 (August 27, 1991): 703–6. http://dx.doi.org/10.1127/ejm/3/4/0703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hidayat, Muhammad Nurjati. "Studi Material Tanah Longsor Akibat Gempa Lombok 2018." TERAS JURNAL 10, no. 2 (September 6, 2020): 235. http://dx.doi.org/10.29103/tj.v10i2.330.

Повний текст джерела
Анотація:
<p align="center"><strong>Abstrak</strong></p><p> </p><p class="11daftarpustaka">Pada umumnya, tanah longsor terjadi dengan skala yang kecil dan dampak yang dihasilkan tidak parah sebagaimana letusan gunung berapi, gempa atau tsunami. Namun, perhatian terhadap bencana ini seringkali diabaikan oleh masyarakat dan perencanaan pembangunan kota. Ada beberapa faktor yang perlu diperhatikan dalam meneliti tanah longor, salah satunya adalah mineral tanah. Dalam studi ini, sampel tanah diambil dari Lombok Utara akibat dari gempa Lombok 2018. Penelitian ini dilakukan dengan mengelompokkan tanah berdasarkan USCS dan AASTHO, kemudian dilanjutkan dengan analisis mineralogi menggunakan XRD (X-Ray Diffraction) dan SEM (Scanning Electron Microscope). Berdasarkan klasifikasi USCS, tanah termasuk kategori pasir berlanau dan campuran lanau (SM); dan lempung anorganik dengan plastisitas rendah sampai sedang, lempung berkerikil, lempung berpasir, lempung berlanau, lempung kurus (lean clays). Pada klasifikasi AASHTOO, hasilnya adalah tanah berlanau (A-4); kerikil dan pasir yang berlanau atau berlempung (A-2-4); dan pasir halus (A-3). Berdasarkan hasil mineralogi menggunakan XRD dan SEM, material utama pada sampel tanah adalah Albite Calcian, Microline and Kuarsa.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Kata kunci: <em>longsor,</em><em> mineralogi, XRD, SEM</em><em></em></p><p align="center"><strong> </strong></p><p align="center"><strong> </strong></p><p align="center"><strong>Abstract</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Landslides generally occur on a small scale and the impact is not as severe as volcanic eruptions, earthquakes, or tsunamis. However, attention to these disasters is often ignored by the community and city development planning. In assessing the factors causing landslides there are many factors that need to be considered, one of which is soil minerals. The samples of soil in this study were taken from North Lombok as a result of the 2018 earthquake. This research is conducted by classifying the soil based on USCS and AASHTO, then proceed with mineralogical analysis using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope). Based on USCS classification, the result of the analysis shows that soil samples have a classification of silty sand, and silt mixtures (SM); and inorganic clays or low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays (CL). For AASHTO classification, the result shows the sample belong to silty soil (A-4), silty or clayey gravel sand (A-2-4) and fine sand (A-3). Based on the results of mineralogical analysis using XRD and SEM, it is known that the dominant minerals making up the soil in the sample are Albite Calcian, Microline and Quartz</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Keywords: <em>landslide, mineralogy, XRD, SEM</em><em></em></p><em></em><em></em>
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Andrade, Alexsandrea Ricarda Pinheiro, Iara Rafaelle Silva Pereira, Claudio Alberto Gellis de Mattos Dias, Amanda Alves Fecury, Carla Viana Dendasck, and Antônio de Pádua Arlindo Dantas. "Analisi mineralogica del campione di sabbia dell’Areal Morro Branco di Porto Grande – AP." Revista Científica Multidisciplinar Núcleo do Conhecimento, March 26, 2020, 14–20. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/ambiente/analisi-mineralogica.

Повний текст джерела
Анотація:
Il comune di Porto Grande è stato creato il 1o maggio 1992 e si trova nella regione settentrionale dello stato di Amapá, con un’area di 4 400 km². L’obiettivo di questo lavoro è quello di eseguire l’analisi semiquantitativa di un campione di sabbia di Areal situato nel comune di Porto Grande, il campione raccolto ha attraversato alcuni passaggi fondamentali come: essiccazione, determinazione dell’umidità, determinazione delle frazioni di argilla, limo e sabbia, omogeneizzazione, quarteamento e analisi delle dimensioni delle particelle. Nella determinazione dell’umidità abbiamo ottenuto la percentuale del 2,4%, e questa era la differenza tra la massa umida e la massa secca del nostro campione P1, dopo il processo di setacciatura, la percentuale del materiale trattenuto in ogni setaccio è stata calcolata per analizzare le prestazioni del nostro setaccio e infine è stata eseguita la determinazione delle frazioni di argilla, che aveva come peso 0,17 g , limo del peso di 24,83 g e sabbia del peso di 275 g. Tuttavia, al termine delle prove possiamo osservare un’anomalia nei risultati dell’analisi granulometrica, dovuta al fatto che il setaccio in questione sarebbe umido, impedendo così il passaggio dell’intero materiale granulometrico fine.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Andrade, Alexsandrea Ricarda Pinheiro, Iara Rafaelle Silva Pereira, Claudio Alberto Gellis de Mattos Dias, Amanda Alves Fecury, Carla Viana Dendasck, and Antônio de Pádua Arlindo Dantas. "Análise mineralógica de amostra de areia do Areal Morro Branco do Município de Porto Grande- AP." Revista Científica Multidisciplinar Núcleo do Conhecimento, March 26, 2020, 14–20. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/meio-ambiente/analise-mineralogica.

Повний текст джерела
Анотація:
O município de Porto Grande foi criado em 1° de maio de 1992 e está localizado na região Norte do Estado de Amapá, possuindo uma área de 4 400 km². O objetivo deste trabalho é realizar a análise semiquantitativa de amostra de areia do Areal localizado no município de Porto Grande, a amostra coletada passou por algumas etapas fundamentais como: secagem, determinação de umidade, determinação das frações de argila, silte e areia, homogeneização, quarteamento e a análise granulométrica. Na determinação de umidade obtivemos o percentual de 2,4%, sendo esta a diferença entre a massas úmida e a massa seca da nossa amostra P1, após o processo de peneiramento calculou-se a percentagem do material retido em cada peneira para analisarmos o desempenho do nosso peneiramento e por último foi realizado a determinação das frações de argila que teve como peso 0,17 g, silte com peso de 24,83 g e a areia com peso 275 g. Contudo ao final dos ensaios podemos observar uma anomalia nos resultados de análise de granulometria, devido ao fato da peneira em questão que estaria úmida, impedindo assim que passe todo o material de granulometria fina. Palavras-chave: Análise Mineralógica, Porto Grande, areia.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Fociro, Ana, Oltion Fociro, Irakli Prifti, Redi Muçi, and Jeton Pekmezi. "Petrography and mineralogy of the Oligocene flysch in Ionian Zone, Albania: Implications for the evolution of sediment provenance and paleoenvironment." Open Geosciences 15, no. 1 (January 1, 2023). http://dx.doi.org/10.1515/geo-2022-0442.

Повний текст джерела
Анотація:
Abstract In this study, the reconstruction of the formation condition in the Oligocene flysch (Berati and Zhitomi section), in the Berati anticline structure, north-eastern part of the Ionian tectonic zone (Albania), is elucidated using petrographic–mineralogical characteristics and grain size analysis. Outcrops from the Berati and Zhitomi and the drilled wells were selected for sampling based on previous stratigraphic and paleontological studies. The mineralogical study of the flysch deposits made it possible to evidence for the first time three mineralogical zones: (a) quartz–garnet (b) serpentine, epidote with mica, and (c) feldspar zone, and three these petrographic zones: (a) quartz, (b) quartz–serpentine, and (c) quartz with mica and feldspars. The reconstruction of the depositional environment is based on the petrographic study of rock types, their textural characteristics, and grain size statistics. The granulometry coefficients like mean, sorting, skewness, and kurtosis are calculated arithmetically and the C/M diagram as well. Referring to the mineralogical composition of the sandstones and siltstones, the obtained data were used for the correlation of the sections and the delineation of the leaching area and the direction of the sediment movement. The mineralogic and petrographic characteristics show that during the Oligocene, the region has been under continuous paleogeographic change and under intensive orogenic activity, which has influenced the character of the mineralogical–petrographic composition of these deposits. Based on the pebbles petrography present in the slump horizons and on heavy mineral assemblages, it was evidenced that the eastern tectonic zones of Kruja, Krasta, and Mirdita (Albania) were the main suppliers of sedimentary material. The Passega C/M diagram suggests suspension and saltation as the main mode of sediment transport prior to deposition.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Andrade, Alexsandrea Ricarda Pinheiro, Iara Rafaelle Silva Pereira, Claudio Alberto Gellis de Mattos Dias, Amanda Alves Fecury, Carla Viana Dendasck, and Antônio de Pádua Arlindo Dantas. "Mineralogical analysis of sand sample from Areal Morro Branco in Porto Grande – AP." Revista Científica Multidisciplinar Núcleo do Conhecimento, March 26, 2020, 14–20. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/environment/mineralogical-analysis.

Повний текст джерела
Анотація:
The municipality of Porto Grande was created on May 1, 1992 and is located in the Northern region of the State of Amapá, with an area of 4 400 km². The objective of this work is to perform the semiquantitative analysis of a sand sample from Areal located in the municipality of Porto Grande, the sample collected went through some fundamental steps such as: drying, moisture determination, determination of clay, silt and sand fractions, homogenization, quarteamento and particle size analysis. In the determination of humidity we obtained the percentage of 2.4%, and this was the difference between the wet mass and the dry mass of our sample P1, after the sieving process, the percentage of the material retained in each sieve was calculated to analyze the performance of our sieving and finally the determination of the clay fractions was performed, which had as weight 0.17 g , silt weighing 24.83 g and sand weighing 275 g. However, at the end of the tests we can observe an anomaly in the results of particle size analysis, due to the fact that the sieve in question would be moist, thus preventing the entire fine granulometry material from passing.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

"Die geologische Barriere aus der Sicht der Mineralogie, sedimentologie und geochemie (Geological barriers - mineralogical, sedimentological and geochemical aspects)." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31, no. 4 (August 1994): 187. http://dx.doi.org/10.1016/0148-9062(94)91016-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sindern, Sven, and F. Michael Meyer. "Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy." Physical Sciences Reviews 1, no. 9 (September 30, 2016). http://dx.doi.org/10.1515/psr-2016-0063.

Повний текст джерела
Анотація:
AbstractIncreasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy.Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized.Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown.SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become increasingly important for supply of REEs in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

"European Mineralogical Union." Elements 17, no. 1 (February 1, 2021): 60–61. http://dx.doi.org/10.2138/gselements.17.1.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

"German Mineralogical Society." Elements 17, no. 1 (February 1, 2021): 54–55. http://dx.doi.org/10.2138/gselements.17.1.54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

"International Mineralogical Association." Elements 16, no. 6 (December 1, 2020): 416. http://dx.doi.org/10.2138/gselements.16.6.416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

"German Mineralogical Society." Elements 16, no. 6 (December 1, 2020): 422–23. http://dx.doi.org/10.2138/gselements.16.6.422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

"German Mineralogical Society." Elements 17, no. 4 (August 1, 2021): 279–81. http://dx.doi.org/10.2138/gselements.17.4.279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

"European Mineralogical Union." Elements 17, no. 2 (April 1, 2021): 137. http://dx.doi.org/10.2138/gselements.17.2.137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

"German Mineralogical Society." Elements 17, no. 2 (April 1, 2021): 141. http://dx.doi.org/10.2138/gselements.17.2.141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії