Добірка наукової літератури з теми "Microtubules dynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microtubules dynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microtubules dynamics"
Zwetsloot, Alexander James, Gokhan Tut, and Anne Straube. "Measuring microtubule dynamics." Essays in Biochemistry 62, no. 6 (October 4, 2018): 725–35. http://dx.doi.org/10.1042/ebc20180035.
Повний текст джерелаVemu, Annapurna, Joseph Atherton, Jeffrey O. Spector, Carolyn A. Moores, and Antonina Roll-Mecak. "Tubulin isoform composition tunes microtubule dynamics." Molecular Biology of the Cell 28, no. 25 (December 2017): 3564–72. http://dx.doi.org/10.1091/mbc.e17-02-0124.
Повний текст джерелаParker, Amelia L., Wee Siang Teo, Elvis Pandzic, Juan Jesus Vicente, Joshua A. McCarroll, Linda Wordeman та Maria Kavallaris. "β-Tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells". Life Science Alliance 1, № 2 (19 квітня 2018): e201800059. http://dx.doi.org/10.26508/lsa.201800059.
Повний текст джерелаGupta, Mohan L., Claudia J. Bode, Douglas A. Thrower, Chad G. Pearson, Kathy A. Suprenant, Kerry S. Bloom та Richard H. Himes. "β-Tubulin C354 Mutations that Severely Decrease Microtubule Dynamics Do Not Prevent Nuclear Migration in Yeast". Molecular Biology of the Cell 13, № 8 (серпень 2002): 2919–32. http://dx.doi.org/10.1091/mbc.e02-01-0003.
Повний текст джерелаRodionov, V. I., S. S. Lim, V. I. Gelfand, and G. G. Borisy. "Microtubule dynamics in fish melanophores." Journal of Cell Biology 126, no. 6 (September 15, 1994): 1455–64. http://dx.doi.org/10.1083/jcb.126.6.1455.
Повний текст джерелаVorobjev, I. A., T. M. Svitkina, and G. G. Borisy. "Cytoplasmic assembly of microtubules in cultured cells." Journal of Cell Science 110, no. 21 (November 1, 1997): 2635–45. http://dx.doi.org/10.1242/jcs.110.21.2635.
Повний текст джерелаCassimeris, L. U., P. Wadsworth, and E. D. Salmon. "Dynamics of microtubule depolymerization in monocytes." Journal of Cell Biology 102, no. 6 (June 1, 1986): 2023–32. http://dx.doi.org/10.1083/jcb.102.6.2023.
Повний текст джерелаKosco, Karena A., Chad G. Pearson, Paul S. Maddox, Peijing Jeremy Wang, Ian R. Adams, E. D. Salmon, Kerry Bloom, and Tim C. Huffaker. "Control of Microtubule Dynamics by Stu2p Is Essential for Spindle Orientation and Metaphase Chromosome Alignment in Yeast." Molecular Biology of the Cell 12, no. 9 (September 2001): 2870–80. http://dx.doi.org/10.1091/mbc.12.9.2870.
Повний текст джерелаHyman, A. A., and T. J. Mitchison. "Modulation of microtubule stability by kinetochores in vitro." Journal of Cell Biology 110, no. 5 (May 1, 1990): 1607–16. http://dx.doi.org/10.1083/jcb.110.5.1607.
Повний текст джерелаWarren, James C., Adam Rutkowski, and Lynne Cassimeris. "Infection with Replication-deficient Adenovirus Induces Changes in the Dynamic Instability of Host Cell Microtubules." Molecular Biology of the Cell 17, no. 8 (August 2006): 3557–68. http://dx.doi.org/10.1091/mbc.e05-09-0850.
Повний текст джерелаДисертації з теми "Microtubules dynamics"
Schaedel, Laura. "Les propriétés mécaniques des microtubules." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY010/document.
Повний текст джерелаMicrotubules—which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport—can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules’ adaptation to mechanical stresses
A, S. Jijumon. "Systematic characterization of a large number of Microtubule-Associated Proteins using purification-free TIRF-reconstitution assays Purification of tubulin with controlled post-translational modifications by polymerization–depolymerization cycles Microtubule-Associated Proteins: Structuring the Cytoskeleton Purification of custom modified tubulin from cell lines and mouse brains by polymerization-depolymerization cycles." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL007.
Повний текст джерелаMicrotubules (MTs) are dynamic filaments involved in a plethora of functions such as cell division, cell shape, ciliary beating, neuronal differentiation. Strict regulation of MT functions is therefore of high importance for the cellular homeostasis, and any perturbations could potentially lead to diseases like cancer, ciliopathies and neurodegeneration. At the protein level, there are accumulating studies showing that MT properties can be controlled via interaction with a large variety of MT-associated proteins (MAPs). Our knowledge of MAPs has been enriched over time, but up to this date no systematic studies exist that aim to describe and categorize these proteins according to their binding mechanisms and structural effects on MTs. In my PhD project, I have developed an assay for rapid and systematic analysis of MAPs using cleared lysates of cultured human cells in which I overexpress a variety of different MAPs. The dynamic behaviour of growing MTs in the presence of those MAPs were imaged using TIRF microscopy. This allows me to study the behaviour of around 50 MAP candidates in a situation close to their natural environment, but eliminating complexity coming from different organelles and crammed cytoskeleton filaments inside the confined intracellular space. Indeed, most MAPs were nicely soluble in the extract approach, while purification attempts of several of them led to protein precipitation, thus making classical invitro reconstitution approaches impossible. This novel approach allowed me to compare many MAPs under similar experimental conditions, and helped to define several novel proteins as bona-fide MAPs. I demonstrate that previously uncharacterized MAPs have strikingly different effects on MT polymerization and MT structure, thus creating a variety of distinct MT arrays. I further extended this cell-free pipeline to study structures of MAPs bound to MTs by cryo-electron microscopy, or to study the MT interactions of MAPs carrying patient mutations. Finally, I demonstrated that my approach can be used to test the sensitivity of MAPs to tubulin PTMs, as well as to study the role of MAPs in actin-MT crosstalk. In the future, this novel approach will allow for a better mechanistic understanding of how MAPs and MTs together control cytoskeleton functions
Jiang, Nan. "Exploring Microtubule Structural Mechanics through Molecular Dynamics Simulations." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504878667194719.
Повний текст джерелаMelbinger, Anna Tatjana. "On the role of fluctuations in evolutionary dynamics and transport on microtubules." Diss., Ludwig-Maximilians-Universität München, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148246.
Повний текст джерелаSwoger, Maxx Ryan. "Computational Investigation of Material and Dynamic Properties of Microtubules." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1532108320185937.
Повний текст джерелаPaulin-Levasseur, Micheline. "Cellular dynamics of vimentin filaments and their spatial relationship to microtubules in lymphocytes." Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5396.
Повний текст джерелаSousa, Da Costa Maria Judite. "Csi2 modulates microtubule dynamics and helps organize the bipolar spindle for proper chromosome segregation in fission yeast." Paris 6, 2013. http://www.theses.fr/2013PA066626.
Повний текст джерелаLa ségrégation correcte des chromosomes est processus fondamental pour maintenir la stabilité génomique. Des défauts de ségrégation sont souvent à l’origine de l’apparition de cellules aneuploïdes, caractéristique fréquemment observée dans les cellules cancéreuses. Dans les cellules eucaryotes, la ségrégation correcte des chromosomes est assurée par le fuseau mitotique. Des mécanismes de contrôle, tels que le point de contrôle mitotique et le bon attachement des centromères, sont mis en œuvre pour assurer la bonne ségrégation des chromosomes. Dans cette étude, nous avons pu établir chez le levure fissipare, que la protéine csi2, localisée aux pôles du fuseau mitotique, joue un rôle sur la dynamique des MTs mitotiques, dans la formation d’un fuseau mitotique intègre et par conséquent dans la ségrégation correcte des chromosomes. Les MTs composants le fuseau mitotique bipolaire sont dynamiques et de petite taille ~1µm ce qui représente un défis technique pour les imager, en effet, la résolution optique d’un microscope ~λ/2 est en général de 300nm. Nous avons développé une nouvelle approche pour imager les MTs mitotiques basée sur l’utilisation du mutant réversible thermosensible kinesin-5 cut7. 24ts, pour obtenir des cellules ayant des fuseaux monopolaires. Ainsi, nous avons pu mettre en évidence que la délétion de la protéine csi2 chez la levure S. Pombe était à l’origine d’un allongement de la longueur des microtubules mitotiques, d’une augmentation du nombre de cellules présentant un fuseau monopolaire et d’une augmentation des défauts de ségrégation des chromosomes. L’étude de l’implication de la protéine csi2 dans ces différents mécanismes nous a permis de mettre en évidence la contribution de chacun de ces mécanismes dans la bonne ségrégation des chromosomes. Nous proposons dans cette étude que le facteur déterminant à l’origine d’une ségrégation incorrecte des chromosomes serait majoritairement imputable à des défauts de régulation de la dynamique des microtubules
Ng, Daniel. "Investigating the dynamics of adhesion complex turnover by mass spectrometry based proteomics." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-dynamics-of-adhesion-complex-turnover-by-mass-spectrometry-based-proteomics(4e6d3051-c007-4715-a290-9acfd45d38a7).html.
Повний текст джерелаRauch, Philipp. "Neuronal Growth Cone Dynamics." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-119885.
Повний текст джерелаShukla, Nandini Y. "Investigation of Microtubule dynamics and novel Microtubule-associated proteins in growth and development of the filamentous fungus, Aspergillus nidulans." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu149276142029341.
Повний текст джерелаКниги з теми "Microtubules dynamics"
Microtubule dynamics: Methods and protocols. New York: Humana, 2011.
Знайти повний текст джерелаStraube, Anne, ed. Microtubule Dynamics. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6.
Повний текст джерела1937-, Soifer David, ed. Dynamic aspects of microtubule biology. New York, N.Y: New York Academy of Sciences, 1986.
Знайти повний текст джерелаQu, Xiaoyi. Microtubule Dynamics in Tau-dependent Amyloid Beta Synaptotoxicity. [New York, N.Y.?]: [publisher not identified], 2019.
Знайти повний текст джерелаLamb, Jeremy Charles. Fluorescent derivatives of tubulin as probes for the analysis of microtubule dynamics. Norwich: University of East Anglia, 1985.
Знайти повний текст джерелаBöhlke, Christopher. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. Freiburg: Universität, 2013.
Знайти повний текст джерелаMathew, Shyno. Molecular Dynamics Simulations of Microtubule-associated protein 1A/1B-light chain 3 (LC3) and its membrane associated form(LC3-II). [New York, N.Y.?]: [publisher not identified], 2017.
Знайти повний текст джерелаStraube, Anne. Microtubule Dynamics: Methods and Protocols. Humana Press, 2017.
Знайти повний текст джерелаMikhailov, Alexei. The dynamics and interactions of microtubules in locomoting fibroblasts. 1998.
Знайти повний текст джерелаWarner, Fred D., and J. Richard McIntosh. Cell Movement Vol. II: Kinesin, Dynein, and Microtubule Dynamics. Wiley & Sons, Incorporated, John, 1989.
Знайти повний текст джерелаЧастини книг з теми "Microtubules dynamics"
Zdravković, Slobodan. "Nonlinear Dynamics of Microtubules." In Nonlinear Dynamics of Nanobiophysics, 263–305. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5323-1_10.
Повний текст джерелаCarlier, Marie-France, Ronald Melki, Cécile Combeau, and D. Pantaloni. "Phosphate Release Following Nucleotide Hydrolysis Regulates the Dynamics of Actin Filaments and Microtubules." In Springer Series in Biophysics, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73925-5_48.
Повний текст джерелаFlyvbjerg, Henrik. "Microtubule Dynamics." In Physics of Biological Systems, 213–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-540-49733-2_10.
Повний текст джерелаMcIntosh, J. R., V. A. Lombillo, C. Nislow, and E. A. Vaisberg. "Microtubule Dynamics and Chromosome Movement." In The Cytoskeleton, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79482-7_1.
Повний текст джерелаStraube, Anne. "How to Measure Microtubule Dynamics?" In Methods in Molecular Biology, 1–14. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6_1.
Повний текст джерелаPurich, Daniel L., and James M. Angelastro. "Microtubule Dynamics: Bioenergetics and Control." In Advances in Enzymology - and Related Areas of Molecular Biology, 121–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470123157.ch4.
Повний текст джерелаvan Haren, Jeffrey, Lauren S. Adachi, and Torsten Wittmann. "Optogenetic Control of Microtubule Dynamics." In Methods in Molecular Biology, 211–34. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0219-5_14.
Повний текст джерелаHonore, Stéphane, and Diane Braguer. "Investigating Microtubule Dynamic Instability Using Microtubule-Targeting Agents." In Methods in Molecular Biology, 245–60. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6_18.
Повний текст джерелаBajer, Andrew S., Elena A. Smirnova, and Jadwiga Molè-Bajer. "Microtubule Converging Centers — Implications for Microtubule Dynamics in Higher Plants." In Chromosome Segregation and Aneuploidy, 225–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84938-1_19.
Повний текст джерелаBajer, Andrew S., Elena A. Smirnova, Kolja A. Wawrowsky, Rainer Wolf, and Jadwiga Molè-Bajer. "Microtubule Converging Centers: Implications for Microtubule Dynamics in Higher Plants." In Biomechanics of Active Movement and Division of Cells, 471–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78975-5_20.
Повний текст джерелаТези доповідей конференцій з теми "Microtubules dynamics"
Aprodu, Iuliana, Alfonso Gautieri, Franco M. Montevecchi, Alberto Redaelli, and Monica Soncini. "What Molecular Dynamics Simulations Can Tell Us About Mechanical Properties of Kinesin and Its Interaction With Tubulin." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176316.
Повний текст джерелаZdravković, Slobodan. "Kinks and breathers in nonlinear dynamics of microtubules." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897908.
Повний текст джерелаEnemark, So̸ren, Marco A. Deriu, and Monica Soncini. "Mechanical Properties of Tubulin Molecules by Molecular Dynamics Simulations." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95674.
Повний текст джерелаHendricks, Adam G., Bogdan I. Epureanu, and Edgar Meyho¨fer. "Collective Dynamics of Kinesin-1 Motor Proteins Transporting a Common Load." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34702.
Повний текст джерелаSalmon, E. D. "Video microscopy analysis of the polymerization dynamics of individual microtubules." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40582.
Повний текст джерелаMATSSON, L. "DNA AND MICROTUBULES AS VORTEX-STRINGS IN SUPERCONDUCTOR-LIKE DYNAMICS." In Proceedings of the First Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811301_0018.
Повний текст джерелаEsteve, Marie-Anne, Stéphane Honore, Nathalie Mckay, Felix Bachmann, Heidi Lane, and Diane Braguer. "Abstract 1977: BAL27862: A unique microtubule-targeted drug that suppresses microtubule dynamics, severs microtubules, and overcomes Bcl-2- and tubulin subtype-related drug resistance." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1977.
Повний текст джерелаPantaloni, D., M. F. Carlier, R. Melki, C. Combeau, and C. Valentin-Ranc. "Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40581.
Повний текст джерелаShi, Jianmin, Caixia Jia, Tao Han, Alfred C. H. Yu, and Peng Qin. "Dynamics of Microtubules Disruption and Rearrangement in the Sonoporated Human Umbilical Vein Endothelial Cells." In 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019. http://dx.doi.org/10.1109/ultsym.2019.8926089.
Повний текст джерелаMotie Shirazi, Mohsen, Omid Abouali, Homayoon Emdad, Mohammad Reza Nabavizade, Hossein Mirhadi, and Goodarz Ahmadi. "Numerical Investigation of Irrigant Penetration Into Dentinal Microtubules." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21743.
Повний текст джерелаЗвіти організацій з теми "Microtubules dynamics"
Orr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada407181.
Повний текст джерелаOrr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada416454.
Повний текст джерелаOrr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada425729.
Повний текст джерела