Добірка наукової літератури з теми "Micropolar fluids equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Micropolar fluids equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Micropolar fluids equations"

1

Stamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic, and Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel." Thermal Science, no. 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.

Повний текст джерела
Анотація:
Magnetohydrodynamic (MHD) fluid flows attract a lot of attention in the extrusion of polymers, in the theory of nanofluids, as well as in the consideration of biological fluids. The considered problem in the paper is the flow and heat transfer of nano and micropolar fluid in inclined channel. Fluid flow is steady, while nano and micropolar fluids are incompressible, immiscible, and electrically conductive. The upper and lower channel plates are electrically insulated and maintained at constant and different temperatures. External applied magnetic field is perpendicular to the fluid flow and co
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kocić, Miloš, Živojin Stamenković, Jelena Petrović, and Jasmina Bogdanović-Jovanović. "Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel." Fluids 8, no. 3 (2023): 93. http://dx.doi.org/10.3390/fluids8030093.

Повний текст джерела
Анотація:
The problem considered in this paper is a steady micropolar fluid flow in porous media between two plates. This model can be used to describe the flow of some types of fluids with microstructures, such as human and animal blood, muddy water, colloidal fluids, lubricants and chemical suspensions. Fluid flow is a consequence of the constant pressure gradient along the flow, while two parallel plates are fixed and have different constant temperatures during the fluid flow. Perpendicular to the flow, an external magnetic field is applied. General equations of the problem are reduced to ordinary di
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Hujun, Xiaoling Han, and Caidi Zhao. "Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms." Mathematics 10, no. 14 (2022): 2469. http://dx.doi.org/10.3390/math10142469.

Повний текст джерела
Анотація:
This article studies the 3D incompressible micropolar fluids with rapidly oscillating terms. The authors prove that the trajectory statistical solutions of the oscillating fluids converge to that of the homogenized fluids provided that the oscillating external force and angular momentum possess some weak homogenization. The results obtained indicate that the trajectory statistical information of the 3D incompressible micropolar fluids has a certain homogenization effect with respect to spatial variables. In addition, our approach is also valid for a broad class of evolutionary equations displa
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rahman, M. M., and T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium." Nonlinear Analysis: Modelling and Control 13, no. 1 (2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.

Повний текст джерела
Анотація:
A two-dimensional steady convective flow of a micropolar fluid past a vertical porous flat plate in the presence of radiation with variable heat flux has been analyzed numerically. Using Darcy-Forchheimer model the corresponding momentum, microrotation and energy equations have been solved numerically. The local similarity solutions for the flow, microrotation and heat transfer characteristics are illustrated graphically for various material parameters. The effects of the pertinent parameters on the local skin friction coefficient, plate couple stress and the heat transfer are also calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, James, James D. Lee, and Chunlei Liang. "Constitutive equations of Micropolar electromagnetic fluids." Journal of Non-Newtonian Fluid Mechanics 166, no. 14-15 (2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

IDO, Yasushi. "Basic Equations of Micropolar Magnetic Fluids." Transactions of the Japan Society of Mechanical Engineers Series B 70, no. 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duarte-Leiva, Cristian, Sebastián Lorca, and Exequiel Mallea-Zepeda. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions." Symmetry 13, no. 8 (2021): 1348. http://dx.doi.org/10.3390/sym13081348.

Повний текст джерела
Анотація:
Micropolar fluids are fluids with microstructure and belong to a class of fluids with asymmetric stress tensor that called Polar fluids, and include, as a special case, the well-established Navier–Stokes model. In this work we study a 3D micropolar fluids model with Navier boundary conditions without friction for the velocity field and homogeneous Dirichlet boundary conditions for the angular velocity. Using the Galerkin method, we prove the existence of weak solutions and establish a Prodi–Serrin regularity type result which allow us to obtain global-in-time strong solutions at finite time.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kocić, Miloš, Živojin Stamenković, Jelena Petrović, and Jasmina Bogdanović-Jovanović. "MHD micropolar fluid flow in porous media." Advances in Mechanical Engineering 15, no. 6 (2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.

Повний текст джерела
Анотація:
The analysis of mass and heat transfer in magnetohydrodynamic (MHD) flows has significant applications in heat exchangers, cooling nuclear reactors, designing energy systems and casting and injection processes of different types of fluids. On the other hand, extraction of crude oil, the flow of human or animal blood, as well as other polymer fluids or liquid crystals are just some examples of micropolar fluid flows. Due to the broad application spectrum of the theory of micropolar fluid flows, and the significance the impact the external magnetic field has on the flow of these fluids, this pap
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hassanien, I. A. "Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate." Journal of Fluids Engineering 118, no. 4 (1996): 833–38. http://dx.doi.org/10.1115/1.2835517.

Повний текст джерела
Анотація:
A boundary layer analysis is presented to study the effects of buoyancy-induced streamwise pressure gradients on laminar forced convection heat transfer to micropolar fluids from a horizontal semi-infinite flat plate. The transformed boundary-layer equations have been solved numerically. The effects of the buoyancy force, material parameters, and viscous dissipative heat on the friction factor, total heat transfer, displacement thickness, and wall couple stress, as well as the details of the velocity, microrotation, and temperature fields are discussed. A comparison has been made with the corr
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Srinivas, J., J. V. Ramana Murthy, and Ali J. Chamkha. "Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.

Повний текст джерела
Анотація:
Purpose – The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids. Design/methodology/approach – The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The flow is assumed to be governed by Eringen’s micropolar fluid flow equation. The resulting governing equations are then solved using the homotopy analysis method. Findings – The following findings are concluded: first, the entropy generation rate is more near the plates in both the zones as
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Micropolar fluids equations"

1

Gumgum, Sevin. "The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611605/index.pdf.

Повний текст джерела
Анотація:
In this thesis, the two-dimensional, transient, laminar flow of viscous and incompressible fluids is solved by using the dual reciprocity boundary element method (DRBEM). Natural convection and mixed convection flows are also solved with the addition of energy equation. Solutions of natural convection flow of nanofluids and micropolar fluids in enclosures are obtained for highly large values of Rayleigh number. The fundamental solution of Laplace equation is used for obtaining boundary element method (BEM) matrices whereas all the other terms in the differential equations governing the flows a
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Llerena, Montenegro Henry David. "Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude de la relation entre les variables dans les équations des fluides micro-polaires. Ce système, basé sur les équations de Navier-Stokes, consiste en un couplage de deux variables: le champ de vitesse vec{u} et le champ de micro-rotation vec{w}. Notre objectif est de mieux comprendre comment l'information concernant une variable influence le comportement de l'autre. À cette fin, nous avons divisé cette thèse en quatre chapitres, où nous étudierons les propriétés de régularité locale des solutions faibles de type Leray, puis nous nous concentrerons sur la régula
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mostefai, Mohamed Sadek. "Déduction rigoureuse de l'équation de Reynolds à partir d'un système modélisant l'écoulement à faible épaisseur d'un fluide micropolaire, et étude de deux problèmes à frontière libre : Hele-Shaw généralisé et Stephan à deux phases pour un fluide non newtonien." Saint-Etienne, 1997. http://www.theses.fr/1997STET4019.

Повний текст джерела
Анотація:
Dans le chapitre 1, on considère le modèle micropolaire de Navier-Stokes avec conditions de bords de type Dirichlet non homogènes en dimension deux. On donnera un résultat d'existence d'une solution faible en utilisant le théorème du point fixe de Leray-Schauder, puis on prouvera l'unicité de la solution faible du problème sous certaines hypothèses. On établiera une justification mathématique de l’équation de Reynolds généralisé à partir de ce modèle là. On étudiera ensuite la forme de l'équation de Reynolds suivant le choix de la viscosité et des données initiales. Dans le chapitre 2, nous co
Стилі APA, Harvard, Vancouver, ISO та ін.
4

BENHABOUCHA, Nadia. "Quelques problèmes mathématiques relatifs à la modélisation des conditions aux limites fluide-solide pour des écoulements de faible épaisseur." Phd thesis, Université Claude Bernard - Lyon I, 2003. http://tel.archives-ouvertes.fr/tel-00005482.

Повний текст джерела
Анотація:
Ce travail de thèse est consacré à l'étude asymptotique d'écoulements de faible épaisseur et à la modélisation des conditions aux limites à imposer à l'interface fluide-solide dans différentes situations. Le chapitre 1 est consacré à l'etude asymptotique d'un écoulement fluide constitué d'une couche poreuse mince adjacente à un milieu fluide mince. On met en évidence l'existence d'un rapport critique entre la taille de la microstructure du milieu poreux et les deux épaisseurs, rapport pour lequel une équation de Reynolds modifiée est obtenue. De plus il est montré qu'on peut toujours pour une
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Micropolar fluids equations"

1

Simčić, Loredana, and Ivan Dražić. "Some Properties of a Generalized Solution for Shear Flow of a Compressible Viscous Micropolar Fluid Model." In Differential and Difference Equations with Applications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dražić, Ivan. "Homogeneous Boundary Problem for the Compressible Viscous and Heat-Conducting Micropolar Fluid Model with Cylindrical Symmetry." In Differential and Difference Equations with Applications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dražić, Ivan. "Non-homogeneous Boundary Problems for One-Dimensional Flow of the Compressible Viscous and Heat-Conducting Micropolar Fluid." In Differential and Difference Equations with Applications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mujaković, N., and N. Črnjarić–Žic. "Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry." In Differential and Difference Equations with Applications. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dražić, Ivan, and Nermina Mujaković. "Some Properties of a Generalized Solution for 3-D Flow of a Compressible Viscous Micropolar Fluid Model with Spherical Symmetry." In Differential and Difference Equations with Applications. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Merkin, John H., Ioan Pop, Yian Yian Lok, and Teodor Grosan. "Basic equations and mathematical methods." In Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821188-5.00002-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Conca, C., R. Gormaz, E. Ortega, and M. Rojas. "Existence and uniqueness of a strong solution for nonhomogeneous micropolar fluids." In Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV. Elsevier, 2002. http://dx.doi.org/10.1016/s0168-2024(02)80012-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sava, V. Al. "An initial boundary value problem for the equations of plane flow of a micropolar fluid in a time-dependent domain." In Integral methods in science and engineering. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780367812027-32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Micropolar fluids equations"

1

Najafi, A., F. Daneshmand, and S. R. Mohebpour. "Analysis of Vibrating Micropolar Plate in Contact With a Fluid." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31036.

Повний текст джерела
Анотація:
Micropolar theory constitutes extension of the classical field theories. It is based on the idea that every particles of the material can make both micro rotation and volumetric micro elongation in addition to the bulk deformation. Since this theory includes the effects of micro structure which could affect the overall behaviour of the medium, it reflects the physical realities much better than the classical theory for the engineering materials. In the micropolar theory, the material points are considered to possess orientations. A material point carrying three rigid directors introduces one e
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fatunmbi, E. O., and O. O. Akanbi. "Magnetohydrodynamic Flow and Heat Transfer Characteristics in Micropolar-Casson Fluid over a Stretching Surface with Temperature-dependent Material Properties." In 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28n2p7.

Повний текст джерела
Анотація:
The current investigation communicates the flow and heat transfer characteristics of an electrically conducting micropolar-Casson fluid over a two-dimensional stretching surface with variable thermal conductivity and viscosity. Thermal radiation, viscous dissipation and heat source effects are also accounted for in the energy equation. The formulated equations of flow and heat transfer are converted from partial to ordinary differential equations using suitable similarity transformations while the dimensionless equations are solved by Runge-Kutta Fehlberg integration scheme. The effects of the
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mingyang Pan, Xiandong Zhu, Liancun Zheng, and Xinhui Si. "Multiple solutions of the micropolar fluid equation in a porous channel." In 2014 ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Al-Sharifi, H. A. M. "Numerical solutions of equations Eyring-Powell micropolar fluid across stretching surface." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hazbavi, Abbas, and Sajad Sharhani. "Micropolar Fluid Flow Between Two Inclined Parallel Plates." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72528.

Повний текст джерела
Анотація:
In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hart
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghasvari-Jahromi, H., Gh Atefi, A. Moosaie, and S. Hormozi. "Analytical Solution of Turbulent Problems Using Governing Equation of Cosserat Continuum Model." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15837.

Повний текст джерела
Анотація:
In present paper the theory of the micropolar fluid based on a Cosserat continuum model has been applied for analysis of Couette flow and turbulent flow through rough pipes. The obtained results for the velocity field have been compared with known results from experiments done by Reichardt at Max Plank institute for fluids in Gottingen [1,2] and analytical solution of the problem from Gradient theory by alizadeh[3] for couette problem and with known results from experiments done by Nikuradse (1932). the boundary condition used here was the no slip one and Trostel's slip boundary condition[4].a
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!