Добірка наукової літератури з теми "Microfluidic fuell cell"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microfluidic fuell cell".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microfluidic fuell cell"
Wang, Lingtian, Dajun Jiang, Qiyang Wang, Qing Wang, Haoran Hu, and Weitao Jia. "The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics." Current Pharmaceutical Design 24, no. 45 (April 16, 2019): 5397–406. http://dx.doi.org/10.2174/1381612825666190301142833.
Повний текст джерелаNaher, Sumsun, Dylan Orpen, Dermot Brabazon, and Muhammad M. Morshed. "An Overview of Microfluidic Mixing Application." Advanced Materials Research 83-86 (December 2009): 931–39. http://dx.doi.org/10.4028/www.scientific.net/amr.83-86.931.
Повний текст джерелаGoel, Sanket, Lanka Tata Rao, Prakash Rewatkar, Haroon Khan, Satish Kumar Dubey, Arshad Javed, Gyu Man Kim, and Sanket Goel. "Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation." Journal of Electrochemical Science and Engineering 11, no. 4 (October 5, 2021): 306–16. http://dx.doi.org/10.5599/jese.1092.
Повний текст джерелаGoel, Sanket, Lanka Tata Rao, Prakash Rewatkar, Haroon Khan, Satish Kumar Dubey, Arshad Javed, Gyu Man Kim, and Sanket Goel. "Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation." Journal of Electrochemical Science and Engineering 11, no. 4 (October 5, 2021): 306–16. http://dx.doi.org/10.5599/jese.1092.
Повний текст джерелаGuima, Katia-Emiko, Pedro-Henrique L. Coelho, Magno A. G. Trindade, and Cauê Alves Martins. "3D-Printed glycerol microfluidic fuel cell." Lab on a Chip 20, no. 12 (2020): 2057–61. http://dx.doi.org/10.1039/d0lc00351d.
Повний текст джерелаKamitani, Ai, Satoshi Morishita, Hiroshi Kotaki, and Steve Arscott. "Microfabricated microfluidic fuel cells." Sensors and Actuators B: Chemical 154, no. 2 (June 2011): 174–80. http://dx.doi.org/10.1016/j.snb.2009.11.014.
Повний текст джерелаWang, Yifei, Shijing Luo, Holly Y. H. Kwok, Wending Pan, Yingguang Zhang, Xiaolong Zhao, and Dennis Y. C. Leung. "Microfluidic fuel cells with different types of fuels: A prospective review." Renewable and Sustainable Energy Reviews 141 (May 2021): 110806. http://dx.doi.org/10.1016/j.rser.2021.110806.
Повний текст джерелаMousavi Shaegh, Seyed Ali, Nam-Trung Nguyen, and Siew Hwa Chan. "Air-breathing microfluidic fuel cell with fuel reservoir." Journal of Power Sources 209 (July 2012): 312–17. http://dx.doi.org/10.1016/j.jpowsour.2012.02.115.
Повний текст джерелаPhirani, J., and S. Basu. "Analyses of fuel utilization in microfluidic fuel cell." Journal of Power Sources 175, no. 1 (January 2008): 261–65. http://dx.doi.org/10.1016/j.jpowsour.2007.08.099.
Повний текст джерелаFeali, M. S. "Transient Response of Microfluidic Fuel Cell." Russian Journal of Electrochemistry 56, no. 5 (May 2020): 437–46. http://dx.doi.org/10.1134/s1023193520030040.
Повний текст джерелаДисертації з теми "Microfluidic fuell cell"
Lim, Keng Guan. "Microfluidic fuel cell." View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3319104.
Повний текст джерелаSprague, Isaac Benjamin. "Characterization of a microfluidic based direct-methanol fuel cell." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Summer2008/I_Sprague_072208.pdf.
Повний текст джерелаEbrahimi, Khabbazi Ali. "Comprehensive numerical study of microfluidic fuel cells." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/27537.
Повний текст джерелаBattistelli, Elisa. "Microfluidic microbial fuel cell fabrication and rapid screening of electrochemically microbes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7301/.
Повний текст джерелаGonzález, Guerrero MªJosé. "Enzymatic microfluidic fuel cells: from active to passive power sources." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/322082.
Повний текст джерелаThis thesis presents the development and fabrication of microfluidic fuel cells for low power and portable applications. Specifically, biological fuel cells that use enzymes for glucose degradation. This work is divided in two sections depending on whether the fabricated devices are active, i. e. the reagents are supplied into the micro fuel cell by pumping (Chapters 2 and 3). If, on the contrary, the reagents flow without needing external mechanisms they are passive devices (Chapters 4 and 5). In the first chapter of the thesis the first approach in the development of glucose/O2 micro fuel cells was conducted in order to allow for the initial electrochemical measurements with enzymes. The microfluidic fuel cell was fabricated using a glass substrate in which gold electrodes were impressed using microfabrication techniques. On the other hand, soft lithography was used to fabricate the Y-shaped PDMS channels. This channel shape enabled to flow two solutions in parallel using a syringe pump. The enzymes were continuously flowing through the channel causing expensive experiments in addition to hindering its possible portable application. Thereby, the biocatalysts immobilization on the electrodes was next addressed in this thesis. Chapter 2 presents the fabrication of a micro fuel cell with enzymes trapped on the electrode surfaces which lead to an effective use of the biocatalysts. The electrodes were fabricated using pyrolyzed resists and were successfully used for the first time in enzymatic microfluidic fuel cells of this kind. The fuel cell was formed by different layers of plastic laminated materials cut using a cutter plotter. This promotes a fast and inexpensive device fabrication which is compatible with large scale manufacturing. The microfluidic channel was also defined on this type of plastic materials, thus avoiding the long lithographic process related to the PDMS. Moreover, this Y-shaped channel allows to optimize the power obtained from the fuel cell when two different solution are pumped into the system. Therefore, the following aspect to be addressed was the biocatalyst immobilization over the electrodes of the micro fuel cell Chapter 4 describes the construction of a microfluidic fuel cell fabricated using paper substrates. The reagents flow through this paper (in a passive way) by capillary action. The fuel cell components were cut using a cutting plotter which allows fabricating devices much faster. The proper functioning of this paper-based microfluidic fuel cell was verified obtaining similar power values to those presented in Chapter 3 (were solution were pumped). From here, the work focused on bringing the paper fuel cell closer to the simplicity of lateral flow tests. The fuel cell was then adapted and successfully operated using a single solution, generating energy from a commercial drink. Chapter 5 presents a microfluidic paper-based fuel cell smaller and more sophisticated than the one presented in previous chapter. A new combination of enzyme was tested which allowed to work with samples at neutral pH. Additionally, the compact size of the system opened the possibility to operate the paper fuel cell with physiological fluids, such as blood. Finally, it was demonstrated that was possible to have a fuel cell ready to fed devices demanding low energy. However, more efforts have to be done in the field to approach this fuel cell to a real world mainly due to the still limited lifetime of the enzymes.
Garcia, Marine. "Développement d’une plateforme d’imagerie pour la caractérisation du transfert de masse dans les microsystèmes : application aux piles à combustible microfluidiques." Electronic Thesis or Diss., Paris, HESAM, 2024. http://www.theses.fr/2024HESAE007.
Повний текст джерелаFuel cells are devices that convert the energy stored in an oxidant and a reductant into electricity through electrochemical reactions. The most mature technology for this conversion is the proton exchange membrane fuel cell (PEMFC), but other alternative systems are emerging. In particular, microfluidic fuel cells (MFCs) have overcome the problems associated with the use of a membrane and gas storage by using liquid reagents at ambient temperature and pressure. The dimensions of the channel (1-5 mm wide and 20-100 µm high) allow co-laminar flow of the two liquid reagents and the electrolyte in a microchannel containing the electrodes. Therefore, PCMs do not need membrane to separate reactants and performances are driven by charge and mass transport.Experimental characterization of all the physical phenomena involved in PCMs is difficult because actuals methods are more based on electrochemical characterisation. These methods provide an overall characterisation of the system but they do not give precise information on the mass transport phenomena occurring in the channel. To investigate concentration field, numerical modelling is generally used. Numerical methods evaluate the impact of the geometry or the operating conditions on MFC performances. However, the use of these models relies on the knowledge of in-situ parameters such as the diffusion coefficient D and the reaction rate k0. In numerical studies, these parameters are generally approximated leading to a qualitative understanding of the transport phenomena. Furthermore, these numerical studies have not yet been verified by experimental studies.Thus, the main scientific challenge of this thesis is to develop quantitative imaging methods for characterising the concentration field in an operating PCM.To meet this need, an imaging platform based on spectroscopy and three characterisation methods were developed in this thesis. First of all, the work focused on developing an experimental setup based on spectroscopy to study the interdiffusion phenomenon. This study reports the estimation of the diffusion coefficient of potassium permanganate in formic acid. These solutions were specifically chosen because they are used in the PCM developed for the rest of the study.The imaging plateform was then adapted to study the in operando MFC 2D concentration field in steady-state. An analytical mass transfer model (advection/reaction/diffusion) coupled to the 2D concentration field was used to determine the reaction rate. As the concentration variations involved can be very small (few micro-moles), another characterisation technique was implemented to reduce the measurement noise.To improve the signal-to-noise ratio, a method based on modulation of the concentration field was developed. Demodulation of the signal significantly reduced the noise and concentrations of 20 µM were estimated. An analytical model describing the modulated field was established in order to implement an inverse method. The proposed method made it possible to recover the reaction rate associated with the concentration variation.To conclude, the proposed characterisation methods enable the estimation of the mass transfer and the reaction kinetics using the 2D concentration field from an in operando MFC. This technique has been applied to the MFC, but it can be transferred to a micrometric system in which diffusion-advection-reaction phenomena take place
Ghorbanian-Mashhadi, Setareh. "Microfluidic probe for direct write of soft cell scaffolds." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97140.
Повний текст джерелаLes cultures cellulaires tridimensionnelles (3D) reproduisent de manière plus fidèle la physiologie in vivo que les cultures bi-dimentionnelles (2D) faites enboîtes de Pétri, mais cet architecture 3D reste difficile à recréer in vitro. Différentes méthodes ont été développées pour imprimer des échafaudages cellulaires 3D. Des Bio-imprimeurs qui extrudent des matières biologiques contenant des cellules se sont, entre autres, montrés très prometteurs. Cependant, lors de l'extrusion, les forces de cisaillement appliquées sur les cellules sont telles qu'elles peuvent endommager ou même tuer les cellules. Nous avons conçu et fabriqué une nouvelle sonde microfluidique (Microfluidic Probe) et avons développé une méthode pour imprimer des fibres d'alginate contenant des cellules et ainsi construire un échafaudage cellulaire 3D. Ce système permet de produire et déposer des fibres d'alginate contenant des cellules avec moins de contrainte de cisaillement sur des cellules. La MFP est composée de deux principaux microcanaux qui se croisent, l'un apportant le précurseur d'alginate et l'autre l'agent gélifiant (chlorure de calcium). Le point debranchement est conçu de manière à entourer la solution d'alginate qui se solidifie en une fibre de diamètre variable d'environ 100 μm avant de sortir àl'embouchure de la MFP. Nous avons également incorporé un troisième microcanal qui sert au décolmatage, par lequel nous circulons de l'EDTA3 (éthylènediaminetétraacétate), un chélateur de calcium qui dissout l'alginate bloqué à l'intérieur de l'appareil. Au cours de ce projet de recherche, nous avons i) considéré et testé différents designs pour notre sonde, ii) examiné et utilisé différentes méthodes de fabrication, iii) mesuré et caractérisé la dimension des fibres en fonction du débit des liquides, iv) testé différents paramètres de la sonde, et v) testé des liquides pour réduire la formation d'ondulations pendant l'impression, vi) modifié la surface du verre pour optimiser l'adhésion des fibres d'alginate et vii) y avons déposé plusieurs couches de fibres. Finalement, nous avons démontré que des cellules ensemencées directement dans l'échafaudage 3D avec notre sonde pouvaient survivre et proliférer.
Qasaimeh, Mohammad Ameen. "Microfluidic quadrupoles and their applications in cell chemotaxis studies." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121369.
Повний текст джерелаLes systèmes microfluidiques ouvrent de nouvelles possibilités pour la recherche in vitro en biologie cellulaire, notamment par leur capacité à contrôler le microenvironnement cellulaire à des échelles spatiotemporelles physiologiquement pertinentes. En ce sens, plusieurs systèmes microfluidiques ont été introduits pour la génération de gradients de concentration et ont été utilisés pour des études sur la chimiotaxie cellulaire. Cependant, ces méthodes font face à un compromis entre le contrôle temporel du gradient et la minimisation de la contrainte de cisaillement appliqué sur les cellules. De plus, elles requièrent souvent de mettre les cellules en culture dans des microcanaux. Dans cette dissertation, nous démontrons la première utilisation des quadripôles microfluidiques (QM) dans un contexte expérimental. Nous présentons deux QM avec des configurations différentes : un QM latéral associé à un point de stagnation en son centre, et un QM linéaire avec une zone de stagnation reliée par deux flux hydrodynamiquement confinés. Nous présentons aussi des gradients de concentration « flottants » de produits biochimiques réalisés à l'aide de QM en injectant un soluté à travers un des pôles. Les gradients mobiles sont réglables, associés à une contrainte de cisaillement minimale, peuvent être appliqués à n'importe quel substrat plat dans un système microfluidique sans canal, et peuvent être rapidement ajustés et déplacés. Nous avons utilisé le QM latéral pour appliquer des gradients de concentration mobiles de l'Interleukin-8 à des neutrophiles humains dans une plaque de culture, et avons développé de nouveaux tests pour mesurer la chimiotaxie avec des gradients fixes et mobiles. De plus, nous avons observé la dynamique des neutrophiles en temps réel durant l'adhésion, la polarisation, et la migration, et avons démontré que les neutrophiles migrent sur de plus longues distances lorsqu'ils suivent des gradients mobiles plutôt que des gradients fixes.Les travaux présentés dans cette dissertation ouvrent un nouveau champ de recherche dans le domaine des multipôles fluidiques et des gradients mobiles, ainsi que leur application dans les sciences biomédicales. De plus, ces travaux sont une base pour le développement de nouveaux tests biologiques et mesurant la chiomiotaxie utilisant des gradients de concentration mobiles. Ces tests peuvent ensuite être combinés à des études pharmacologiques pour aider à mieux comprendre les mécanismes de polarisation, migration, et désensibilisation cellulaire.
Mirzaei, Maryam. "Poduction of human Interleukin-7 in insect cells and fabrication of microfluidic systems for high throughput cell screening." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66846.
Повний текст джерелаLa biotechnologie est définie comme l'utilisation de techniques biologiques pour développer ou fabriquer un produit. Le développement et l'optimisation de systèmes dans la biotechnologie ont été témoins d'avances extraordinaires pendant les dernières dix années. Ils peuvent être davantage améliorés par la combinaison avec la micro/nanotechnology, qui nous permet de miniaturiser des artifices à la microéchelle qui cause une analyse rapide, efficace et à un bon prix en utilisant les systèmes microfluidiques. Les systèmes microfluidiques offrent une haute parallélisassion et un haut débit de criblage. Cette thèse a pour but de développer la biotechnologie dans deux régions principales : (i) la préparation d'un système d'expression convenable pour la production d'Interleukine-7 humaine (hIL-7) dans les cellules d'insectes et (ii) la fabrication de systèmes microfluidiques, intégrant la biotechnologie, pour le criblage à haut débit de cellules en utilisant des cellules de levure et d'insecte.L'IL-7 humaine a des propriétés activatrices du système immunitaire, qui le font un candidat idéal à l'immunothérapie dans une variété de cas cliniques. Actuellement, il n'y a aucune méthode convenable et peu coûteuse pour produire hIL-7Nous présentons la production de hIL-7 dans les cellules d'insectes pour la première fois. Nous avons utilisé un système de vecteurs d'expression baculovirus (BEVS) et un système non-lytique pour produire hIL-7 dans des cellules d'insectes. En plus nous avons enquêté la production grande échelle de hIL-7 en utilisant différents bioréacteurs.Les cellules d'insectes produites génèrent l'hIL-7 à différents taux. Les méthodes existantes pour choisir les cellules extrêmement productives sont très lentes avec une faible capacité de traitement en plus d'exiger de l'équipement spécifique pour l'opération, aussi bien que de grandes quantités de produits c
Jones, A.-Andrew D. III (Akhenaton-Andrew Dhafir). "Design of a microfluidic device for the analysis of biofilm behavior in a microbial fuel cell." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/88279.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 83-90).
This thesis presents design, manufacturing, testing, and modeling of a laminar-flow microbial fuel cell. Novel means were developed to use graphite and other bulk-scale materials in a microscale device without loosing any properties of the bulk material. Micro-milling techniques were optimized for use on acrylic to achieve surface roughness averages as low as Ra = 100nm for a 55 [mu]m deep cut. Power densities as high as 0.4mW · m⁻², (28mV at open circuit) in the first ever polarization curve for a laminar-flow microbial fuel cell. A model was developed for biofilm behavior incorporating shear and pore pressure as mechanisms for biofilm loss. The model agrees with experimental observations on fluid flow through biofilms, biofilm structure, and other biofilm loss events.
by A-Andrew D. Jones, III.
S.M.
Книги з теми "Microfluidic fuell cell"
Kjeang, Erik. Microfluidic Fuel Cells and Batteries. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1.
Повний текст джерелаKjeang, Erik. Microfluidic Fuel Cells and Batteries. Springer London, Limited, 2014.
Знайти повний текст джерелаKjeang, Erik. Microfluidic Fuel Cells and Batteries. Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Microfluidic fuell cell"
Kjeang, Erik, and Jin Wook Lee. "Microfluidic Fuel Cells." In Encyclopedia of Microfluidics and Nanofluidics, 1944–53. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_935.
Повний текст джерелаKjeang, Erik, and Jin Wook Lee. "Microfluidic Fuel Cells." In Encyclopedia of Microfluidics and Nanofluidics, 1–11. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_935-5.
Повний текст джерелаGoel, Sanket. "Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy." In Microbial Fuel Cell, 229–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66793-5_12.
Повний текст джерелаShaegh, Seyed Ali Mousavi, and Nam-Trung Nguyen. "Materials for Microfluidic Fuel Cells." In Materials for Low-Temperature Fuel Cells, 185–214. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527644308.ch09.
Повний текст джерелаKjeang, Erik. "Introduction." In Microfluidic Fuel Cells and Batteries, 1–5. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_1.
Повний текст джерелаKjeang, Erik. "Theory." In Microfluidic Fuel Cells and Batteries, 7–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_2.
Повний текст джерелаKjeang, Erik. "Fabrication and Testing." In Microfluidic Fuel Cells and Batteries, 17–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_3.
Повний текст джерелаKjeang, Erik. "Devices." In Microfluidic Fuel Cells and Batteries, 25–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_4.
Повний текст джерелаKjeang, Erik. "Modeling." In Microfluidic Fuel Cells and Batteries, 51–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_5.
Повний текст джерелаKjeang, Erik. "Research Trends and Directions." In Microfluidic Fuel Cells and Batteries, 57–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06346-1_6.
Повний текст джерелаТези доповідей конференцій з теми "Microfluidic fuell cell"
Brushett, Fikile R., Adam S. Hollinger, Larry J. Markoski, and Paul J. A. Kenis. "Microfluidic Fuel Cells as Microscale Power Sources and Analytical Platforms." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18007.
Повний текст джерелаWeinmu¨ller, Christian, Nicole R. Bieri, and Dimos Poulikakos. "On Two Phase Flow Regimes in a Microscale Direct Methanol Fuel Cell." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62193.
Повний текст джерелаKjeang, Erik, Ned Djilali, and David Sinton. "Planar and Three-Dimensional Microfluidic Fuel Cell Architectures." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42524.
Повний текст джерелаLee, Jin wook, Deepak Krishnamurthy, Peter Hsiao, and Erik Kjeang. "A Parametric Study on Microfluidic Vanadium Fuel Cells." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54395.
Повний текст джерелаJones, A.-Andrew D., and Cullen R. Buie. "A Microfluidic Platform for Evaluating Anode Substrates for Microbial Fuel Cells." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87781.
Повний текст джерелаFuerth, D., and A. Bazylak. "Carbon Based Electrodes for Upscaling Microfluidic Fuel Cells." In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91043.
Повний текст джерелаSalemmilani, Reza, and Barbaros Cetin. "Spiral Microfluidics Device for Continuous Flow PCR." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17305.
Повний текст джерелаLee, Jin Wook, and Erik Kjeang. "Performance Improvements by Embedded Thin Film Current Collectors for Microfluidic Fuel Cells With Porous Electrodes." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73162.
Повний текст джерелаSprague, Isaac B., and Prashanta Dutta. "Flow Through Nanoporous Electrodes in a Microfluidic Fuel Cell." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85769.
Повний текст джерелаBazylak, Aimy, David Sinton, and Ned Djilali. "Membraneless Liquid-Fuel Microfluidic Fuel Cells: A Computational Study." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59341.
Повний текст джерелаЗвіти організацій з теми "Microfluidic fuell cell"
Abruna, Hector Daniel. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089301.
Повний текст джерела