Добірка наукової літератури з теми "Microcapsule suspension"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microcapsule suspension".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microcapsule suspension"
Xiao, Ke Feng, Zhi Hui Hao, Lei Lei Wang, and Xiu Guang Feng. "Optimization of Formulations of 1% Abamectin Microcapsule Suspensions with Properties of Biochemical Materials." Advanced Materials Research 643 (January 2013): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amr.643.17.
Повний текст джерелаМаляр, И. В., О. И. Гуслякова, Д. М. Митин та С. В. Стецюра. "Управляемая электрическим полем адсорбция микрокапсул при создании планарных структур". Письма в журнал технической физики 44, № 4 (2018): 9. http://dx.doi.org/10.21883/pjtf.2018.04.45633.17039.
Повний текст джерелаSugita, Purwantiningsih, Suminar Setiati Achmadi, and Yuyu Yundhana. "Perilaku Disolusi Ketoprofen Tersalut Gel Kitosan-Karboksimetilselulosa (CMC)." Jurnal Natur Indonesia 13, no. 1 (November 21, 2012): 21. http://dx.doi.org/10.31258/jnat.13.1.21-26.
Повний текст джерелаSugita, Purwantiningsih, Bambang Srijanto, Budi Arifin, and Ellin Vina Setyowati. "STABILITY OF KETOPROFEN COATED BY CHITOSAN-GUAR GUM GEL." Indonesian Journal of Chemistry 9, no. 3 (June 24, 2010): 391–97. http://dx.doi.org/10.22146/ijc.21504.
Повний текст джерелаZheng, Yu, Xiaoming Li, Wenjie Zhang, Kuan Wang, Feng Han, Xiaoge Li, and Yuqiang Zhao. "Experimental Study of Phase Change Microcapsule Suspensions Applied in BIPV Construction." Sustainability 14, no. 17 (August 30, 2022): 10819. http://dx.doi.org/10.3390/su141710819.
Повний текст джерелаOotaki, Y., K. Kamohara, D. J. Horvath, A. Massiello, L. A. R. Golding, B. Lukic, W. J. Weiss, O. Maruyama, and K. Fukamachi. "Hemolysis Evaluation of Centrifugal Pumps Using Microcapsule Suspension." International Journal of Artificial Organs 29, no. 12 (December 2006): 1185–89. http://dx.doi.org/10.1177/039139880602901212.
Повний текст джерелаLu, Juan, Danhua Zhu, and Lanjuan Li. "Evaluation of hydromechanical and functional properties of diversion-type microcapsule-suspension bioreactor for bioartificial liver." International Journal of Artificial Organs 45, no. 3 (January 16, 2022): 309–21. http://dx.doi.org/10.1177/03913988211066502.
Повний текст джерелаMARUYAMA, Osamu, Takashi YAMANE, Masahiro NISHIDA, Tatsuo TSUTSUI, Tomoaki JIKUYA, and Toru Masuzawa. "Microcapsule Suspension for Hemolysis Evaluation of Centrifugal Blood Pumps." Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2002.14 (2002): 195–96. http://dx.doi.org/10.1299/jsmebio.2002.14.195.
Повний текст джерелаSamran, Samran, Dalimunthe Dalimunthe, Dalimunthe Dalimunthe, and Dalimunthe Dalimunthe. "THE FORMULATION OF DRY CURCUMA (CURCUMA XANTHORRHIZA ROXB.) EXTRACT MICROCAPSULES BY SPRAY WET MICROENCAPSULATION TECHNIQUES." Asian Journal of Pharmaceutical and Clinical Research 11, no. 3 (March 1, 2018): 226. http://dx.doi.org/10.22159/ajpcr.2018.v11i3.22608.
Повний текст джерелаKim, Sunyoung, Bo-Hyun Kim, Myongkeon Oh, Dong Hyuk Park, and Sunjong Lee. "Repeatable Crack Self-Healing by Photochemical [2 + 2] Cycloaddition of TCE-co-DCE Monomers Enclosed in Homopolymer Microcapsules." Polymers 11, no. 1 (January 9, 2019): 104. http://dx.doi.org/10.3390/polym11010104.
Повний текст джерелаДисертації з теми "Microcapsule suspension"
Boubehziz, Toufik. "Simulation en quasi temps réel d’une capsule sous écoulement grâce à des Modèles d’Ordre Réduit." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2678.
Повний текст джерелаThe motion of a liquid-filled microcapsule flowing in a microchannel is a complex problem tosimulate. Two innovative reduced-order data-driven models are proposed to replace the Fluid Structure Interaction (FSI) model using a collected database from high-fidelity simulations. The objective is to replace the existing Full Order Model (FOM) with a fast-simulation model that can simulate the capsule deformation in flow at a low cost in terms of time and calculation. The first model consists in building from a space-time-parameter datacube a reduced model to simulate the deformation of the microcapsule for any admissible configuration of parameters. Time evolution of the capsule deformation is treated by identifying the nonlinear low-order manifold of the reduced variables. Then, manifold learning is applied using the Diffuse Approximation (DA) method to predict capsule deformation for a query configuration of parameters and a chosen time discretization. The second model is based on rewriting the FSI model under the form of a reduced-order dynamic system. In this latter, the spectral displacement and velocity coefficients are related through a dynamic operator to be identified. To determine this operator, we suggest the use of a dynamic mode decomposition approach. Numerical validations prove the reliability and stability of the two new models compared to the high order model. A software application has been developed to explore the capsule deformation evolution for any couple of admissible parameters
JUNIOR, JOSE RONALDO VIMIEIRO. "THREE-DIMENSIONAL VISUALIZATION OF OIL DISPLACEMENT BY FLEXIBLE MICROCAPSULES SUSPENSIONS IN POROUS MEDIA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31834@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Em um mundo globalizado, a demanda por energia está sempre crescendo. Uma vez que a indústria de óleo e gás é responsável pela entrega da maior parte desta demanda, isso faz dos hidrocarbonetos componentes cada vez mais importantes no mercado mundial. Entretanto tais recursos são finitos, portanto, uma exploração consciente, buscando sempre o máximo desempenho se faz necessária. Como os reservatórios de petróleo, logo após a aplicação das técnicas de recuperação primária e secundária, geralmente ainda possuem cerca de 65 por cento do volume de óleo originalmente contido em seus poros, métodos que visam a redução dessa porcentagem estão ganhando um papel cada vez mais importante na indústria energética. Nesse contexto, esse trabalho apresenta um micromodelo tridimensional representativo de um meio poroso que será utilizado para a análise do escoamento de fluidos na escala de poro. A microscopia confocal será adotada para visualizar os diferentes fenômenos que ocorrem em microescala, permitindo a obtenção de informações específicas sobre a dinâmica dos gânglios de óleo, em relação a sua formação, mobilização e aprisionamento, e assim, ao final do experimento quantificar a saturação residual de óleo em diferentes condições de escoamento. Os resultados obtidos mostram que o uso das suspensões de microcápsulas flexíveis como agente de controle de mobilidade, modifica a distribuição dos fluidos no meio poroso, o que melhora a eficiência de deslocamento do fluido deslocante na escala de poro, e consequentemente diminui a saturação de óleo residual.
In a globalized world, the demand for energy is always growing. Since the oil and gas industry is responsible for delivering most of this demand, this makes hydrocarbon components increasingly important in the worldwide economy. However, such resources are finite, so a conscious exploration always seeking the maximum performance is required. As oil reservoirs after the application of primary and secondary recovery techniques usually still have about 65 percent of the original oil volume contained in their pores, methods that aim its reduction are gaining an increasingly important role in the energy industry. In this context, this work presents a three-dimensional micromodel representative of a porous medium that is used for pore-scale flow analysis. Confocal microscopy is used to visualize the microscale phenomena, leading to specific information about ganglia dynamics, related to its formation, mobilization and entrapment. The residual oil saturation, an important value to measure the amount of oil produced in a given reservoir is determined for different flow conditions. The results show that the suspensions composed by flexible microcapsules could be used as a mobility control agent, since it modifies the fluid distribution in the porous media, improving the pore-scale displacement efficiency, and consequently reducing the residual oil saturation.
Machado, Jaison Carlosso. "Desenvolvimento e controle de qualidade de micropartículas poliméricas contendo praziquantel para o tratamento pediátrico da esquistossomose." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/181180.
Повний текст джерелаSchistosomiasis is a parasitic disease acute and chronic caused by blood worms (nematodes worms) of the genus Schistosoma. Man acquires schistosomiasis through the active penetration of the worms in skin. The importance of treatment of this disease is not only the fact of curing the disease or decreases the parasite load of patients, well as prevent progression to more severe forms. For the treatment of schistosomiasis praziquantel is the drug of choice, this is due to its wide spectrum, its efficacy, safety and the relation cost / treatment. The single dosage form available in Brazil is tablet at a dose of 600 mg, which can be subdivided into four parts of 150 mg to facilitate dose adjustment. However when the subdivision of the tablets occurs the disruption of the coating. This fact provides a drug exposure and consequently of its bitter taste. This characteristic complicates the administration of the drug mainly in children, affecting the treatment and control of disease. An alternative for this problem is the development of microparticulate polymeric systems which associated with the drug would prevent direct contact with the taste buds and thus promote an improvement in palatability. For this was used a modified technique interfacial deposition of preformed polymer followed by spray drying. Three polymer matrices with different release characteristics have been used, Eudragit RL 100 – time dependent release, and Eudragit E100 and L30D-55 – pH dependent release. Furthermore, two types of drug carrier systems have been prepared, polymeric microspheres and microcapsules. These systems obtained were evaluated and characterized in order to select the best proposal formulation aimed at masking the taste of the drug. According to the results we selected a system comprising microcapsules formed from L30D-55 polymer. From then was inserted into this system in the pharmaceutical form, powder for oral suspension, where different proposals formulations containing two auxiliary sweeteners, aspartame and saccharin, separately, and their respective placebos were evaluated in an in vitro method for determining the taste, the electronic tongue. The different formulations tested presented excellent ability to mask the unpleasant taste of the drug and thus present an excellent alternative for increasing adherence to therapy, especially for children, because of the ease of administration, according on dose adjustment of body mass and the much more palatable to children's taste.
Yang, Wen-hsin, and 楊雯欣. "Preparation of Phase Change Materials Microcapsules by Suspension Polymerization." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/44704131551489191321.
Повний текст джерела國立中央大學
化學工程與材料工程研究所
95
Encapsulation of phase change materials (PCM), n-octadecane melted at 28 oC, by using acrylic series networks as the shell materials have been developed. The effects of the various process parameters including the concentration of initiator, the concentration of EGDMA, the polymerization temperature, the reaction time, the weight ratio of core/shell, the weight fraction of MAA, the weight fraction of MA, the weight fraction of SiO2 and the different pH of water were investigated. The influence of above parameters on diameters, morphologies, thermal energy storage/release capacities and thermal stabilities of the microcapsules were characterized by scanning electron microscope (SEM), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The results showed that the diameters of PCMs microcapsules were in the range of 0.5-3.0 μm. Latent heat of PCM microcapsules were above 90 J/g. The best core/shell weight ratio was 1/1. The efficiency of encapsulation was improved by increasing initiator concentration, polymerization temperature, reaction time in higher temperature and EGDMA concentration. In addition, the efficiency of encapsulation was also promoted by introducing the suitable amount of MAA, MA and TEOS in the system.
Частини книг з теми "Microcapsule suspension"
Pečar, Borut, Slavko Amon, Matej Možek, and Dejan Križaj. "Impedance Spectroscopy of Suspensions with Paraffin Microcapsules." In IFMBE Proceedings, 1254–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23508-5_324.
Повний текст джерелаТези доповідей конференцій з теми "Microcapsule suspension"
Cha, J. M., D. G. Won, E. H. Jeong, T. Arakawa, S. Shoji, K. C. Kim, J. S. Boo, and J. S. Go. "Application of In-Channel Micro Chemical Plant to the Production of Functional Microcapsules." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41795.
Повний текст джерелаChalhub O. S. Ribeiro, Raphael. "3D Visualization of Oil Displacement in Porous Media by the Injection of Microcapsule Suspension using Confocal Microscopy." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/204265-stu.
Повний текст джерелаMolino, Jay J., Hirofumi Daiguji, and Fumio Takemura. "On the Kinetics of Formation of Hollow Poly(Lactic Acid) Microcapsules Fabricated From Microbubble Templates." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73257.
Повний текст джерелаFarid, Mohammed, Michael Smith, Rami Sabbah, and Said Al Hallaj. "Miniaturized Refrigeration System With Advanced PCM Micro Encapsulation Technology." In ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30209.
Повний текст джерелаErmakov, A. V., M. V. Lomova, V. P. Kim, A. S. Chumakov, I. A. Gorbachev, D. A. Gorin, and E. G. Glukhovskoy. "Processes in suspensions of nanocomposite microcapsules exposed to external electric fields." In Saratov Fall Meeting 2015, edited by Elina A. Genina, Valery V. Tuchin, Vladimir L. Derbov, Dmitry E. Postnov, Igor V. Meglinski, Kirill V. Larin, and Alexander B. Pravdin. SPIE, 2016. http://dx.doi.org/10.1117/12.2229569.
Повний текст джерелаRu Qiao, Xiao Li Zhang, Yan Li, Ri Qiu, and Young Soo Kang. "Fabrication of functional microcapsules containing two-phase suspensions for microparticle-based displays." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388952.
Повний текст джерелаCARVALHO, Marcio, Debora Freitas do Nascimento, and Jose Ronaldo Vimieiro Junior. "Three-dimensional Visualization of Oil Displacement by Flexible Microcapsules Suspensions in Porous Media." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0989.
Повний текст джерелаAlvarado, Jorge L., Charles Marsh, Curt Thies, Guillermo Soriano, and Paritosh Garg. "Characterization of Thermal Properties and Heat Transfer Behavior of Microencapsulated Phase Change Material Slurry and Multiwall Carbon Nanotubes in Aqueous Suspension." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41954.
Повний текст джерела