Добірка наукової літератури з теми "Microbunch"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microbunch".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Microbunch"

1

Adli, Erik, and Patric Muggli. "Proton-Beam-Driven Plasma Acceleration." Reviews of Accelerator Science and Technology 09 (January 2016): 85–104. http://dx.doi.org/10.1142/s1793626816300048.

Повний текст джерела
Анотація:
We describe the main ideas, promises and challenges related to proton-driven plasma wakefield acceleration. Existing high-energy proton beams have the potential to accelerate electron beams to the TeV scale in a single plasma stage. In order to drive a wake effectively the available beams must be either highly compressed or microbunched. The self-modulation instability has been suggested as a way to microbunch the proton beams. The AWAKE project at CERN is currently the only planned proton-driven plasma acceleration experiment. A self-modulated CERN SPS beam will be used to drive a plasma wake. We describe the design choices and experimental setup for AWAKE, and discuss briefly the short-term objectives as well as longer-term ideas for the project.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schächter, Levi, and Wayne D. Kimura. "Quasi-monoenergetic ultrashort microbunch electron source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 875 (December 2017): 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shields, W., R. Bartolini, G. Boorman, P. Karataev, A. Lyapin, J. Puntree, and G. Rehm. "Microbunch Instability Observations from a THz Detector at Diamond Light Source." Journal of Physics: Conference Series 357 (May 3, 2012): 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Z., and T. Shaftan. "Impact of beam energy modulation on rf zero-phasing microbunch measurements." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (August 2004): 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner, and Nikolai A. Yampolsky. "Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability." IEEE Transactions on Nuclear Science 63, no. 2 (April 2016): 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petzoldt, J., K. E. Roemer, W. Enghardt, F. Fiedler, C. Golnik, F. Hueso-González, S. Helmbrecht, et al. "Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility." Physics in Medicine and Biology 61, no. 6 (March 4, 2016): 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaufmann, Pierre, and Jean-Pierre Raulin. "Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves?" Physics of Plasmas 13, no. 7 (July 2006): 070701. http://dx.doi.org/10.1063/1.2244526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles, and Nikolai Yampolsky. "High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability." Instruments 3, no. 4 (September 29, 2019): 52. http://dx.doi.org/10.3390/instruments3040052.

Повний текст джерела
Анотація:
A future capability in dynamic mesoscale materials science is needed to study the limitations of materials under irreversible and extreme conditions, where these limitations are caused by nonuniformities and defects in the mesoscale. This capability gap could potentially be closed with an X-ray free-electron laser (XFEL), producing 5 × 1010 photons with an energy of 42 keV, known as the Matter–Radiation Interactions in Extremes (MaRIE) XFEL. Over the last few years, researchers at the Los Alamos National Laboratory have developed a preconceptual design for a MaRIE-class XFEL based on existing high-brightness beam technologies, including superconducting L-band cryomodules. However, the performance of a MaRIE-class XFEL can be improved and the risk of its operation reduced by investing in emerging high-brightness beam technologies, such as the development of high-gradient normal conducting radio frequency (RF) structures. Additionally, an alternative XFEL architecture, which generates a series of high-current microbunches instead of a single bunch with uniformly high current along it, may suppress the most important emittance degradation effects in the accelerator and in the XFEL undulator. In this paper, we describe the needed dynamic mesoscale materials science capability, a MaRIE-class XFEL, and the proposed microbunched XFEL accelerator architecture in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seo, Yoonho, and Wonhyung Lee. "Stimulated Superradiance Emitted from Periodic Microbunches of Electrons." Japanese Journal of Applied Physics 49, no. 11 (November 22, 2010): 116402. http://dx.doi.org/10.1143/jjap.49.116402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lumpkin, A. H. "Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics." International Journal of Modern Physics A 34, no. 34 (December 10, 2019): 1943013. http://dx.doi.org/10.1142/s0217751x19430139.

Повний текст джерела
Анотація:
Application of coherent optical transition radiation (COTR) diagnostics to compact accelerators has been demonstrated for the laser-driven plasma accelerator case recently. It is proposed that such diagnostics for beam size, beam divergence, microbunching fraction, spectral content, and bunch length would be useful before and after any subsequent acceleration in crystals or nanostructures. In addition, there are indications that under some scenarios a microbunched beam could resonantly excite wake fields in nanostructures that might lead to an increased acceleration gradient.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Microbunch"

1

KOSTARA, ELEFTHERIA. "Full-beam PET monitoring in hadron therapy and related coincidence logic." Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1013502.

Повний текст джерела
Анотація:
La terapia adronica è una tecnica che usa protoni e ioni positivi per trattare il cancro. Essa permette di applicare distribuzioni di dose sul tessuto tumorale con precisioni irraggiungibili attraverso altre tecniche, come per esempio quelle radioterapiche convenzionali. Tale precisione fa sì che la tossicità sul tessuto sano circostante venga ridotta al minimo. Al fine di sfruttare a pieno le potenzialità della terapia adronica, è necessario disporre di una tecnica di monitoraggio in-vivo, che permetta di ridurre l'incertezza di range delle particelle e quindi i margini di sicurezza del trattamento. La tomografia ad emissione positronica (PET) è considerata una delle tecniche di imaging non invasivo in-vivo più mature per il monitoraggio del range nei trattamenti radioterapici. Quando l'acquisizione dei dati PET viene eseguita durante l'irraggiamento, il monitoraggio viene indicato come in-beam. Il problema del monitoraggio in-beam è che i dati acquisiti durante l'irraggiamento (in-spill) sono molto rumorosi mentre quelli acquisiti nelle pause (inter-spill) lo sono molto meno. Durante l'inter-spill, tuttavia, il segnale è anche molto debole perché molti degli emettitori β+ non sono stati ancora prodotti. Il rumore di fondo durante l'in-spill è dovuto alla forte radiazione rivelata mentre il fascio colpisce il tessuto bersaglio. Tale radiazione aumenta la probabilità di rivelazione di coincidenze random, a loro volta fonte di rumore nell'imaging PET. La radiazione di fondo può essere causata dal decadimento di emettitori β+ con vita media nell'ordine dei millisecondi, da raggi γ prodotti immediati (prompt) di reazioni nucleari non correlate al decadimento β+, da produzioni di coppie positrone-elettrone o da neutroni. Gli eventi random non possono essere discriminati dai decadimenti β+ utili, e non possono essere corretti con le tecniche convenzionali di stima delle coincidenze random a causa della mancanza di correlazione temporale tra i decadimenti β+ e i prodotti nucleari immediati. Allo stato dell'arte sono stati proposti due metodi per separare le coincidenze in-spill che si verificano durante la fase di estrazione dall'acceleratore da quelle che si verificano durante la fase di accelerazione. Le prime sono naturalmente più rumorose delle seconde, in quanto durante la fase di accelerazione sono assenti gli eventi prompt. Entrambi i metodi utilizzano informazioni sulla microstruttura del fascio da fonti esterne. Nel primo metodo, il segnale RF dall'acceleratore viene utilizzato per generare un segnale di gate all'interno del sistema di acquisizione PET. Nel secondo, il segnale di gate viene prodotto da un rivelatore di particelle inserito nel percorso del fascio prima del bersaglio. In questa tesi, le fasi della microstruttura del fascio vengono rivelate direttamente analizzando la distribuzione temporale degli eventi PET acquisiti in-spill. A tal fine, un nuovo algoritmo è stato sviluppato e validato in simulazione e sperimentalmente per il rilevamento della microstruttura temporale del fascio. I risultati di simulazione mostrano che e possibile implementare l'algoritmo su un FPGA e sfruttare le informazioni da esso prodotte per discriminare le coincidenze avvenute durante le fasi di estrazione da quelle avvenute durante le fasi di accelerazione. La distribuzione spaziale 3D ei profili di attività 1D degli eventi di coincidenza sono ricavati con un algoritmo di ricostruzione tomografica ML-EM per i dati interspill e in-spill. Il rumore di background è visibile nelle immagini ricostruite da dati sperimentali in-spill. Dopo aver filtrato i dati in-spill, scartando gli eventi di coincidenza che si verificano durante la fase di estrazione, si dimostra che l'immagine ricostruita migliora significativamente. Nel profilo di attività 1D si osserva una forte diminuzione della baseline del segnale, corrispondente al contributo delle coincidenze random. In particolare, il rapporto fra il picco di attività nel target diviso per il livello di fondo migliora di un fattore 4.8. Questa attività è stata sviluppata all'interno dei progetti INSIDE e INFIERI (FP7-PEOPLE-2012-ITN project number 317446), finanziati rispettivamente da MIUR e EU.
Hadron therapy is a widely employed technique that uses protons and heavy ions to treat cancer. It has the potential of delivering highly conformal dose distributions to the tumor volume while sparing the surrounding healthy tissue, thanks to the dose distribution characterized by the Bragg peak at the end of charged particles range. In order to exploit the full potential of hadron therapy, an in vivo monitoring technique is desirable in order to reduce the uncertainties and therefore the treatment safety margins. Positron emission tomography (PET) is considered one of the most promising in vivo non-invasive imaging techniques for monitoring the particle range in radiation treatments. One of the data acquisition methods is the so-called in-beam which is performed during irradiation at the treatment site. The problem of in-beam monitoring is that in-spill data are much noisier while inter-spill data for accelerators with high duty cycles, are much less due to the small number of acquired decays. During the spills, the noisy background is due to the presence of strong beam-induced radiation that increases the random coincidence rates. This background might originate from the decay of β+ emitters with half-lives in millisecond range and high endpoint energies, by γ-rays following nuclear reactions not related to β+ decay or by pair productions and neutrons. The noisy events cannot be separated from the usable decays of long-lived β+ emitters and cannot be corrected with standard random coincidence correction techniques because of the time-correlation of the beam-induced background with the ion beam microstructure. Until now, only two methods exist for identifying coincident events that occur during the microbunches in the spills. Both of them use information about the beam microstructure from external sources. In the first method, the RF signal from the accelerator is used externally and the data processing is done offline. In the second one, a fast particle detector placed in the beam path before the target is used and the process is triggered only when a particle arrives. With this thesis, the correlation between the beam microstructure and the RF of the synchrotron is confirmed by analyzing the events in the spills without the need of an external signal. An algorithm for the calculation of the period of the beam microstructure is developed. Small differences in the period between the spills impose the separate analysis for every spill. The period is calculated with 4 digits precision in nanosecond time scale, making a significant difference to the representation of the microbunch. In the end, the firmware related to the algorithm for the calculation of the period of the beam microstructure is developed using only the events in the spills. The simulation results show that it is possible the algorithm to be implemented in an FPGA and provide information about the period of the beam microstructure in real time. Moreover, a coincidence sorter is developed in order to provide real time coincidence detection. The simulation results for the two different architectures of the sorter that uses comparators with two and three inputs, are presented. The 3D spatial distribution and the 1D activity profiles of the coincidence events are constructed for inter-spill and in-spill data. The strong radiation background is visible in the reconstructed images, especially before the entrance surface of the phantom and at the end of the activity range with a tail. After filtering out the in-spill data by discarding the coincidence events that occur in a sub-interval of the microbunch, it is shown that the reconstructed image improves severely. In the 1D activity profile, one can observe that the number of coincidence events before the entrance surface of the phantom decreases significantly. This might happen because neutrons are discarded since they are detected a few ns later after the interaction of the beam with the nuclei. Results show that the signal to noise ratio (SNR), defined as the activity peak in the phantom divided by the background level, is improved by a factor of about 4.8 with respect to the in-spill signal. In the end, it is important to mention that this activity has been developed within the projects INSIDE and INFIERI (FP7-PEOPLE-2012-ITN project number 317446) funded by MIUR and EU respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sears, Christopher M. S. "Production, characterization and acceleration of optical microbunches /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Microbunch"

1

Huang, Z., and T. Shaftan. "Impact of beam energy modulation on rf zero-phasing microbunch measurements." In Free Electron Lasers 2003, 345–49. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-444-51727-2.50079-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reiche, S., and J. B. Rosenzweig. "A Fast Method to Estimate the Gain of the Microbunch Instability in a Bunch Compressor." In Free Electron Lasers 2002, II—51—II—52. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-444-51417-2.50157-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lumpkin, A. H., M. Erdmann, J. W. Lewellen, Y. C. Chae, R. J. Dejus, P. Den Hartog, Y. Li, S. V. Milton, D. W. Rule, and G. Wiemerslage. "First observations of COTR due to a microbunched beam in the VUV at 157nm⋆⋆Work supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38." In Free Electron Lasers 2003, 194–98. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-444-51727-2.50047-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Microbunch"

1

Schächter, Levi, Wayne D. Kimura, and Ilan Ben-Zvi. "Ultrashort microbunch electron source." In ADVANCED ACCELERATOR CONCEPTS 2016: 16th Advanced Accelerator Concepts Workshop. Author(s), 2016. http://dx.doi.org/10.1063/1.4965670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

He, P., Y. Liu, D. B. Cline, M. Babzien, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, et al. "STELLA experiment—microbunch diagnostic." In The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stupakov, G. V. "Effect of centrifugal transverse wakefield for microbunch in bend." In The sixteenth advanced international committee on future accelerators beam dynamics workshop on nonlinear and collective phenomena in beam physics. AIP, 1999. http://dx.doi.org/10.1063/1.58423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Amatuni, A. Ts, and I. V. Pogorelsky. "Microbunch temporal diagnostic by Compton scattering in interfering laser beams." In The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rule, D. W., R. B. Fiorito, and W. D. Kimura. "The effect of detector bandwidth on microbunch length measurements made with coherent transition radiation." In The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Watanabe, Takahiro. "Angle and Length Measurements of Microbunches." In ADVANCED ACCELERATOR CONCEPTS: Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sears, Christopher M. S. "IFEL-Chicane Based Microbuncher at 800nm." In ADVANCED ACCELERATOR CONCEPTS: Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lumpkin, A. H. "Applications with Intense OTR Images II: Microbunched Electron Beams." In ADVANCED ACCELERATOR CONCEPTS: Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gatti, Giancarlo, Alan Cook, James Rosenzweig, and Rodion Tikhoplav. "Coherent cherenkov radiation as a temporal diagnostic for microbunched beams." In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muggli, P., E. Kallos, V. E. Yakimenko, M. Babzien, K. P. Kusche, and W. D. Kimura. "Generation and characterization of microbunched beams with a wire mesh mask." In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Microbunch"

1

Stupakov, G. Microbunch Instability Theory and Simulations. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Derbenev, Ya S., and V. D. Shiltsev. Transverse effects of microbunch radiative interaction. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/251656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Derbenev, Y. Microbunch Emittance Growth Due to Radiative Interaction. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/813248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stupakov, Gennady. Effect of Centrifugal Transverse Wakefield for Microbunch in Bend. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/9982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Zhirong. Impact of Beam Energy Modulation on rf Zero-Phasing Microbunch Measurements. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/815284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sears, C. IFEL-Chicane Based Microbuncher at 800nm. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sears, Christopher M. S. Production, Characterization, and Acceleration of Optical Microbunches. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/933014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baxevanis, Panagiotis. 3D Theoretical and simulation tools for microbunched cooling. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії