Добірка наукової літератури з теми "Micro-mirror array"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Micro-mirror array".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Micro-mirror array"

1

Poyyathuruthy Bruno, Binal, Robert Schütze, Ruediger Grunwald, and Ulrike Wallrabe. "Micro Fresnel mirror array with individual mirror control." Smart Materials and Structures 29, no. 7 (May 27, 2020): 075003. http://dx.doi.org/10.1088/1361-665x/ab85a3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuriyama, Toshihide, Wataru Takatsuji, Takaki Itoh, Hiroshi Maeda, Toshiyuki Nakaie, Jun Matsui, and Yoshiaki Miyamoto. "Electrostatic Field Distribution Measurement Using MEMS Micro-mirror Array." IEEJ Transactions on Sensors and Micromachines 134, no. 12 (2014): 378–84. http://dx.doi.org/10.1541/ieejsmas.134.378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DeVerse, R. A., R. M. Hammaker, and W. G. Fateley. "Hadamard transform Raman imagery with a digital micro-mirror array." Vibrational Spectroscopy 19, no. 2 (April 1999): 177–86. http://dx.doi.org/10.1016/s0924-2031(99)00007-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Chuan, Kebin Shi, Mingda Zhou, Siyang Zheng, Shizhuo Yin, and Zhiwen Liu. "Z-microscopy for parallel axial imaging with micro mirror array." Applied Physics Letters 101, no. 23 (December 3, 2012): 231111. http://dx.doi.org/10.1063/1.4768677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kuriyama, Toshihide, Toshikazu Aoi, Hiroshi Maeda, Takaki Itoh, Yoshifumi Ueno, Toshiyuki Nakaie, Nobutika Matsui, and Hiroyuki Okumura. "MEMS Micro-Mirror Array for Electrostatic Field Distribution Measurement System." IEEJ Transactions on Sensors and Micromachines 130, no. 12 (2010): 575–79. http://dx.doi.org/10.1541/ieejsmas.130.575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ljungblad, Ulric, Tomas Lock, and Tor Sandstrom. "Resonantly enhanced addressing of a spatial light modulator micro-mirror array." Microelectronic Engineering 83, no. 4-9 (April 2006): 663–66. http://dx.doi.org/10.1016/j.mee.2005.12.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hui-feng, Liu, Ma Yun-long, Li San-wen, and Nie Yong-ming. "An optical multiplier setup with dual digital micro-mirror array devices." Journal of Physics: Conference Series 679 (February 29, 2016): 012044. http://dx.doi.org/10.1088/1742-6596/679/1/012044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ohara, K., and A. Kunzman. "Video processing technique for multimedia HDTV with digital micro-mirror array." IEEE Transactions on Consumer Electronics 45, no. 3 (1999): 604–10. http://dx.doi.org/10.1109/30.793547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De Beule, Pieter A. A., Anthony H. B. de Vries, Wouter Caarls, Donna J. Arndt-Jovin, and Thomas M. Jovin. "A Generation-3 Programmable Array Microscope with Digital Micro-Mirror Device." Biophysical Journal 98, no. 3 (January 2010): 178a. http://dx.doi.org/10.1016/j.bpj.2009.12.955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, L., J. Xie, R. B. Guo, K. K. Wu, P. Li, and J. H. Zheng. "Precision and mirror micro-grinding of micro-lens array on macro-freeform glass substrate for micro-photovoltaic performances." International Journal of Advanced Manufacturing Technology 86, no. 1-4 (December 2, 2015): 87–96. http://dx.doi.org/10.1007/s00170-015-8105-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Micro-mirror array"

1

Nguyen, Duy Duc. "Modeling a micro-mirror array and contribution to the development of a simulator of micro-system arrays." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD087.

Повний текст джерела
Анотація:
Dans cette thèse, nous contribuons à la modélisation, la simulation et l'optimisation d'une nouvelle génération de matrices de micro-miroirs conçue par le Laboratoire d'Astrophysique de Marseille (LAM). Une contribution est également apportée au développement du logiciel de calcul symbolique MEMSALab qui assistera la construction de modèles multi-échelles pour des matrices de microsystèmes. Le couplage entre le comportement élastique quasi-statique non linéaire d'une cellule de la matrice de micro-miroirs et le champ électrostatique utilisé pour son actionnement a été simulé.Une fois validée, cette simulation a été utilisée pour étudier le phénomène de pull-in ainsi que son optimisation. Ensuite, un modèle homogénéisé du champ électrostatique dans le vide entourant la matrice de micro-miroirs est construit à l'aide d'une méthode asymptotique. Les contributions au développement de MEMSALab constituent en l'introduction d'une théorie d'extension et de combinaison de preuves qui sera utilisée pour construire des modèles asymptotiques par un procédé de complexifications successives. Enfin, un langage spécifique complet pour l'utilisation de MEMSALab est présenté et illustré par des exemples significatifs. En particulier, il a été utilisé pour coder la construction d'un modèle homogénéisé qui sert d'art initial à la méthode extension-combinaison
In this thesis, we contribute to the modeling, simulation and optimization of a new generation of micro mirror arrays designed by the Astrophysics Laboratory of Marseille (LAM). A contribution is also made to the development of MEMSALab a symbolic computation software package designed to asist multiscale model derivation for microsystem arrays. The coupling between the quasi-static nonlinear behavior of a cell of the micro-mirror array and the electrostatic field used for its actuation is simulated. The simulation is then used to study the phenomenon of pull-in and its optimization. Then, a homogenized model for the electrostatic field in the vacuum space surrounding in the micro-mirror array has been built using an asymptotic method. The contributions to the development of MEMSALab consist in the introduction of an extension and combination theory that will be used to construct multiscale models based on various asymptotic approaches by a process of successive complexifications. Finally, a complete specification language for using MEMSALab is presented and illustrated by significant examples. In particular, it was used to encode the derivation of a homogenized model that serves as an initial state to the extension-combination method
Стилі APA, Harvard, Vancouver, ISO та ін.
2

YAN, JUN. "THREE-DIMENSIONAL DISPLAY SYSTEMS IMPLEMENTED WITH A MICROMIRROR ARRAY." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin997703291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roth, Matthias [Verfasser], Klaus [Gutachter] Janschek, and Wolfgang [Gutachter] Osten. "Contributions to the design of Fourier-optical modulation systems based on micro-opto-electro-mechanical tilt-mirror arrays / Matthias Roth ; Gutachter: Klaus Janschek, Wolfgang Osten." Dresden : Technische Universität Dresden, 2020. http://d-nb.info/1227202296/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chu, Ta-Shun, and 朱大舜. "A New Addressable Corner Micro-mirror Array for Optical Application." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/53444452161467349520.

Повний текст джерела
Анотація:
碩士
國立臺灣大學
應用力學研究所
90
Miniaturization of optical devices is increasingly needed in optical communication, imaging, and instrumentation. In the recent years, micro optics using MEMS techniques has been gradually playing an important role. The thesis first presents a novel addressable corner micromirror array for wide free-space optical applications. The corner mirror, composed of two mutually orthogonal reflective surfaces, may reflect incident light beam at any angle back of one specific plane to its incoming direction. Each micromachined corner mirror is constituted by three elements: a vertical mirror, a movable horizontal mirror, and a bottom electrode. In microfabrication, the bulk micromachining is used to fabricate all three opto-mechanical elements that bulk material of single crystal silicon provides superior opto-mechanical properties of polished surface, flatness and low residual stress. Meanwhile, the vertical mirrors are anisotropically bulk-micromachined with a (110) Si wafer for virtually vertical planes while the horizontal movable mirror plates and bottom electrodes are made with Si (100) wafers. In this report an array of micromachined corner mirrors is first reported to manipulate light beam in free space, equivalent to an optical function of lens and mirror integration. In addition, the corner micromirror allows to provide actuation on one of the reflective planes at each corner mirror, causing destruction of preset orthogonal planes. Incorporated with a grating and other optical components, the new device may provide simultaneous wavelength selection in free space and switching function for wavelength as well as intensity. In such an appropriate optical system, the corner micromirror may alleviate alignment problems and simplify assembly procedure. As experimentally achieved, the corner micromirror array may have the potential on an external-cavity tunable semiconductor laser, optical add/drop multiplexing, dual wavelength of interferometry or other applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Chen-yang, and 黃承揚. "Light extraction enhancement for InGaN/GaN LED by auto-cloned photonics crystal and micro mirror array." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/61061364119873059778.

Повний текст джерела
Анотація:
博士
國立清華大學
光電工程研究所
98
In this dissertation, we present several types of light extraction enhancement structures on the backside of light emitting diodes (LEDs) to enhance the efficiency of light output. The first one is auto-cloned photonics crystal (APhC) on the backside of the sapphire wafer of the LED substrate, and the second one is micro mirror array (MMA) structure which was embedded in the gallium nitride (GaN) LED mainbody by the fabrication process of epitaxial lateral overgrowth (ELOG). The first section of the dissertation is related to research of the APhC. Based on the theory of thin film growth, we simulated the growth of the auto-cloned Ta2O5/SiO2 multi-layer photonic crystal with a lateral saw-tooth period under the mechanism of deposition and etching. Ion-beam-sputter (IBS) was applied to deposit the films and RF-bias etching was applied simultaneously with the IBS on the Ta2O5 film. Both simulation and experiment results showed that the quality of the auto cloning can be optimized and well controlled by the RF-bias power. There exists an intermediate power range, within this range, the drop of peak to valley height variation of the saw-tooth profile can be reduced significantly to achieve high degree of auto-cloning. Analysis showed that simultaneous deposition and etching at the proper RF-bias power on the Ta2O5 has the capability to compensate the flattening effect of the SiO2 deposition such that the saw-tooth surface profile can be maintained. In the second section of the dissertation, we introduce the fabrication of three dimensional (3-D) APhC of Ta2O5/SiO2 multi-layers on the backside of the sapphire wafer that has InGaN/GaN multi-quantum wells (MQWs) LED on the front side. 94% light extraction enhancement in comparison to the LED without APhC was obtained. Electrical properties of the LED did not affected by the APhC and its fabrication process. Experimental evidences showed that light extraction enhancement mechanism is in two aspects: for rays that are emitted from the source and incident at lower angle of incidence to the APhC, the APhC acts as a high reflector; for rays incident at higher angle of incidence to the APhC, first order diffracted light from the APhC appears, the diffracted light is concentrated around the surface normal and is therefore capable of escaping. In the third section of the dissertation, we propose a light extraction enhancement structure by using the heat-resistive dielectric MMA embedding in the ELOG GaN. Taking advantages of reducing dislocation density by ELOG together with the capability of diffraction and high reflectance of the patterned structure from the MMA, higher light output power for the LED can be expected. The MMA of Ta2O5/SiO2 dielectric multi-layer with the mirror diameter of 3?慆 and the array period of 6?慆 was fabricated on c-plane sapphire substrate. ELOG of GaN was applied to the MMA that was deposited on both sapphire and sapphire with 2.56?慆 GaN template. The MMA was subjected to 1200oC high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200oC annealing. The result implies that our MMA is compatible to the high temperature MOCVD growth environment of GaN. In the final section of the dissertation, we propose fabrication of MQWs InGaN/GaN LEDs, 300?慆 ?e 300?慆 chip size, with Ta2O5/SiO2 dielectric multi-layer MMA embedded in the ELOG GaN on the c-plane sapphire substrate. MQWs InGaN/GaN LEDs with ELOG embedded patterned SiO2 array (P-SiO2) of the same dimension as the MMA were also fabricated for comparison. Dislocation density was reduced for the ELOG samples. 75.2% light extraction enhancement for P-SiO2-LED and 102.6% light extraction enhancement for the MMA-LED were obtained over the standard LED. We demonstrated that the trapped lights can be redirected from the MMA by multiple-diffraction to escape from the LED. Therefore, the light extraction can be enhanced.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Duc-HanhDinh and 丁德行. "Maskless Lithography Based On Digital Micro-mirror Device (DMD) and Double-Sided Microlens and Spatial Filter Arrays." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4357z8.

Повний текст джерела
Анотація:
碩士
國立成功大學
機械工程學系
105
A maskless lithography system is developed which can generate any arbitrary patterns. The system consists of an illumination system, a digital micro mirrors devices (DMD), and a projection system including an achromatic lens pair and a double-sided micro lens and spatial filter array (D-MSFA). The DMD plays as a virtual mask, which can generate any arbitrary patterns by individually turning on or off each micro mirror. The achromatic lens pair projects image of each DMD’s mirror onto the first lens of D-MSFA. The D-MSFA consists of 2 micro lens arrays and a pinholes array which is located at the focal plane of the first micro lens array. The first micro lens array(MLA1) focus the light from DMD to its corresponding pinhole, the second micro lens array( MLA2) then projects image of pinholes array onto substrate to form a points array of light. The substrate is carried by a XY stage, software is developed to synchronize the XY stage moving with DMD. The profile of microlens is design and optimized by a software namely Zemax optics studio to a chieve smallest focused spot size. A technique has been developed to fabricate a large area D-MSFA, which ensures the high accuracy profile and alignment between micro lens arrays and pinhole array. After fabrication, D-MSFA achieves 10μm UV spot sizes at FHMW level. Finally, this study successfully generate arbitrary patterns with the minimum line width is 5 μm.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roth, Matthias. "Contributions to the design of Fourier-optical modulation systems based on micro-opto-electro-mechanical tilt-mirror arrays." 2020. https://tud.qucosa.de/id/qucosa%3A72525.

Повний текст джерела
Анотація:
Spatial Light Modulators (SLMs) based on Micro-Opto-Electro-Mechanical Systems (MOEMS) are increasingly being used in various fields of optics and enable novel functionalities. The technology features frame rates from a few kHz to the MHz range as well as resolutions in the megapixel range. The field continues to make rapid progress, but technological advancements are always associated with high expenditure. Against this background, this dissertation addresses the question: What contribution can optical system design make to the further development of MOEMS-SLM-based modulation? A lens is a simple example of an optical system. This dissertation deals with system design based on Fourier optics in which the wave properties of light are exploited. On this basis, arrays of micromirrors can modulate light properties in a spatially resolved manner. For example, tilt-mirrors can control the intensity distribution in an image plane. In this dissertation variations of the aperture required for this are investigated. In addition to known absorbing apertures, phase filters in particular are investigated, which apply a spatially distributed delay effect to the light wave. This dissertation proposes the combination of MOEMS-SLMs with static, pixelated elements in the same system. These may be pixelated phase masks, also known as diffractive optical elements (DOEs). Analogously, pixelated polarizer arrays and absorbing photomasks exist. The combination of SLMs and static elements allows new degrees of freedom in system design. This thesis proposes new modulation systems based on MOEMS tilt-mirror SLMs. These systems use analog tilt-mirror arrays for the simultaneous modulation of intensity and phase as well as intensity and polarization. The proposed systems thus open up new possibilities for MOEMS-based spatial light modulation. Their properties are validated and investigated by numerical simulations. System properties and limitations are derived from these near and far field simulations. This dissertation shows that the modulation of different MOEMS-SLM types can be fundamentally changed by system design. Piston mirror arrays are classically used for phase modulation and tilt-mirror arrays for intensity modulation. This thesis proposes the use of subpixel phase structures. Their use approximately provides tilt-mirrors with the phase-modulating effect of piston-mirrors. In order to achieve this, a new optimization method is presented. Piston-mirror arrays are available only to a limited extent. By contrast, tilt-mirror arrays are well established. In combination with subpixel phase features, tilt-mirrors may replace piston-mirrors in some applications. These and other challenges of MOEMS-SLM technology can be adequately addressed on the basis of system design.
Räumliche Lichtmodulatoren (Spatial Light Modulators, SLMs) auf Basis von Mikro-Opto-Elektro-Mechanischen Systemen (MOEMS) finden zunehmend Anwendung in verschiedensten Teilgebieten der Optik und ermöglichen neuartige Funktionalitäten. Die Technik ermöglicht Frameraten von einigen kHz bis in den MHz-Bereich sowie Auflösungen bis in den Megapixelbereich. Der Fachbereich macht nach wie vor rasche Fortschritte, technologische Weiterentwicklungen sind aber stets mit hohem Aufwand verbunden. Vor diesem Hintergrund widmet sich diese Arbeit der Frage: Welchen Beitrag kann optisches Systemdesign zur Weiterentwicklung der MOEMS-SLM-basierten Modulation leisten? Bereits eine Linse stellt ein Beispiel für ein optisches System dar. Diese Dissertation beschäftigt sich mit Systemdesign auf Basis der Fourier-Optik, bei der die Welleneigenschaften des Lichts genutzt werden. Auf dieser Basis können Arrays von Mikrospiegeln die flächige Verteilung von Licht einstellen. Beispielsweise können Kippspiegel die Intensitätsverteilung in einer Bildebene steuern. In dieser Dissertation werden Variationen der dafür nötigen Apertur untersucht. Neben bekannten absorbierenden Blenden werden insbesondere Phasenfilter untersucht, welche eine flächig verteilte Verzögerungswirkung auf die Lichtwelle aufbringen. Diese Dissertation schlägt die Kombination von MOEMS-SLMs mit statischen, pixelierten Elementen im selben System vor. Hierbei kann es sich um pixelierte Phasenmasken handeln, auch bekannt als diffraktive optische Elemente (DOEs). Analog existieren pixelierte Polarisatorarrays und absorbierende Fotomasken. Die Kombination von SLMs und statischen Elementen ermöglicht neue Freiheiten im Systemdesign. Diese Arbeit schlägt neue Modulationssysteme auf Basis von MOEMS-Kippspiegel-SLMs vor. Diese Systeme nutzen analoge Kippspiegelarrays für die simultane Modulation von Intensität und Phase sowie von Intensität und Polarisation. Die vorgeschlagenen Systeme eröffnen damit neue Möglichkeiten für die MOEMS-basierte Flächenlichtmodulation. Ihre Eigenschaften werden mithilfe von numerischen Simulationen validiert und untersucht. Aus diesen Nah- und Fernfeldsimulationen werden Systemeigenschaften und Limitierungen abgeleitet. Es wird in dieser Arbeit gezeigt, dass die Modulation verschiedener MOEMS-SLM-Typen auf Basis des Systementwurfs fundamental verändert werden kann. Senkspiegelarrays werden klassischerweise zur Modulation der Phase eingesetzt und Kippspiegelarrays zur Modulation der Intensität. Diese Arbeit schlägt die Nutzung von Subpixel-Phasenstrukturen vor. Diese verleihen Kippspiegeln näherungsweise die phasenmodulierende Wirkung von Senkspiegeln. Um dies zu erreichen, wird ein neuartiges Optimierungsverfahren vorgestellt. Senkspiegelarrays sind nur in geringem Umfang verfügbar. Im Gegensatz dazu sind Kippspiegelarrays gut etabliert. In Kombination mit Subpixel-Phasenstrukturen könnten Kippspiegel in einigen Anwendungen Senkspiegel ersetzen. Diese und andere Herausforderungen der MOEMS-SLM-Technologie lassen sich auf der Grundlage des Systemdesigns adäquat adressieren.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Micro-mirror array"

1

P. Bruno, Binal, Ruediger Grunwald, and Ulrike Wallrabe. "Fabrication of an Adaptive Micro Fresnel Mirror Array." In Springer Proceedings in Physics, 29–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9632-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schmitt, Robert, Ingo Jakobs, and Karl Vielhaber. "Wavefront Sensor Design based on a Micro-Mirror Array for a High Dynamic Range Measurement at a High Lateral Resolution." In Fringe 2009, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03051-2_107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schenk, H., U. Dauderstädt, P. Dürr, A. Gehner, A. Wolter, and H. Lakner. "Light Processing with Electrostatically Driven Micro Scanning Mirrors and Micro Mirror Arrays." In MicroNano Integration, 89–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18727-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Micro-mirror array"

1

Leong, K. H., M. A. Dugan, R. W. Wallace, A. A. Said, R. Shaffer, Ph Bado, and B. D. Wright. "Micro-mirror steering of diode array beams." In ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zamkotsian, Frederic, Severin Waldis, Wilfried Noell, Kacem ElHadi, Patrick Lanzoni, and Nico De Rooij. "Micro-mirror array for multi-object spectroscopy." In SPIE Astronomical Telescopes + Instrumentation, edited by Eli Atad-Ettedgui, Joseph Antebi, and Dietrich Lemke. SPIE, 2006. http://dx.doi.org/10.1117/12.671911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kuriyama, Toshihide, Toshikazu Aoi, Wataru Takatsuji, Hiroshi Maeda, Takaki Itoh, Yoshifumi Ueno, Toshiyuki Nakaie, Jun Matsui, and Yoshiaki Miyamoto. "Electrostatic field distribution measurement using silicon micro-mirror array." In 2012 IEEE International Symposium on Electromagnetic Compatibility - EMC 2012. IEEE, 2012. http://dx.doi.org/10.1109/isemc.2012.6351823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haney, Michael W., Marc P. Christensen, Dinesh Rajan, Scott C. Douglas, and Sally L. Wood. "Adaptive flat micro-mirror array-based computational imaging architecture." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/cosi.2005.cmb5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yuan, Xiaohui, Siyuan Liu, Jason D. Schmidt, and Igor Anisimov. "Micro-mirror array simulation and far-field diffraction analysis." In SPIE Defense + Security, edited by Igor V. Ternovskiy and Peter Chin. SPIE, 2014. http://dx.doi.org/10.1117/12.2054400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Waldis, Severin, Pierre-Andre Clerc, Frederic Zamkotsian, Michael Zickar, Wilfried Noell, and Nico de Rooij. "High-fill factor micro-mirror array for multi object spectroscopy." In MOEMS-MEMS 2006 Micro and Nanofabrication, edited by Hakan Ürey, David L. Dickensheets, and Bishnu P. Gogoi. SPIE, 2006. http://dx.doi.org/10.1117/12.647493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Waldis, Severin, Frederic Zamkotsian, Patrick Lanzoni, Wilfried Noell, Michael Canonica, and Nico de Rooij. "Micro-mirror array for multi-object spectroscopy in cryogenic environment." In 2008 IEEE/LEOS Internationall Conference on Optical MEMs and Nanophotonics. IEEE, 2008. http://dx.doi.org/10.1109/omems.2008.4607855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuntze, Thomas, Michael Panzner, Udo Klotzbach, and Eckhard Beyer. "Laser marking of materials by means of micro mirror array." In ICALEO® 2002: 21st International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2002. http://dx.doi.org/10.2351/1.5066189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sung, Hyunsik, Byoungsub Song, Sungwon Choi, Min-Chul Park, and Sung-Wook Min. "Transmission-type three-dimensional screen using micro hole-mirror array." In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Trinh, Nguyen Nhat Binh, Michel Lenczner, Frederic Zamkotsian, and Nicolas Ratier. "A multiscale model of a two-dimensional micro-mirror array." In 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2018. http://dx.doi.org/10.1109/eurosime.2018.8369936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії