Добірка наукової літератури з теми "Micro-elastography"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Micro-elastography".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Micro-elastography":

1

Sanderson, Rowan W., Andrea Curatolo, Philip Wijesinghe, Lixin Chin, and Brendan F. Kennedy. "Finger-mounted quantitative micro-elastography." Biomedical Optics Express 10, no. 4 (March 11, 2019): 1760. http://dx.doi.org/10.1364/boe.10.001760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fang, Qi, Brooke Krajancich, Lixin Chin, Renate Zilkens, Andrea Curatolo, Luke Frewer, James D. Anstie, et al. "Handheld probe for quantitative micro-elastography." Biomedical Optics Express 10, no. 8 (July 16, 2019): 4034. http://dx.doi.org/10.1364/boe.10.004034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Jiayue, Matt S. Hepburn, Lixin Chin, Alireza Mowla, and Brendan F. Kennedy. "Analysis of sensitivity in quantitative micro-elastography." Biomedical Optics Express 12, no. 3 (March 1, 2021): 1725. http://dx.doi.org/10.1364/boe.417829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boquet-Pujadas, Aleix, and Jean-Christophe Olivo-Marin. "Multiple variational image assimilation for accessible micro-elastography." Journal of Physics: Conference Series 1131 (November 2018): 012014. http://dx.doi.org/10.1088/1742-6596/1131/1/012014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laloy-Borgna, G., A. Zorgani, and S. Catheline. "Micro-elastography: Toward ultrasonic shear waves in soft solids." Applied Physics Letters 118, no. 11 (March 15, 2021): 113701. http://dx.doi.org/10.1063/5.0039816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Es’haghian, Shaghayegh, Kelsey M. Kennedy, Peijun Gong, Qingyun Li, Lixin Chin, Philip Wijesinghe, David D. Sampson, Robert A. McLaughlin, and Brendan F. Kennedy. "In vivo volumetric quantitative micro-elastography of human skin." Biomedical Optics Express 8, no. 5 (April 10, 2017): 2458. http://dx.doi.org/10.1364/boe.8.002458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Allen, Wes M., Kelsey M. Kennedy, Qi Fang, Lixin Chin, Andrea Curatolo, Lucinda Watts, Renate Zilkens, et al. "Wide-field quantitative micro-elastography of human breast tissue." Biomedical Optics Express 9, no. 3 (February 9, 2018): 1082. http://dx.doi.org/10.1364/boe.9.001082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

TADANO, Shigeru, Kazuhiro FUJISAKI, Hayato SUZUKI, Seishin TAKAO, Mikio SUGA, Itsuro KAJIWARA, Toru YAMAMOTO, Yu JIANG, and Gen NAKAMURA. "Excitation System for Magnetic Resonance Elastography Using Micro MRI." Journal of Biomechanical Science and Engineering 7, no. 4 (2012): 463–74. http://dx.doi.org/10.1299/jbse.7.463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kennedy, Brendan F., Robert A. McLaughlin, Kelsey M. Kennedy, Lixin Chin, Andrea Curatolo, Alan Tien, Bruce Latham, Christobel M. Saunders, and David D. Sampson. "Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure." Biomedical Optics Express 5, no. 7 (June 9, 2014): 2113. http://dx.doi.org/10.1364/boe.5.002113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chin, Lixin, Brendan F. Kennedy, Kelsey M. Kennedy, Philip Wijesinghe, Gavin J. Pinniger, Jessica R. Terrill, Robert A. McLaughlin, and David D. Sampson. "Three-dimensional optical coherence micro-elastography of skeletal muscle tissue." Biomedical Optics Express 5, no. 9 (August 22, 2014): 3090. http://dx.doi.org/10.1364/boe.5.003090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Micro-elastography":

1

Laloy-Borgna, Gabrielle. "Micro-élastographie : caractérisation mécanique de la cellule par ondes élastiques." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'élastographie ondulatoire est une méthode d'imagerie visant à mesurer l'élasticité des tissus biologiques de façon non-invasive et quantitative. Récemment, la transposition de la technique à petite échelle baptisée micro-élastographie dynamique a permis de réaliser de premières mesures d'élasticité cellulaire par ondes de cisaillement grâce à un microscope optique. Cette thèse s'attache à en comprendre les limites et à développer de nouvelles méthodes de micro-élastographie, à tester de nouvelles sources d'ondes mais également des applications potentielles de la technique. Dans un premier temps, la dispersion d'ondes de cisaillement a été étudiée sur des gels de gélatine. Deux régimes distincts d'ondes élastiques guidées et d'ondes de cisaillement ont été identifiés. La limite haute fréquence de propagation des ondes a également été explorée, permettant d'établir l'existence d'une fréquence de coupure expliquant l'absence d'imagerie ultrasonore de cisaillement. La même approche a ensuite été appliquée à des fluides visco-élastiques faisant apparaître deux fréquences de coupure et permettant de revisiter les études déjà menées sur la rhéologie et la propagation d'ondes dans ce type de milieux. Puis, l'objectif initial étant de réaliser de la micro-élastographie sur des cellules uniques et les expériences précédemment réalisées avec des micro-pipettes présentant certains défauts, une méthode originale de micro-élastographie cellulaire a été développée. Une micro-bulle oscillante est utilisée comme source d'ondes de cisaillement sans contact à 15 kHz, pour réaliser des expériences sur des cellules sanguines appelées mégacaryocytes dont le diamètre est d'environ 15 µm. Il s'agit en fait des plus petits objets jamais explorés par élastographie. Des objets plus gros, des amas cellulaires de quelques dizaines de milliers de cellules ont également été étudiés. En effet, l'élastographie ultrasonore de ces modèles tumoraux d'environ 800 µm de diamètre étant impossible, la micro-élastographie optique est une technique adaptée. Ces échantillons contiennent des nano-particules magnétiques, donc une impulsion magnétique a pu être utilisée comme source d'ondes. Auparavant, des preuves de concept sur des gels à la fois macroscopiques (en élastographie ultrasonore) et microscopiques (en micro-élastographie optique) ont été menées pour valider l'utilisation de cette source de champ diffus. Enfin, des mesures d'ondes de pouls ont été réalisées sur des artères rétiniennes d'environ 50 µm de diamètre à partir d'acquisitions d'holographie Doppler laser réalisées in vivo. L'application d'algorithmes de corrélation monochromatiques a permis de mesurer la vitesse d'ondes guidées révélant l'existence d'une deuxième onde de pouls, une onde antisymétrique de flexion. Cette onde guidée, beaucoup plus lente que l'onde de pouls axisymétrique étudiée jusqu'à présent, a également été observée sur l'artère carotide grâce à des acquisitions ultrasonores ultrarapides
Dyanmic elastography is an imaging method to measure the elasticity of biological tissues in a non-invasive and quantitative way. Recently, the transposition of the technique to a small scale has been called dynamic micro-elastography and has allowed the first measurements of cellular elasticity by shear waves using an optical microscope. This thesis aims to undetstand the limits of this technique and to develop new micro-elastography methods, to test new wave sources but also potential applications of the technique. In a first step, the dispersion of shear waves was studied on gelatin phantoms. Two distinct regimes of guided elastic waves and shear waves were identified. The high-frequency limit of wave propagation was also explored, establishing the existence of a cutoff frequency which explains the absence of ultrasonic shear imaging. The same approach was then applied to visco-elastic fluids, revealing two cutoff frequencies and revisiting previous studies on rheology and wave propagation in this type of medium. Then, the initial objective being to carry out micro-elastography on single cells and the experiments previously carried out with micro-pipettes presenting certain defects, an original method of cellular micro-elastography was developed. An oscillating microbubble is used as a contactless shear wave source at 15 kHz to perform experiments on blood cells whose diameter is about 15 µm. These are the smallest objects ever explored by elastography. Larger objects, cell clusters of a few tens of thousands of cells have also been studied. Indeed, since ultrasound elastography of these tumour models of about 800 µm in diameter is impossible, optical micro-elastography is a suitable technique. These samples contain magnetic nanoparticles, so a magnetic pulse could be used as a wave source. Previously, proofs of concept on both macroscopic (in ultrasonic elastography) and microscopic (in optical micro-elastography) phantoms were conducted to validate the use of this diffuse field source. Finally, pulse wave measurements were performed on retinal arteries of about 50 µm in diameter using laser Doppler holography acquisitions performed in vivo. The application of monochromatic correlation algorithms allowed the measurement of guided wave velocities, finally revealing the existence of a second pulse wave, an antisymmetric bending wave. This guided wave, much slower than the axisymmetric pulse wave studied so far, was also observed on the carotid artery thanks to ultrafast ultrasound acquisitions
2

Dizeux, Alexandre. "Caractérisation ultrasonore de l'angiogenèse, de l'élasticité et de la microstructure tumorale sous l'effet de thérapies conventionnelles et innovantes." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066113/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les modifications induites par les cellules tumorales sur leur environnement ont pour but de permettre leur développement en remodelant le tissu la soutenant et en créant un nouveau réseau vasculaire (angiogenèse). Plusieurs thérapies anti-angiogéniques inhibant le développement du réseau vasculaire tumoral ont obtenu l’autorisation de mise sur le marché et sont actuellement utilisées en clinique. Ces thérapies induisent de fortes modifications fonctionnelles au sein de la tumeur mais le simple suivi de l’évolution du volume tumoral n’est pas suffisant pour rendre compte de ces modifications. L’objectif principal de la thèse a consisté à utiliser différentes modalités d’imagerie ultrasonore afin d’évaluer leur sensibilité aux modifications générées dans des tumeurs murine (carcinome colorectal et pulmonaire) au cours de plusieurs types de thérapie (chimique : cytotoxique, anti-angiogénique / physique : plasma froid, sono-sensibilisation). Les modifications de la distribution spatiale des micro-vaisseaux et leur fonctionnalité ont été caractérisées à l’aide de l’imagerie de contraste ultrasonore (CEUS), l’altération de la microstructure de la tumeur a été évaluée grâce à l’analyse spectrale des signaux radiofréquences, connu comme « quantitative ultrasound » (QUS) et enfin les variations des propriétés mécaniques des tissus tumoraux ont été mesurées en élastographie à l’aide de la technique « Shear Wave Elastography » (SWE). Afin de comprendre l’origine des modifications observées in vivo, des paramètres standard comme les niveaux de fibrose ou de nécrose ont été caractérisés ex vivo dans le tissu tumoral, grâce à l’immunohistochimie, une technique de référence
Tumor development is complex process made possible thanks to the microenvironment surrounding tumor cell. Modifications induced by tumor cells on their environment enable their own development by remodeling tissues sustaining them and by creating a new vascular network (angiogenesis). The use of several antiangiogenic therapies, inhibiting the sprout of a new vascular network, has been authorized in clinic. These therapies induce strong modifications in tumors at the functional level and following tumor size changes are is not sufficient to fully characterize tumor modifications. The main goal of this thesis was to use different ultrasound-based imaging modalities in order to assess their sensitivity to modifications induced in murine tumor model (colorectal and lung carcinomas) during different type of therapy (chemical: cytotoxic, antiangiogenic / physical: cold plasma, sonosensitization). Modifications of the spatial distribution of microvessels and their functionality were characterized using contrast-enhanced ultrasound (CEUS), alteration of tumor microstructure was assessed using spectral analysis of radiofrequency signal, known as quantitative ultrasound (QUS) and finally variations of mechanical properties in tumor tissues were measured in shear wave elastography (SWE). In order to better understand the origin of the modifications observed in vivo, standard parameters such as level of fibrosis and necrosis were characterize ex vivo in tumor tissue using immunochemistry as gold standard
3

Guan, Guangying. "Micro-motion detection by optical coherence tomography (OCT) and its clinical applications." Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/f2ac8e9f-aee4-4e70-9c79-de7de35fae43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Detection of micro-motion on biological tissues has various applications such as ultrasound elastography and magnetic resonance elastography (MRE). Ultrasound transducers, the most commonly used tool to detect endogenous and exogenous micro-motions, have a number of drawbacks: including the requirements of the physical contact with the sample and limited spatial resolution (millimetre scale). The aim of this thesis is to develop a non-contact phase-sensitive imaging technique which is suitable for functional imaging in the micron range which also has the potential for quantitative analysis of relative properties resulting from an appropriate image processing. Concerning imaging techniques, this thesis focused on optical coherence tomography (OCT) and in particular on phase-sensitive optical coherence tomography (PhS-OCT). In this thesis, a PhS-OCT system is developed for micro-motion detection and a dual camera PhS-OCT system is developed to double the imaging acquiring speed and improve the sensitivity to small phase change. Two applications of PhS-OCT combining micro-motions detection are preformed: 1) Photo-thermal OCT (PT-OCT) system is developed to detect the photo-thermal phenomenon of nanoparticles. A mathematic model is proposed to analyse and reconstruct the distribution of nanoparticles in biological tissues. 2) A quantitative 3D optical coherence elastography (OCE) system and algorithm are developed to analysis the mechanical property of tissue. A feasibility study is carried for the diagnosis of prostate cancer (PCa) using this technique. Results show that PhS-OCT is a powerful tool for the detection of micro-motions (micron range). Functional OCT based on it such as PT-OCT and OCE offers potential in diagnostic and therapeutic in clinical applications, e.g. PT-OCT can be used to detect and map the distribution and concentration of dye and drug in tissues or organs. 3D OCE can provide useful information for early localization and diagnosis of cancer.

Частини книг з теми "Micro-elastography":

1

Suzuki, Hayato, Mikio Suga, Kazuhiro Fujisaki, Itsuro Kajiwara, Gen Nakamura, Kogo Yoshikawa, and Shigeru Tadano. "Viscoelastic Properties of Gel Material and Soft Tissue Measured by MRE (Magnetic Resonance Elastography) Using Micro MRE." In IFMBE Proceedings, 156–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02913-9_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yamamoto, Takao. "Rheological Basis of Magnetic Resonance Elastography." In Nano/Micro Science and Technology in Biorheology, 157–81. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54886-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Okechukwu Erondu, Felix. "Perspective Chapter: Recent Advances in Musculo-Skeletal Ultrasound." In Ultrasound Imaging - Current Topics [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Medical imaging specialists continue to explore better ways of demonstrating pathology and anatomy of the musculo-skeletal system. The continuous quest is fuelled by the desire to improve diagnostic yield, perform procedures more quickly and accurately, reduce risks to patient or operator, achieve better cost efficiency and utilize less complex methodologies. In many instances, musculoskeletal ultrasound acts as a screening, diagnostic tool but also guide and monitor therapeutic interventions. The paper outlines the use of ultrasound in the imaging of peripheral nerve disorders, traumatic and atraumatic joint disorders, Doppler techniques such as super micro vascular Imaging and sono-elastography. Refinements in probe technology and application of digital and novel proprietary software, have continued to improve the resolution of ultrasound images and with finer details on a scale not previously possible. With increasing experience and standardization of protocols, Musculoskeletal ultrasound will continue to play a great role in the diagnostic work-up and treatment of related disorders.

Тези доповідей конференцій з теми "Micro-elastography":

1

Metzner, Kai L., Qi Fang, Rowan W. Sanderson, Alireza Mowla, and Brendan F. Kennedy. "Friction in quantitative micro-elastography." In Optical Coherence Imaging Techniques and Imaging in Scattering Media, edited by Maciej Wojtkowski, Yoshiaki Yasuno, and Benjamin J. Vakoc. SPIE, 2023. http://dx.doi.org/10.1117/12.2669463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yakovlev, Vladislav V., Dawson Nodurft, Zachary Coker, and Zhaokai Meng. "Brillouin micro-elastography of laser-processed materials." In SPIE LASE, edited by Bo Gu, Henry Helvajian, Alberto Piqué, Corey M. Dunsky, and Jian Liu. SPIE, 2017. http://dx.doi.org/10.1117/12.2252714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Shang, and Kirill V. Larin. "Noncontact depth-resolved micro-scale corneal elastography." In SPIE BiOS, edited by Kirill V. Larin and David D. Sampson. SPIE, 2015. http://dx.doi.org/10.1117/12.2076623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hepburn, Matt, Philip Wijesinghe, Luke Major, Lixin Chin, Nicholas Hugenberg, Dawei Song, Assad A. Oberai, Yu Suk Choi, and Brendan F. Kennedy. "Quantitative micro-elastography for cell mechanobiology (Conference Presentation)." In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, edited by Joseph A. Izatt and James G. Fujimoto. SPIE, 2019. http://dx.doi.org/10.1117/12.2511486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lixin Chin, Andrea Curatolo, Philip Wijesinghe, Kelsey M. Kennedy, Robert A. McLaughlin, Brendan F. Kennedy, and David D. Sampson. "Sensitivity and resolution in optical coherence micro-elastography." In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Catheline, Stefan, Gabrielle Laloy-Borgna, Ali Zorgani, Bruno Giammarinaro, and Pol Grasland-Mongrain. "Complex elastic wave propagation in micro-elastography (Conference Presentation)." In Optical Elastography and Tissue Biomechanics VII, edited by Kirill V. Larin and Giuliano Scarcelli. SPIE, 2020. http://dx.doi.org/10.1117/12.2551486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fang, Qi, Luke Frewer, Renate Zilkens, Lixin Chin, Ken Y. Foo, Rowan Sanderson, Devina Lakhiani, et al. "Comparison between two handheld quantitative micro elastography methods (Conference Presentation)." In Optical Elastography and Tissue Biomechanics VII, edited by Kirill V. Larin and Giuliano Scarcelli. SPIE, 2020. http://dx.doi.org/10.1117/12.2549443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hepburn, Matt, Anna Jaeschke, Alireza Mowla, Chii J. Chan, and Brendan F. Kennedy. "Three-dimensional characterization of murine ovary elasticity using quantitative micro-elastography." In Optical Elastography and Tissue Biomechanics XI, edited by Kirill V. Larin and Giuliano Scarcelli. SPIE, 2024. http://dx.doi.org/10.1117/12.3006718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aleef, Tajwar Abrar, Reid Vassallo, Qi Zeng, S. Sara Mahdavi, Brian Wodlinger, Miles Mannas, Peter C. Black, and Septimiu E. Salcudean. "Implementation of Shear Wave and Strain Elastography with Micro-Ultrasound." In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE, 2023. http://dx.doi.org/10.1109/ius51837.2023.10306532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Jiayue, Erin M. Lloyd, Matt S. Hepburn, Alireza Mowla, Yu Suk Choi, Miranda D. Grounds, and Brendan F. Kennedy. "Characterizing the elasticity of skeletal muscle using quantitative micro-elastography." In Optical Coherence Imaging Techniques and Imaging in Scattering Media, edited by Maciej Wojtkowski, Yoshiaki Yasuno, and Benjamin J. Vakoc. SPIE, 2021. http://dx.doi.org/10.1117/12.2616056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії