Добірка наукової літератури з теми "Micro-Beamforming"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Micro-Beamforming".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Micro-Beamforming"
Gil, J. M., and L. M. Correia. "Comparing Adaptive Beamforming in Micro- and Macro-Cells." IEEE Transactions on Antennas and Propagation 54, no. 2 (February 2006): 629–38. http://dx.doi.org/10.1109/tap.2005.863125.
Повний текст джерелаTortoli, Piero, Lorenzo Castrignano, Claudio Giangrossi, Valentino Meacci, Enrico Boni, and Alessandro Ramalli. "Parallel- and micro-beamforming challenges in real-time, high-frame-rate, ultrasound imaging." Journal of the Acoustical Society of America 155, no. 3_Supplement (March 1, 2024): A102. http://dx.doi.org/10.1121/10.0026954.
Повний текст джерелаBera, D., S. B. Raghunathan, C. Chen, Z. Chen, M. A. P. Pertijs, M. D. Verweij, V. Daeichin, et al. "Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography." Physics in Medicine & Biology 63, no. 7 (March 29, 2018): 075015. http://dx.doi.org/10.1088/1361-6560/aab45e.
Повний текст джерелаCarbajal Ipenza, Sammy Johnatan Carbajal, and Bruno Sanches Masiero. "Efficient Sigma–Delta Sensor Array Beamforming." Sensors 23, no. 17 (August 31, 2023): 7577. http://dx.doi.org/10.3390/s23177577.
Повний текст джерелаPhoha, Shashi, John Koch, Eric Grele, Christopher Griffin, and Bharat Madan. "Space-time Coordinated Distributed Sensing Algorithms for Resource Efficient Narrowband Target Localization and Tracking." International Journal of Distributed Sensor Networks 1, no. 1 (February 2005): 81–99. http://dx.doi.org/10.1080/15501320590901856.
Повний текст джерелаVlaminck, V., L. Temdie, V. Castel, M. B. Jungfleisch, D. Stoeffler, Y. Henry, and M. Bailleul. "Spin wave diffraction model for perpendicularly magnetized films." Journal of Applied Physics 133, no. 5 (February 7, 2023): 053903. http://dx.doi.org/10.1063/5.0128666.
Повний текст джерелаKhramtsov, Igor, Victor Ershov, and Oleg Kustov. "Localization of Noise Sources in Jets Flowing from Lobed Nozzles." E3S Web of Conferences 446 (2023): 01002. http://dx.doi.org/10.1051/e3sconf/202344601002.
Повний текст джерелаShen Fangfang, 申芳芳, 苏鑫鑫 Su Xinxin, 杨思成 Yang Sicheng, 武震林 Wu Zhenlin, 赵明山 Zhao Mingshan, and 韩秀友 Han Xiuyou. "Design of Time Delay Network for Optical Beamforming Based on Anti-Resonant Waveguide Micro-Rings." Acta Optica Sinica 39, no. 2 (2019): 0213001. http://dx.doi.org/10.3788/aos201939.0213001.
Повний текст джерелаZhang, Ziyang, Zheng Jiang, Bei Yang, and Xiaoming She. "A Beamforming-Based Enhanced Handover Scheme with Adaptive Threshold for 5G Heterogeneous Networks." Electronics 12, no. 19 (October 3, 2023): 4131. http://dx.doi.org/10.3390/electronics12194131.
Повний текст джерелаSeo, Sang-Woo, Somi Yun, Myung-Gyu Kim, Mankyu Sung, and Yejin Kim. "Screen-Based Sports Simulation Using Acoustic Source Localization." Applied Sciences 9, no. 15 (July 24, 2019): 2970. http://dx.doi.org/10.3390/app9152970.
Повний текст джерелаДисертації з теми "Micro-Beamforming"
Guerif, Benjamin. "Conception d’une sonde programmable, polyvalente et abordable pour l'imagerie médicale ultrasonore volumétrique en temps réel." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS041.
Повний текст джерелаSelon l’Organisation Mondiale de la Santé, les maladies cardiovasculaires sont la principale cause de décès dans le monde avec 17.9 millions de décès soit 32% des morts constatés en 2019. L’échocardiographie transthoracique (TTE), une technique d’imagerie ultrasonore non invasive et non irradiante, s’est alors imposée comme un outil de diagnostic efficace permettant d’identifier les dysfonctionnements du muscle cardiaque. Cette technique permet alors de procéder à une analyse morphologique et cinétique du cœur à l’aide de techniques d’imagerie dites conventionnelles.D’autres techniques alternatives telles que l’imagerie ultrarapide proposent des modalités complémentaires pouvant permettre d’améliorer le diagnostic des maladies cardiovasculaires. Si ces techniques ont pu faire leurs preuves en imagerie bidimensionnelle (2D), différentes barrières technologiques s’opposent à sa démocratisation en imagerie tridimensionnelle (3D). En effet, le passage de la 2D à la 3D nécessite d’adresser des réseaux de transducteurs de plusieurs milliers de voies. Les systèmes d’imagerie cliniques ayant un nombre de voies limité (le plus souvent à 256), l’utilisation de techniques dites de réduction de voie s’avère donc nécessaire. L’une d’entre elles, appelée micro-formation de faisceau, s’est ainsi démarquée en proposant des performances d’imagerie conventionnelles 3D similaires à une sonde d’imagerie 2D. Cette technologie est le plus souvent fermé et semble a priori difficilement compatible avec des techniques d’imagerie alternative. Ce faisant l’imagerie ultrarapide s’est rapidement orientée sur des techniques de réduction de voie alternatives telles que les réseaux ligne-colonne, les réseaux clairsemés ou l’utilisation de systèmes d’imagerie encombrants avec des sondes matricielles de plus petite surface acoustique et composée de milliers d’éléments.Dans cette thèse, un premier travail visant à améliorer les techniques d’imagerie ultrarapide existantes est proposé en nous appuyant sur l’utilisation d’une nouvelle sonde complètement peuplée composée de 3072 éléments associée à nouveau système d’imagerie de plusieurs milliers de voies. Par la suite, la définition et l’étude d’une sonde matricielle active dédiée à l’imagerie TTE reposant sur l’utilisation de la micro-formation de faisceau et composée de plusieurs milliers d’éléments pilotés par un unique système d’imagerie est proposée. Enfin, un prototype de sonde de micro-formation de faisceau est réalisé et évalué expérimentalement à l’aide d’un échographe de recherche ouvert afin de proposer une première sonde suffisamment polyvalente, programmable et abordable pour rendre accessible cette technologies aux laboratoires de recherche et ainsi offrir de nouveaux outils de diagnostic en échocardiographie transthoracique 3D
Muhammad, Nuraddeen Ado. "Analysis and design of an innovative 19.5 GHz active phase-shifter architecture, implemented in a 0.13 μm BiCMOS SiGe process, for beamforming in 5G applications". Electronic Thesis or Diss., Poitiers, 2024. http://www.theses.fr/2024POIT2257.
Повний текст джерелаFor good reasons, 5G dominates technological news. The high-bandwidth and real-time capabilities of 5G have huge societal potential by enabling a plethora of new and unanticipated application cases. Indeed, the millimeter-wave frequency band is characterized by an available bandwidth that can support high-speed wireless systems for future radio communications systems, including 5th Generation cellular systems and beyond. The frequencies of operation at mm-wave generally requires larger antenna aperture to improve the channel budget at useful distances. These antennas are usually in the form of phased arrays, allowing beamforming to be performed. This work presents the design and implementation of a 19.5 GHz active phase shifter for beamforming in 5G applications. The proposed circuit is based on an original architecture using an injection-locked voltage-controlled oscillator (ILVCO) associated with a polyphase filter followed by a phase selection circuit and its sign. The desired phase in the range of ± 45° is synthesised with the proposed circuit by altering the control voltage Vcntr of an ILVCO for fine-tuning and modifying the two control signals of phase and sign selectors (S0, S2) for coarse tuning, resulting in a 360° linear phase variation. According to the post-layout simulation results, the frequency tuning range of the VCO varies from 17.89 GHz to 20.16 GHz in free-running mode. In addition, with an injected power of -8.5 dBm and a frequency of 19.5 GHz, the proposed phase shifter draws 20.47 mA from a 1.3 V supply voltage. Furthermore, the mean output power on 50 Ω load is found to be -15.58 dBm. The whole circuit has a chip size of 1.58 mm2 including the pads and it is integrated in a BiCMOS SiGe:C 0.13 μm process. Finally, the obtained results justify that the proposed active phase shifter is a relevant design for phased-array systems used for beamforming in 5G applications
Shih, Huei-Hsu, and 施懷勛. "Ultrasound Array Signal Compression by Digital Micro-beamforming." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/60761638536869426073.
Повний текст джерела國立臺灣大學
生醫電子與資訊學研究所
103
Due to the high computational requirements, conventionally real-time ultrasound imaging systems utilize highly parallel hardware architectures, thus resulting in high hardware cost, lack of flexibility on image optimization and algorithm implementation and relatively long system development cycle. On the other hand, a software-based system utilizing highly parallel graphic processing units (GPUs) can alleviate such limitations. However, massive raw data transmission from hardware end to software end, which is up to gigabytes per second, becomes one of the bottlenecks for performing real-time software-based imaging. For example, the popular USB 3.0 can only support data rate up to 0.5GB/s, which cannot support real-time raw data transfer. A feasible solution is to compress raw channel data with low hardware resource requirement on the front end. As previous studies demonstrated, we can get overall compression ratio of 4~5.6 by demodulating the radio frequency data to baseband and applying Walsh transform-based compression methods. However, more data compression is still desired. In this study, we propose the use of micro-beamforming to further compress the amplitude data with following steps: take the first N channels as a group, and delay the channel data based on pre-steering, then sum up the N channels into one single output. The rest of the channels follow the same procedures and the number of output channels can be suppressed by N times. In addition to data compression, we also propose a compensation method to decrease the errors resulting from the micro-beamformed amplitude data. Results show that when a group of 4 channels are used, B-mode images formed by the compressed data have almost the same spatial and contrast resolution as the original ones. Furthermore, the peak signal-to-noise ratio is higher than 50 dB with the application of the compensation method. Moreover, several aperture domain processing algorithms, including phase aberration correction, coherence-based adaptive weighting and color Doppler velocity estimation, were tested with micro-beamforming and reasonable performance is achieved. The proposed method integrates micro-beamforming and the compensation method into the Walsh transform-based architecture, and overall compression ratio was improved by about 27~59%, reaching an overall compression ratio up to 6.3~7.1, which enables real-time data transfer via an USB 3.0 interface. The increased resource utilization is no more than 5% on a Virtex-6 FPGA.
Частини книг з теми "Micro-Beamforming"
Gil, João M., and Luís M. Correia. "Adaptive Beamforming Performance in Micro- and Macro-Cell Propagation Scenarios." In Adaptive Antenna Arrays, 153–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05592-2_9.
Повний текст джерелаТези доповідей конференцій з теми "Micro-Beamforming"
Guérif, Benjamin, Victor Finel, David Savéry, Philippe Vince, Claire Bantignies, Sophana Kok, Marie-Coline Dumoux, et al. "A matrix array for volumetric imaging using a micro-beamforming ASIC." In 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), 1–4. IEEE, 2024. https://doi.org/10.1109/uffc-js60046.2024.10793797.
Повний текст джерелаU-Wai Lok and Pai-Chi Li. "Improving micro-beamforming by error compensation." In 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, 2016. http://dx.doi.org/10.1109/ultsym.2016.7728731.
Повний текст джерелаBera, D., H. J. Vos, S. B. Raghunathan, C. Chen, Z. Chen, M. D. Verweij, M. A. P. Pertijs, N. de Jong, and J. G. Bosch. "Three-dimensional beamforming combining micro-beamformed RF datasets." In 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, 2016. http://dx.doi.org/10.1109/ultsym.2016.7728449.
Повний текст джерелаTaniguchi, Tetsuki, and Takeo Fujii. "Interference Management with Beamforming Utilizing Spectrum Database for Micro Operators." In 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). IEEE, 2020. http://dx.doi.org/10.1109/vtc2020-fall49728.2020.9348725.
Повний текст джерелаYuan, Hang, Nan Yang, Kai Yang, Chong Han, and Jianping An. "Enabling Massive Connections Using Hybrid Beamforming in Terahertz Micro-Scale Networks." In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020. http://dx.doi.org/10.1109/wcnc45663.2020.9120579.
Повний текст джерелаSavoia, Alessandro Stuart, Giosue Caliano, Nicola Lamberti, Giulia Matrone, Giovanni Magenes, and Antonio Iula. "Phase shift micro-beamforming of CMUT arrays using the spring-softening effect." In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0361.
Повний текст джерелаSarmiento, Samael, Jose A. Lazaro, Alicia Lopez, M. Angeles Losada, Jorge Pinazo, and Adolfo Lerin. "Study of Graphene-SOI-Based Micro-Ring Resonator for Beamforming Automotive Radars." In 2020 22nd International Conference on Transparent Optical Networks (ICTON). IEEE, 2020. http://dx.doi.org/10.1109/icton51198.2020.9203261.
Повний текст джерелаKang, Hyun Gil, Sua Bae, Pilsu Kim, Jiwon Park, Gunho Lee, Woojin Jung, Minsuk Park, Kangsik Kim, Wooyoul Lee, and Tai-Kyong Song. "Column-based micro-beamformer for improved 2D beamforming using a matrix array transducer." In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2015. http://dx.doi.org/10.1109/biocas.2015.7348450.
Повний текст джерелаYu, Zili, Michiel A. P. Pertijs, and Gerard C. M. Meijer. "A programmable analog delay line for Micro-beamforming in a transesophageal ultrasound probe." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667749.
Повний текст джерелаWang, Dongxu, Yuanxi Cao, Cheng Guo, and Sen Yan. "A Micro-Machined Butler Matrix Beamforming Network Based Multi-Beam Patch Antenna Array." In 2021 Computing, Communications and IoT Applications (ComComAp). IEEE, 2021. http://dx.doi.org/10.1109/comcomap53641.2021.9653023.
Повний текст джерела